Quantum Leaps in Philosophy of Mind
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Arxiv:Quant-Ph/0105127V3 19 Jun 2003DECOHERENCE, EINSELECTION, AND THE QUANTUM ORIGINS OF THE CLASSICAL Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B288 Los Alamos, New Mexico 87545 Decoherence is caused by the interaction with the en- A. The problem: Hilbert space is big 2 vironment which in effect monitors certain observables 1. Copenhagen Interpretation 2 of the system, destroying coherence between the pointer 2. Many Worlds Interpretation 3 B. Decoherence and einselection 3 states corresponding to their eigenvalues. This leads C. The nature of the resolution and the role of envariance4 to environment-induced superselection or einselection, a quantum process associated with selective loss of infor- D. Existential Interpretation and ‘Quantum Darwinism’4 mation. Einselected pointer states are stable. They can retain correlations with the rest of the Universe in spite II. QUANTUM MEASUREMENTS 5 of the environment. Einselection enforces classicality by A. Quantum conditional dynamics 5 imposing an effective ban on the vast majority of the 1. Controlled not and a bit-by-bit measurement 6 Hilbert space, eliminating especially the flagrantly non- 2. Measurements and controlled shifts. 7 local “Schr¨odinger cat” states. Classical structure of 3. Amplification 7 B. Information transfer in measurements 9 phase space emerges from the quantum Hilbert space in 1. Action per bit 9 the appropriate macroscopic limit: Combination of einse- C. “Collapse” analogue in a classical measurement 9 lection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselec- III. CHAOS AND LOSS OF CORRESPONDENCE 11 tion replaces quantum entanglement between the appa- A. Loss of the quantum-classical correspondence 11 B.
- 
												  Quantum Nondemolition Photon Detection in Circuit QED and the Quantum Zeno EffectPHYSICAL REVIEW A 79, 052115 ͑2009͒ Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect Ferdinand Helmer,1 Matteo Mariantoni,2,3 Enrique Solano,1,4 and Florian Marquardt1 1Department of Physics, Center for NanoScience, and Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333 Munich, Germany 2Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Str. 8, D-85748 Garching, Germany 3Physics Department, Technische Universität München, James-Franck-Str., D-85748 Garching, Germany 4Departamento de Quimica Fisica, Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, 48080 Bilbao, Spain ͑Received 17 December 2007; revised manuscript received 15 January 2009; published 20 May 2009͒ We analyze the detection of itinerant photons using a quantum nondemolition measurement. An important example is the dispersive detection of microwave photons in circuit quantum electrodynamics, which can be realized via the nonlinear interaction between photons inside a superconducting transmission line resonator. We show that the back action due to the continuous measurement imposes a limit on the detector efficiency in such a scheme. We illustrate this using a setup where signal photons have to enter a cavity in order to be detected dispersively. In this approach, the measurement signal is the phase shift imparted to an intense beam passing through a second cavity mode. The restrictions on the fidelity are a consequence of the quantum Zeno effect, and we discuss both analytical results and quantum trajectory simulations of the measurement process. DOI: 10.1103/PhysRevA.79.052115 PACS number͑s͒: 03.65.Ta, 03.65.Xp, 42.50.Lc I. INTRODUCTION to be already prepared in a certain state.
