Quantum Nondemolition Photon Detection in Circuit QED and the Quantum Zeno Effect

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Nondemolition Photon Detection in Circuit QED and the Quantum Zeno Effect PHYSICAL REVIEW A 79, 052115 ͑2009͒ Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect Ferdinand Helmer,1 Matteo Mariantoni,2,3 Enrique Solano,1,4 and Florian Marquardt1 1Department of Physics, Center for NanoScience, and Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstrasse 37, D-80333 Munich, Germany 2Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Str. 8, D-85748 Garching, Germany 3Physics Department, Technische Universität München, James-Franck-Str., D-85748 Garching, Germany 4Departamento de Quimica Fisica, Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, 48080 Bilbao, Spain ͑Received 17 December 2007; revised manuscript received 15 January 2009; published 20 May 2009͒ We analyze the detection of itinerant photons using a quantum nondemolition measurement. An important example is the dispersive detection of microwave photons in circuit quantum electrodynamics, which can be realized via the nonlinear interaction between photons inside a superconducting transmission line resonator. We show that the back action due to the continuous measurement imposes a limit on the detector efficiency in such a scheme. We illustrate this using a setup where signal photons have to enter a cavity in order to be detected dispersively. In this approach, the measurement signal is the phase shift imparted to an intense beam passing through a second cavity mode. The restrictions on the fidelity are a consequence of the quantum Zeno effect, and we discuss both analytical results and quantum trajectory simulations of the measurement process. DOI: 10.1103/PhysRevA.79.052115 PACS number͑s͒: 03.65.Ta, 03.65.Xp, 42.50.Lc I. INTRODUCTION to be already prepared in a certain state. Although the quan- tum Zeno effect also plays a role in the CPB dynamics in Quantum nondemolition ͑QND͒ measurements are ideal ͓19͔, the conclusions and reasoning for the optimal measure- projective measurements that reproduce their outcome when ment rate in our case are different. repeated ͓1,2͔. Using them, it is possible to measure the state Such dispersive photon detection schemes could have a of a system with the minimal disruption required by quantum particularly important application in the field of quantum mechanics. Recent successful experimental demonstrations electrodynamics ͑QED͒ in superconducting circuits. Circuit of QND detection for superconducting qubits and microwave QED setups ͓12,20–22͔ offer the possibility to implement photons ͓3–6͔ are both of fundamental interest and crucial ideas of quantum optics using microwave photons propagat- for the development of quantum communication and infor- ing in transmission lines and they also could form the basis mation processing. When QND detection is applied continu- for novel architectures capable of scalable, fault-tolerant ously to a system that would otherwise undergo some intrin- quantum computing ͓23͔. Proposals for generating nonclas- sic dynamics, quantum jumps are observed, tracing the sical photon states exist or have been implemented quantum evolution in real time ͓7–11͔. As a consequence, the ͓4,21,24,25͔. However, the on-chip single-shot detection of dynamics tends to be frozen, a result now known as the itinerant photons is still missing. quantum Zeno effect ͓12–17͔. Recent experiments have demonstrated dispersive qubit In the present paper, we show that the interplay of these detection ͓3͔ and measurements of photon statistics ͓4͔. phenomena may put interesting constraints on the detection Based on the dispersive coupling strengths demonstrated of itinerant quanta. The specific minimal example we will there, one could employ a superconducting qubit inside a discuss concerns the continuous dispersive QND detection of microwave transmission line resonator to induce a nonlinear single photons passing through a cavity. The crucial distinc- coupling between two modes of the resonator ͑or alterna- tion to be recognized is the following. For localized quanta tively couple two cavities͒, thus creating a dispersive photon ͑e.g., a photon already created inside a cavity ͓8,18͔͒, the detector of the type discussed here. Even though we find a quantum Zeno effect could presumably only enhance the de- limit for the photon detection fidelity of about 30% for the tection by suppressing the decay. However, this no longer simplest scheme considered here, this would still be a con- holds for the detection of itinerant quanta if we require that siderable improvement over the present state of the art. our detector is always working and can detect the quantum without knowing the arrival time in advance. As we will II. MODEL show, in this case the unavoidable back action of the mea- surement device produces a quantum Zeno effect, suppress- We investigate a QND scheme utilizing the nonlinear ing the fidelity of measurements. Kerr-type coupling ͓26–28͔ of two discrete localized modes Similar measurement physics is involved when trying to of a bosonic field. The presence of a quantum inside the read out the