- 
												  Richard C. Brower, Boston University with Many Slides from Kate Clark, NVIDIAPast and Future of QCD on GPUs Richard C. Brower, Boston University with many slides from Kate Clark, NVIDIA High Performance Computing in High Energy Physics CCNU Wahan China, Sept 19, 2018 Optimize the Intersection Application: QCD Algorithms: Architecture: AMG GPU Question to address • How do we put Quantum Field on the computer? • How to Maximize Flops/$, bandwidth/$ at Min Energy? • How to implement fastest algorithms: Dirac Sovlers, Sympletic Integrators, etc ? Standard Lattice QCD Formulation i d3xdt[ F 2 + (@ iA + m) ] Path Integral = 2A(x) (x) e− g2 µ⌫ µ µ − µ D Z R 1.Complex time for probability it x ! 4 iaAµ 2. Lattice Finite Differences (@µ iAµ) (x) ( x+ˆµ e x)/a − ! − d d e xDxy(A) y Det[D] 3. Fermionic integral − ! Z Det[D] dφdφ e φx[1/D]xyφy 4.Bosonic (pseudo- Fermions) ! − Z ij 1 γµ Lattice Dirac (x) − U ab(x) (x +ˆµ) ia 2 µ jb Color Dimension: a = 1,2,3 μ=1,2,…,d Spin i = 1,2,3,4 x x+ ➔ µ axis 2 x SU(3) Gauge Links ab ab iAµ (x) Uµ (x)=e x1 axis ➔ Quarks Propagation on Hypercubic Lattice* • Dominate Linear Algebra : Matrix solver for Dirac operator. • Gauge Evolution: In the semi-implicit quark Hamiltonian evolution in Monte vacuum Carlo time. u,d,s, proto u, • Analysis: proto d * Others: SUSY(Catteral et al), Random Lattices(Christ et al), Smiplicial Sphere (Brower et al) Byte/flop in Dirac Solver is main bottleneck • Bandwidth to memory rather than raw floating point throughput. • Wilson Dirac/DW operator (single prec) : 1440 bytes per 1320 flops.
- 
												  American Leadership in Quantum Technology Joint HearingAMERICAN LEADERSHIP IN QUANTUM TECHNOLOGY JOINT HEARING BEFORE THE SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY & SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION OCTOBER 24, 2017 Serial No. 115–32 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–671PDF WASHINGTON : 2018 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY HON. BARBARA COMSTOCK, Virginia, Chair FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois ELIZABETH H.
- 
												  Measurement Theories in Quantum MechanicsMeasurement Theories in Quantum Mechanics Cortland M. Setlow March 3, 2006 2 Contents 1 Introduction 1 1.1 Intent .. 1 1.2 Overview. 1 1.3 New Theories from Old 3 2 A Brief Review of Mechanics 7 2.1 Newtonian Mechanics: F = mn 8 2.1.1 Newton's Laws of Motion. 8 2.1.2 Mathematics and the Connection to Experiment 9 2.2 Hamiltonian and Lagrangian Mechanics . 10 2.2.1 Lagrangian Mechanics . 10 2.2.2 Hamiltonian Mechanics 12 2.2.3 Conclusions ....... 13 2.3 The Hamiltonian in Quantum Mechanics 14 2.4 The Lagrangian in Quantum Mechanics 14 2.5 Conclusion . .......... 15 3 The Measurement Problem 17 3.1 Introduction . 17 3.2 Quantum Mysteries. 18 i ii CONTENTS 3.2.1 Probability Rules . 18 3.2.2 Probability in Experiments: Diffraction 19 3.3 Conclusions .......... 20 3.3.1 Additional Background 20 3.3.2 Summary ..... 21 4 Solutions to Quantum Problems 23 4.1 Introduction . 23 4.2 Orthodox Theory 23 4.2.1 Measurement in the Orthodox Theory . 24 4.2.2 Criticisms of Orthodox Measurement 24 4.2.3 Conclusions ... 25 4.3 Ghirardi-Rimini-Weber . 25 4.3.1 Dynamics 26 4.3.2 Motivation. 26 4.3.3 Criticisms 28 4.4 Hidden Variables 30 4.4.1 Dynamics of Bohm's Hidden Variables Interpretation. 31 4.4.2 Introducing the Hidden Variables .... 32 4.4.3 But What About von Neumann's Proof? . 33 4.4.4 Relativity and the Quantum Potential 34 4.5 Everett's Relative State Formulation 34 4.5.1 Motivation .
- 
												  Einselection Without Pointer StatesEinselection without pointer states Einselection without pointer states - Decoherence under weak interaction Christian Gogolin Universit¨atW¨urzburg 2009-12-16 C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 1 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity equal a priory probabilities Classical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics Second Law ergodicity ? equal a priory probabilities Classical Mechanics ? [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 Einselection without pointer states j Introduction New foundation for Statistical Mechanics X Thermodynamics X Statistical Mechanics * Quantum Mechanics X [2, 3] C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 2 / 26 quantum mechanical orbitals discrete energy levels coherent superpositions hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 discrete energy levels hopping Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals coherent superpositions C. Gogolin j Universit¨atW¨urzburg j 2009-12-16 3 / 26 Einselection without pointer states j Introduction Why do electrons hop between energy eigenstates? quantum mechanical orbitals discrete energy levels coherent superpositions hopping C.