phonon state of a nanoresonator using a single signal mode gives rise to a frequency shift of the detection electron transistor ͑SET͒ and a Cooper pair box ͑CPB͒ as a mode, which can be observed dispersively via the phase shift coupler ͓19͔. However, there are some distinct differences to of a beam transmitted through that mode ͑see Fig. 1͒. In turn, the scheme considered here. The most prominent difference the signal mode frequency fluctuates due to the detection is that we analyze a scheme to detect itinerant quanta ͑in our beam’s shot noise. As a consequence, the incoming signal case photons͒ and therefore do not assume the signal mode photon will be reflected with a probability that rises with 1050-2947/2009/79͑5͒/052115͑10͒ 052115-1 ©2009 The American Physical Society HELMER et al. PHYSICAL REVIEW A 79, 052115 ͑2009͒ III. STOCHASTIC MASTER EQUATION In this section we derive a stochastic master equation for this measurement situation. Starting from a standard Lind- blad master equation, involving both driving and decay for the two modes, we can derive a stochastic master equation that keeps track of the individual measurement signal ob- tained in each individual run of the experiment. Before pre- FIG. 1. ͑Color online͒ Schematic sketch of the model. Two cav- senting that equation ͓Eq. ͑2͒ below͔, let us briefly describe ity modes are coupled anharmonically. The detector mode is irradi- in qualitative terms the purpose of using a stochastic master ated with a strong coherent field that suffers a phase shift whenever equation. Imagine a general measurement situation where the a photon is present in the signal mode. system in question cannot be directly projectively measured, but instead one has to couple a measurement apparatus ͑most ͒ coupling strength and detection beam intensity. often a meso- or macroscopic apparatus to the system. Only This incarnation of the quantum Zeno effect generates a this apparatus can then be projectively measured. Assuming trade-off that yields the highest detection efficiency at inter- that apparatus and coupling to the system are indeed suitable mediate coupling strengths. In that way, such dispersive to extract information about a certain system observable via schemes for itinerant quanta turn out to be similar to weak a projective measurement on an apparatus observable, during measurements using general linear detectors and amplifiers such a measurement the following happens: We let system ͓2͔. and apparatus, initially assumed to be in a product state, We proceed as follows. ͑i͒ We numerically evaluate quan- interact according to the coupling Hamiltonian for some time ⌬ tum jump trajectories for the phase-shift signal in a minimal interval t. Afterwards, the state will have changed, gener- model of a QND photon detector and analyze the fraction of ally into an entangled state between system and measure- detected photons, observing the trade-off described above. ment apparatus. It is by this entanglement that information ͑ii͒ We interpret these findings using an analytical approxi- about the system state is transferred into the measurement mation. ͑iii͒ Finally, we briefly comment on possible experi- apparatus. Then we imagine to projectively measure the ͑ ͒ mental realizations. measurement apparatus. This has several consequences: i We consider a system of two cavity modes with a Kerr- the measurement apparatus experiences a projection onto one ͑ ͒ type coupling of strength g, of the usually smoothly distributed eigenstates of the appa- ratus observable; ͑ii͒ the system and the measurement appa- ratus are now again in a product state; ͑iii͒ this evidently also ͑ 1 1 changed the system state this is called measurement back ˆ ប␻ͩ ͪ ប␻ ͩ ͪ ប ˆ ͒ H = nˆ + + det nˆ det + + gnˆnˆ det + Hdrive+decay. action , however not necessarily into an eigenstate of the 2 2 system. It is important to realize that this change is also ran- ͑1͒ dom, as it is conditional on the measurement result we ob- tained when projectively measuring the apparatus. Very often and especially in the situation we consider, the These modes might represent two different electromagnetic coupling between system and measurement apparatus is field modes inside an optical or microwave cavity, the modes weak, meaning that during one measurement as we just de- of two adjacent cavities ͓29͔, or even two anharmonically scribed, the system state only changes very little. This is then coupled modes of a nanomechanical resonator. Photons in referred to as a “weak” measurement. When we now imagine the signal mode ͑frequency ␻, number operator nˆ͒ and the that we take the continuum limit ⌬t→0, it is intuitively clear ͑␻ ͒ detector mode det, nˆ det decay by leaking out of the cavity. that the infinitesimally small kicks the system experiences The anharmonic Kerr-type coupling arises generically when should lead to stochastic dynamics. We can therefore expect introducing any nonlinear medium, such as an atom, a qubit, ͑i͒ having a stochastic term enter the master equation which or a quantum dot, into a cavity and has been studied for the leads to ͑ii͒ diffusionlike behavior of the system state and purpose of QND measurements in quantum optics ͓26–28͔.
Recommended publications
  • Measurement Theories in Quantum Mechanics
    Measurement Theories in Quantum Mechanics Cortland M. Setlow March 3, 2006 2 Contents 1 Introduction 1 1.1 Intent .. 1 1.2 Overview. 1 1.3 New Theories from Old 3 2 A Brief Review of Mechanics 7 2.1 Newtonian Mechanics: F = mn 8 2.1.1 Newton's Laws of Motion. 8 2.1.2 Mathematics and the Connection to Experiment 9 2.2 Hamiltonian and Lagrangian Mechanics . 10 2.2.1 Lagrangian Mechanics . 10 2.2.2 Hamiltonian Mechanics 12 2.2.3 Conclusions ....... 13 2.3 The Hamiltonian in Quantum Mechanics 14 2.4 The Lagrangian in Quantum Mechanics 14 2.5 Conclusion . .......... 15 3 The Measurement Problem 17 3.1 Introduction . 17 3.2 Quantum Mysteries. 18 i ii CONTENTS 3.2.1 Probability Rules . 18 3.2.2 Probability in Experiments: Diffraction 19 3.3 Conclusions .......... 20 3.3.1 Additional Background 20 3.3.2 Summary ..... 21 4 Solutions to Quantum Problems 23 4.1 Introduction . 23 4.2 Orthodox Theory 23 4.2.1 Measurement in the Orthodox Theory . 24 4.2.2 Criticisms of Orthodox Measurement 24 4.2.3 Conclusions ... 25 4.3 Ghirardi-Rimini-Weber . 25 4.3.1 Dynamics 26 4.3.2 Motivation. 26 4.3.3 Criticisms 28 4.4 Hidden Variables 30 4.4.1 Dynamics of Bohm's Hidden Variables Interpretation. 31 4.4.2 Introducing the Hidden Variables .... 32 4.4.3 But What About von Neumann's Proof? . 33 4.4.4 Relativity and the Quantum Potential 34 4.5 Everett's Relative State Formulation 34 4.5.1 Motivation .
    [Show full text]
  • Diffraction-Based Interaction-Free Measurements
    Quantum Stud.: Math. Found. (2020) 7:145–153 CHAPMAN INSTITUTE FOR https://doi.org/10.1007/s40509-019-00205-6 UNIVERSITY QUANTUM STUDIES REGULAR PAPER Diffraction-based interaction-free measurements Spencer Rogers · Yakir Aharonov · Cyril Elouard · Andrew N. Jordan Received: 18 July 2019 / Accepted: 3 September 2019 / Published online: 14 September 2019 © Chapman University 2019 Abstract We introduce diffraction-based interaction-free measurements. In contrast with previous work where a set of discrete paths is engaged, good-quality interaction-free measurements can be realized with a continuous set of paths, as is typical of optical propagation. If a bomb is present in a given spatial region—so sensitive that a single photon will set it off—its presence can still be detected without exploding it. This is possible because, by not absorbing the photon, the bomb causes the single photon to diffract around it. The resulting diffraction pattern can then be statistically distinguished from the bomb-free case. We work out the case of single- versus double-slit in detail, where the double-slit arises because of a bomb excluding the middle region. Keywords Interaction-free measurement · Bomb-detection · Diffraction · Double-slit · Zeno effect 1 Introduction The first example of a quantum interaction-free measurement (IFM) was given by Elitzur and Vaidman in 1993 [1]. Their famous “bomb tester” is a Mach–Zehnder interferometer which may or may not have a malicious object (“bomb”) blocking one interferometer arm. In the absence of the blockage, one output detector is “dark” (never clicks) due to destructive interference of the two interferometer arms.