- 
												  Leading in a Complex WorldLEADING IN A COMPLEX WORLD CHANCELLOR WILLIAM H. MCRAVEN’S VISION AND FOR THE UNIVERSITY OF TEXAS SYSTEM PRESENTED TO THE BOARD OF REGENTS, NOVEMBER 2015 BOARD OF REGENTS Paul L. Foster, Chairman R. Steven Hicks, Vice Chairman Jeffery D. Hildebrand, Vice Chairman Regent Ernest Aliseda Regent David J. Beck Regent Alex M. Cranberg Regent Wallace L. Hall, Jr. Regent Brenda Pejovich Regent Sara Martinez Tucker Student Regent Justin A. Drake GENERAL COUNSEL TO THE BOARD OF REGENTS Francie A. Frederick As of November 2015 Chancellor’s Vision TABLE OF CONTENTS 02 Letter from Chairman Paul L. Foster 04 Letter from Chancellor William H. McRaven 05 Introduction 07 UT System’s Mission Statement 09 Operating Concept 11 Agile Decision Process 13 Strategic Assessment 17 Framework for Advancing Excellence 19 Team of Teams 23 Quantum Leap: The Texas Prospect Initiative 25 Quantum Leap: The American Leadership Program 27 Quantum Leap: Win the Talent War 29 Quantum Leap: Enhancing Fairness & Opportunity 31 Quantum Leap: The UT Health Care Enterprise 33 Quantum Leap: Leading the Brain Health Revolution 35 Quantum Leap: The UT Network for National Security 37 Quantum Leap: UT System Expansion in Houston 39 Conclusion & Ethos Office of the BOARD OF REGENTS During my time as a UT System Regent, and most recently as chairman of the board, I have witnessed many great moments in the history of our individual institutions and significant, game-changing events for our system as a whole. No single event has left me more optimistic about the future of The University of Texas System than Chancellor William H.
- 
												  A Model-Theoretic Interpretation of Environmentally-InducedA model-theoretic interpretation of environmentally-induced superselection Chris Fields 815 East Palace # 14 Santa Fe, NM 87501 USA fi[email protected] November 28, 2018 Abstract The question of what constitutes a “system” is foundational to quantum mea- surement theory. Environmentally-induced superselection or “einselection” has been proposed as an observer-independent mechanism by which apparently classical sys- tems “emerge” from physical interactions between degrees of freedom described com- pletely quantum-mechanically. It is shown here that einselection can only generate classical systems if the “environment” is assumed a priori to be classical; einselection therefore does not provide an observer-independent mechanism by which classicality can emerge from quantum dynamics. Einselection is then reformulated in terms of positive operator-valued measures (POVMs) acting on a global quantum state. It is shown that this re-formulation enables a natural interpretation of apparently-classical systems as virtual machines that requires no assumptions beyond those of classical arXiv:1202.1019v2 [quant-ph] 13 May 2012 computer science. Keywords: Decoherence, Einselection, POVMs, Emergence, Observer, Quantum-to-classical transition 1 Introduction The concept of environmentally-induced superselection or “einselection” was introduced into quantum mechanics by W. Zurek [1, 2] as a solution to the “preferred-basis problem,” 1 the problem of selecting one from among the arbitrarily many possible sets of basis vectors spanning the Hilbert space of a system of interest. Zurek’s solution was brilliantly simple: it transferred the preferred basis problem from the observer to the environment in which the system of interest is embedded, and then solved the problem relative to the environment.