    [Show full text]
  • Measurement Quantum Mechanics and Experiments on Quantum Zeno Effect Carlo Presilla
    Annals of Physics PH5535 annals of physics 248, 95121 (1996) article no. 0052 Measurement Quantum Mechanics and Experiments on Quantum Zeno Effect Carlo Presilla Dipartimento di Fisica, UniversitaÁ di Roma ``La Sapienza,'' and INFN, Sezione di Roma, Piazzale A. Moro 2, Rome, Italy 00185 Roberto Onofrio Dipartimento di Fisica ``G. Galilei,'' UniversitaÁ di Padova, and INFN, Sezione di Padova, Via Marzolo 8, Padua, Italy 35131 and Ubaldo Tambini Dipartimento di Fisica, UniversitaÁ di Ferrara, and INFN, Sezione di Ferrara, Via Paradiso 12, Ferrara, Italy 44100 Received June 8, 1995 Measurement quantum mechanics, the theory of a quantum system which undergoes a measurement process, is introduced by a loop of mathematical equivalencies connecting pre- viously proposed approaches. The unique phenomenological parameter of the theory is linked to the physical properties of an informational environment acting as a measurement apparatus which allows for an objective role of the observer. Comparison with a recently reported experiment suggests how to investigate novel interesting regimes for the quantum Zeno effect. 1996 Academic Press, Inc. 1. Introduction The description of the measurement process has been a topic debated from the early developments of quantum mechanics [13]. Besides being a basic issue in the interpretation of the quantum formalism it has also a practical interest in predicting the results of experiments pointing out some paradoxical aspects of the quantum laws when compared to the classical ones. The development of devices whose noise figures are close to the quantum limit makes these experiments within the tech- nological feasibility and demands for a systematization of the theory of quantum measurement with deeper understanding of its experimental implications [4, 5].
    [Show full text]
  • Arxiv:Quant-Ph/0101118V1 23 Jan 2001 Aur 2 2001 12, January N Ula Hsc,Dvso Fhg Nrypyis Fteus Depa U.S
    January 12, 2001 LBNL-44712 Von Neumann’s Formulation of Quantum Theory and the Role of Mind in Nature ∗ Henry P. Stapp Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 Abstract Orthodox Copenhagen quantum theory renounces the quest to un- derstand the reality in which we are imbedded, and settles for prac- tical rules that describe connections between our observations. Many physicist have believed that this renunciation of the attempt describe nature herself was premature, and John von Neumann, in a major work, reformulated quantum theory as theory of the evolving objec- tive universe. In the course of his work he converted to a benefit what had appeared to be a severe deficiency of the Copenhagen interpre- tation, namely its introduction into physical theory of the human ob- servers. He used this subjective element of quantum theory to achieve a significant advance on the main problem in philosophy, which is to arXiv:quant-ph/0101118v1 23 Jan 2001 understand the relationship between mind and matter. That problem had been tied closely to physical theory by the works of Newton and Descartes. The present work examines the major problems that have appeared to block the development of von Neumann’s theory into a fully satisfactory theory of Nature, and proposes solutions to these problems. ∗This work is supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract DE-AC03-76SF00098 The Nonlocality Controversy “Nonlocality gets more real”. This is the provocative title of a recent report in Physics Today [1].
    [Show full text]
  • The Von Neumann/Stapp Approach
    4. The von Neumann/Stapp Approach Von Neumann quantum theory is a formulation in which the entire physical universe, including the bodies and brains of the conscious human participant/observers, is represented in the basic quantum state, which is called the state of the universe. The state of a subsystem, such as a brain, is formed by averaging (tracing) this basic state over all variables other than those that describe the state of that subsystem. The dynamics involves three processes. Process 1 is the choice on the part of the experimenter about how he will act. This choice is sometimes called “The Heisenberg Choice,” because Heisenberg emphasized strongly its crucial role in quantum dynamics. At the pragmatic level it is a “free choice,” because it is controlled, at least in practice, by the conscious intentions of the experimenter/participant, and neither the Copenhagen nor von Neumann formulations provide any description of the causal origins of this choice, apart from the mental intentions of the human agent. Each intentional action involves an effort that is intended to result in a conceived experiential feedback, which can be an immediate confirmation of the success of the action, or a delayed monitoring the experiential consequences of the action. Process 2 is the quantum analog of the equations of motion of classical physics. As in classical physics, these equations of motion are local (i.e., all interactions are between immediate neighbors) and deterministic. They are obtained from the classical equations by a certain quantization procedure, and are reduced to the classical equations by taking the classical approximation of setting to zero the value of Planck’s constant everywhere it appears.
    [Show full text]
  • DECOHERENCE AS a FUNDAMENTAL PHENOMENON in QUANTUM DYNAMICS Contents 1 Introduction 152 2 Decoherence by Entanglement with an En
    DECOHERENCE AS A FUNDAMENTAL PHENOMENON IN QUANTUM DYNAMICS MICHAEL B. MENSKY P.N. Lebedev Physical Institute, 117924 Moscow, Russia The phenomenon of decoherence of a quantum system caused by the entangle- ment of the system with its environment is discussed from di®erent points of view, particularly in the framework of quantum theory of measurements. The selective presentation of decoherence (taking into account the state of the environment) by restricted path integrals or by e®ective SchrÄodinger equation is shown to follow from the ¯rst principles or from models. Fundamental character of this phenomenon is demonstrated, particularly the role played in it by information is underlined. It is argued that quantum mechanics becomes logically closed and contains no para- doxes if it is formulated as a theory of open systems with decoherence taken into account. If one insist on considering a completely closed system (the whole Uni- verse), the observer's consciousness has to be included in the theory explicitly. Such a theory is not motivated by physics, but may be interesting as a metaphys- ical theory clarifying the concept of consciousness. Contents 1 Introduction 152 2 Decoherence by entanglement with an environment 153 3 Restricted path integrals 155 4 Monitoring of an observable 158 5 Quantum monitoring and quantum Central Limiting Theorem161 6 Fundamental character of decoherence 163 7 The role of consciousness in quantum mechanics 166 8 Conclusion 170 151 152 Michael B. Mensky 1 Introduction It is honor for me to contribute to the volume in memory of my friend Michael Marinov, particularly because this gives a good opportunity to recall one of his early innovatory works which was not properly understood at the moment of its publication.
    [Show full text]
  • Quantum Zeno Effect for a Free-Moving Particle
    PHYSICAL REVIEW A 90, 062131 (2014) Quantum Zeno effect for a free-moving particle Miguel A. Porras Grupo de Sistemas Complejos, Universidad Politecnica´ de Madrid, Rios Rosas 21, 28003 Madrid, Spain Alfredo Luis and Isabel Gonzalo Departamento de Optica,´ Facultad de Ciencias F´ısicas, Universidad Complutense, 28040 Madrid, Spain (Received 13 October 2014; published 29 December 2014) Although the quantum Zeno effect takes its name from Zeno’s arrow paradox, the effect of frequently observing the position of a freely moving particle on its motion has not been analyzed in detail in the frame of standard quantum mechanics. We study the evolution of a moving free particle while monitoring whether it lingers in a given region of space, and explain the dependence of the lingering probability on the frequency of the measurements and the initial momentum of the particle. Stopping the particle entails the emergence of Schrodinger¨ cat states during the observed evolution, closely connected to the high-order diffraction modes in Fabry-Perot´ optical resonators. DOI: 10.1103/PhysRevA.90.062131 PACS number(s): 03.65.Xp, 03.65.Ta, 42.25.Fx, 42.60.Da I. INTRODUCTION measurement, the particle is not only trapped in the subspace defined by the measurement, but is actually stopped in a highly According to Zeno’s approach to dynamics, flying arrows nonclassical state. The structure of this Schrodinger¨ cat state are always at rest because at any instant they are at some corresponds to what can be called a high-order time-diffraction position, which is interpreted in Zeno’s paradox as being mode—a well-known wave object in the theory of open optical at rest.