- 
												  Diffraction-Based Interaction-Free MeasurementsQuantum Stud.: Math. Found. (2020) 7:145–153 CHAPMAN INSTITUTE FOR https://doi.org/10.1007/s40509-019-00205-6 UNIVERSITY QUANTUM STUDIES REGULAR PAPER Diffraction-based interaction-free measurements Spencer Rogers · Yakir Aharonov · Cyril Elouard · Andrew N. Jordan Received: 18 July 2019 / Accepted: 3 September 2019 / Published online: 14 September 2019 © Chapman University 2019 Abstract We introduce diffraction-based interaction-free measurements. In contrast with previous work where a set of discrete paths is engaged, good-quality interaction-free measurements can be realized with a continuous set of paths, as is typical of optical propagation. If a bomb is present in a given spatial region—so sensitive that a single photon will set it off—its presence can still be detected without exploding it. This is possible because, by not absorbing the photon, the bomb causes the single photon to diffract around it. The resulting diffraction pattern can then be statistically distinguished from the bomb-free case. We work out the case of single- versus double-slit in detail, where the double-slit arises because of a bomb excluding the middle region. Keywords Interaction-free measurement · Bomb-detection · Diffraction · Double-slit · Zeno effect 1 Introduction The first example of a quantum interaction-free measurement (IFM) was given by Elitzur and Vaidman in 1993 [1]. Their famous “bomb tester” is a Mach–Zehnder interferometer which may or may not have a malicious object (“bomb”) blocking one interferometer arm. In the absence of the blockage, one output detector is “dark” (never clicks) due to destructive interference of the two interferometer arms.
- 
												  Decoherence and the Transition from Quantum to Classical—RevisitedDecoherence and the Transition from Quantum to Classical—Revisited Wojciech H. Zurek This paper has a somewhat unusual origin and, as a consequence, an unusual structure. It is built on the principle embraced by families who outgrow their dwellings and decide to add a few rooms to their existing structures instead of start- ing from scratch. These additions usually “show,” but the whole can still be quite pleasing to the eye, combining the old and the new in a functional way. What follows is such a “remodeling” of the paper I wrote a dozen years ago for Physics Today (1991). The old text (with some modifications) is interwoven with the new text, but the additions are set off in boxes throughout this article and serve as a commentary on new developments as they relate to the original. The references appear together at the end. In 1991, the study of decoherence was still a rather new subject, but already at that time, I had developed a feeling that most implications about the system’s “immersion” in the environment had been discovered in the preceding 10 years, so a review was in order. While writing it, I had, however, come to suspect that the small gaps in the landscape of the border territory between the quantum and the classical were actually not that small after all and that they presented excellent opportunities for further advances. Indeed, I am surprised and gratified by how much the field has evolved over the last decade. The role of decoherence was recognized by a wide spectrum of practic- 86 Los Alamos Science Number 27 2002 ing physicists as well as, beyond physics proper, by material scientists and philosophers.
- 
												  Decoherence, Einselection, and the Quantum Origins of the ClassicalREVIEWS OF MODERN PHYSICS, VOLUME 75, JULY 2003 Decoherence, einselection, and the quantum origins of the classical Wojciech Hubert Zurek Theory Division, LANL, Mail Stop B210, Los Alamos, New Mexico 87545 (Published 22 May 2003) The manner in which states of some quantum systems become effectively classical is of great significance for the foundations of quantum physics, as well as for problems of practical interest such as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal ‘‘Schro¨ dinger-cat states.’’ The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between
- 
												  Science Fiction on American TelevisionTV Sci-Fi 16 + GUIDE This and other bfi National Library 16 + Guides are available from http://www.bfi.org.uk/16+ TV Sci-Fi CONTENTS Page IMPORTANT NOTE................................................................................................................. 1 ACCESSING RESEARCH MATERIALS.................................................................................. 2 APPROACHES TO RESEARCH, by Samantha Bakhurst ....................................................... 4 INTRODUCTION by Sean Delaney ......................................................................................... 6 AMERICAN TELEVISION........................................................................................................ 8 SCIENCE FICTION ON AMERICAN TELEVISION ................................................................. 9 AUDIENCES AND FANS......................................................................................................... 11 ANDROMEDA ......................................................................................................................... 12 BABYLON 5 ............................................................................................................................ 14 BATTLESTAR GALACTICA................................................................................................... 17 FARSCAPE ............................................................................................................................. 19 THE IRWIN ALLEN QUARTET • VOYAGE TO THE BOTTOM OF THE SEA.....................................................................