    [Show full text]
  • Quantum Physics in Neuroscience and Psychology: a Neurophysical Model of the Mind/Brain Interaction
    Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Quantum physics in neuroscience and psychology: A neurophysical model of the mind/brain interaction Permalink https://escholarship.org/uc/item/41v6c8ss Authors Schwartz, Jeffrey M. Stapp, Henry P. Beauregard, Mario Publication Date 2004-09-21 Peer reviewed eScholarship.org Powered by the California Digital Library University of California SEPTEMBER 21, 2004 LBNL-56363 QUANTUM PHYSICS IN NEUROSCIENCE AND PSYCHOLOGY: A NEUROPHYSICAL MODEL OF MIND/BRAIN INTERACTION 1 Jeffrey M. Schwartz 2 Henry P. Stapp 3, 4, 5* Mario Beauregard 1 UCLA Neuropsychiatric Institute, 760 Westwood Plaza, C8-619 NPI Los Angeles, California 90024-1759, USA. E-mail: [email protected] 2 Theoretical Physics Mailstop 5104/50A Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720-8162, USA. Email: [email protected] 3 Département de Psychologie, Centre de Recherche en Neuropsychologie Expérimentale et Cognition (CRENEC), Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada, H3C 3J7. 4 Département de Radiologie, Université de Montréal, C.P. 6128, succursale Centre- Ville, Montréal, Québec, Canada, H3C 3J7. 5 Centre de recherche en sciences neurologiques (CRSN), Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada, H3C 3J7. _______________ *Correspondence should be addressed to: Mario Beauregard, Département de Psychologie, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada, H3C 3J7. Tel (514) 340-3540 #4129; Fax: (514) 340-3548; E-mail: [email protected] ABSTRACT Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena.
    [Show full text]
  • Quantum Zeno Effect Appears in Stages
    Quantum Zeno effect appears in stages Kyrylo Snizhko ,1 Parveen Kumar ,1 and Alessandro Romito 2 1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 76100 Israel 2Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates. The effect is conventionally controlled by the measurement frequency. Here we study the development of the Zeno regime as a function of the measurement strength for a continuous partial measurement. We show that the onset of the Zeno regime is marked by a cascade of transitions in the system dynamics as the measurement strength is increased. Some of these transitions are only apparent in the collective behavior of individual quantum trajectories and are invisible to the average dynamics. They include the appearance of a region of dynamically inaccessible states and of singularities in the steady-state probability distribution of states. These newly predicted dynamical features, which can be readily observed in current experiments, show the coexistence of fundamentally unpredictable quantum jumps with those continuously monitored and reverted in recent experiments. Introduction.—The evolution of a quantum system un- der measurement is inherently stochastic due to the in- trinsic quantum fluctuations of the detector [1]. If these fluctuations can be accurately monitored, measurements can be used to track the stochastic evolution of the sys- tem state, i.e., individual quantum trajectories. From a theoretical tool to investigate open quantum systems [2], quantum trajectories have become an observable reality in experiments in optical [3,4] and solid state [5–7] sys- tems.
    [Show full text]
  • On the Foundations of Quantum Theory Arxiv:1811.04245V1 [Quant-Ph]
    On the foundations of quantum theory∗ Badis Ydri Department of Physics, Faculty of Sciences, Annaba University, Annaba, Algeria. November 13, 2018 Abstract We draw systematic parallels between the measurement problem in quantum mechanics and the information loss problem in black holes. Then we proceed to propose a solution of the former along the lines of the solution of the latter which is based on the holographic gauge/gravity duality. The proposed solution is based on 1) the quantum dualism between the local view of reality provided by Copenhagen and the manifold view provided by the many-worlds and on 2) the properties of quantum entanglement in particular its fungibility. Contents 1 Introductory remarks 3 2 The measurement problem and interpretations of quantum mechanics 6 2.1 The wave-particle duality and complementarity principle . 6 arXiv:1811.04245v1 [quant-ph] 10 Nov 2018 2.2 Copenhagen interpretation . 8 2.2.1 The von Neumann processes . 8 2.2.2 Quantum Zeno effect and the collapse postulate . 10 2.3 Entanglement entropy . 11 2.3.1 The reduced density matrix . 11 2.3.2 Entanglement entropy in quantum mechanics and quantum field theory . 14 2.4 EPR and Bell's theorem . 16 2.4.1 The Einstein, Podolsky, Rosen (EPR) experiment . 16 2.4.2 Theorem of quantum philosophy . 17 2.4.3 Bell's theorem . 18 ∗This essay is based on invited lectures at Jijel MSB University (29-31 October 2018) and El-oued EHL University (11-15 March 2018). On the foundations of quantum theory, Badis Ydri 2 2.5 Decoherence and the measurement problem .
    [Show full text]
  • Quantum Zeno and Anti-Zeno Effects in an Asymmetric Nonlinear Optical
    Quantum Zeno and anti-Zeno effects in an asymmetric nonlinear optical coupler Kishore Thapliyal*, Anirban Pathak Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307, India ABSTRACT Quantum Zeno and anti-Zeno effects in an asymmetric nonlinear optical coupler are studied. The asymmetric nonlinear optical coupler is composed of a linear waveguide (χ(1)) and a nonlinear waveguide (χ(2)) interacting with each other through the evanescent waves. The nonlinear waveguide has quadratic nonlinearity and it operates under second harmonic generation. A completely quantum mechanical description is used to describe the system. The closed form analytic solutions of Heisenberg’s equations of motion for the different field modes are obtained using Sen-Mandal perturbative approach. In the coupler, the linear waveguide acts as a probe on the system (nonlinear waveguide). The effect of the presence of the probe (linear waveguide) on the photon statistics of the second harmonic mode of the system is considered as quantum Zeno and anti-Zeno effects. Further, it is also shown that in the stimulated case, it is easy to switch between quantum Zeno and anti-Zeno effects just by controlling the phase of the second harmonic mode of the asymmetric coupler. Keywords: Quantum Zeno effect, quantum anti-Zeno effect, optical coupler, waveguide. 1. INTRODUCTION Zeno’s paradoxes have been in discussion since fifth century. In 1977, Mishra and Sudarshan1 introduced a quantum analogue of Zeno’s paradox, which is later termed as quantum Zeno effect. Quantum Zeno effect in the original formulation refers to the inhibition of the temporal evolution of a system on continuous measure- ment,1–3 while quantum anti-Zeno or inverse Zeno effect refers to the enhancement of the evolution instead of the inhibition4 (see5, 6 for reviews on Zeno and anti-Zeno effect).
    [Show full text]
  • Zeno Paradox for Bohmian Trajectories: the Unfolding of the Metatron
    Zeno Paradox for Bohmian Trajectories: The Unfolding of the Metatron Maurice A. de Gosson Basil Hiley Universit¨atWien, NuHAG TPRU, Birkbeck Fakult¨atf¨urMathematik University of London A-1090 Wien London, WC1E 7HX June 9, 2010 Abstract We study an analogue of the quantum Zeno paradox for the Bohm trajectory of a sharply located particle. We show that a continuously observed Bohm trajectory is the classical trajectory. 1 Introduction I am glad that you are deeply immersed seeking an objective de- scription of the phenomena and that you feel the task is much more difficult as you felt hitherto. You should not be depressed by the enormity of the problem. If God had created the world his primary worry was certainly not to make its understanding easy for us. I feel it strongly since fifty years.[10] When David Bohm completed his book, \Quantum Theory" [3], which was an attempt to present a clear account of Bohr's actual position, he became dissatisfied with the overall approach [5]. The reason for this dis- satisfaction was the fact that the theory had no place in it for an adequate notion of an independent actuality, that is of an actual movement or activity by which one physical state could pass over into another. In a meeting with Einstein, ostensibly to discuss the content of his book, the conversation eventually turned to the possibility of whether a determin- istic extension of quantum mechanics could be found. Later while exploring the WKB approximation, Bohm realised that this approximation was giv- ing an essentially deterministic approach.
    [Show full text]