Alocasia Brisbanensis Click on Images to Enlarge

Total Page:16

File Type:pdf, Size:1020Kb

Alocasia Brisbanensis Click on Images to Enlarge Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Alocasia brisbanensis Click on images to enlarge Family Araceae Scientific Name Alocasia brisbanensis (F.M.Bailey) Domin Domin, K. (1928) Bibliotheca Botanica 89(4): 504. Common name Unfurled leaves and male section of inflorescence. Copyright CSIRO Cunjevoi; Spoon Lily Stem Although essentially a large herb this species can exceed 1 m in height and is therefore included as a shrub. Leaves Petiole longer than the leaf blade. Petiole winged or deeply grooved on the upper surface at least towards the base. Leaf blade about 45-60 x 30-35 cm. Elongated 'oil dots' visible particularly along the veinlets. 'Oil dots' are probably calcium oxalate crystals. Flowers Leaves and habit. Copyright CSIRO Inflorescence enclosed in a large bract (spathe). Flowers in a spike with male flowers on a section above the female flowers which are confined to the basal part. Uppermost part of the spike, about 40 mm long, sterile. A similar but smaller section separates the male and female sections. Female flowers globular. Stamens +/- sessile. Pollen white or translucent. Stigma 3-lobed. Fruit Fruits produced in a dense spike which is enclosed in a persistent green bract (spathe). Individual fruits 7-11 mm long with a pink or red pericarp which resembles an aril but is produced by the wall of the ovary. Seeds 1or 2 per fruit, about 6-7 mm long. Testa thin and papery. Embryo about 5 mm long, broadly carrot-shaped (Daucus carota) or almost globular and difficult to distinguish the radicle from the plumule. Fruit and male section of inflorescence. Copyright Stanley Seedlings Breeden First pair of leaves peltate, leaf blades about 3.5-5 x 1.9-3.2 cm, apex acuminate, base cordate, petioles slender, about 3-7.5 cm long, bases sheathing the stem. Venation rather sparse but a fine intramarginal vein usually visible. At the tenth leaf stage: leaf blade +/- triangular, about 9-11 x 4-5 cm, apex acute, base sagittate, leaf peltate. Petioles about as long as the leaf blade, the lower half of the petiole winged and the basal part clasping the stem. Seed germination time 17 to 29 days. Distribution and Ecology Endemic to Australia, occurs in NEQ, CEQ and southwards as far as coastal central New South Wales. Altitudinal range from near sea level to 1000 m. Grows as an understory plant in a variety of types of rain forest but is favoured by disturbance. Fruit and seed. Copyright W. T. Cooper Natural History & Notes A significant percentage of people believe that (when freshly cut) leaf stalks or stems of this species will act as an antidote for the sting of the Stinging Tree (Dendrocnide spp.). However, most people who have been badly stung tend to have little faith in its curative powers. This species is dangerous, the tissues contain sharp needles of oxalate and if chewed cause painful irritation, burning and swelling of the lips and tongue. Fatal cases of poisoning have been reported in children. Everist (1974). Fruits eaten by Lewin's Honeyeaters and Victoria's Riflebirds. Cooper & Cooper (1994). Sap from cut stems and leaves spread over the area stung by stinging trees (Dendrocnide sp.) to help ease Scale bar 10mm. Copyright CSIRO the pain. Cooper & Cooper (1994). Sometimes cultivated for the large leaves and the strongly perfumed flowers. Herb (herbaceous or woody, under 1 m tall) X Shrub (woody or herbaceous, 1-6 m tall) X Synonyms 10th leaf stage. Copyright CSIRO Alocasia macrorrhizos var. brisbanensis F.M.Bailey, The Queensland Flora 5: 1697(1902), Type: Queensland, Brisbane River scrubs, F. M. Bailey; holo: BRI?. Colocasia macrorrhiza (L.) Schott, Meletemata Botanica : 18(1832). Alocasia macrorrhizos (L.) G.Don, Hort. Brit. ed. 3 : 631(1839). Caladium macrorrhizon (L.) R.Br., Prodromus Florae Novae Hollandiae : 336(1810). RFK Code 3465 CC-BY Australian Tropical Herbarium unless otherwise indicated in the images. Cotyledon and 1st leaf stage, hypogeal germination. Copyright CSIRO.
Recommended publications
  • Bruxner Park Flora Reserve Working Plan
    Bruxner Park Flora Reserve Working Plan Working Plan for Bruxner Park Flora Reserve No 3 Upper North East Forest Agreement Region North East Region Contents Page 1. DETAILS OF THE RESERVE 2 1.1 Introduction 2 1.2 Location 2 1.3 Key Attributes of the Reserve 2 1.4 General Description 2 1.5 History 6 1.6 Current Usage 8 2. SYSTEM OF MANAGEMENT 9 2.1 Objectives of Management 9 2.2 Management Strategies 9 2.3 Management Responsibility 11 2.4 Monitoring, Reporting and Review 11 3. LIST OF APPENDICES 11 Appendix 1 Map 1 Locality Appendix 1 Map 2 Cadastral Boundaries, Forest Types and Streams Appendix 1 Map 3 Vegetation Growth Stages Appendix 1 Map 4 Existing Occupation Permits and Recreation Facilities Appendix 2 Flora Species known to occur in the Reserve Appendix 3 Fauna records within the Reserve Y:\Tourism and Partnerships\Recreation Areas\Orara East SF\Bruxner Flora Reserve\FlRWP_Bruxner.docx 1 Bruxner Park Flora Reserve Working Plan 1. Details of the Reserve 1.1 Introduction This plan has been prepared as a supplementary plan under the Nature Conservation Strategy of the Upper North East Ecologically Sustainable Forest Management (ESFM) Plan. It is prepared in accordance with the terms of section 25A (5) of the Forestry Act 1916 with the objective to provide for the future management of that part of Orara East State Forest No 536 set aside as Bruxner Park Flora Reserve No 3. The plan was approved by the Minister for Forests on 16.5.2011 and will be reviewed in 2021.
    [Show full text]
  • A Review of Alocasia (Araceae: Colocasieae) for Thailand Including a Novel Species and New Species Records from South-West Thailand
    THAI FOR. BULL. (BOT.) 36: 1–17. 2008. A review of Alocasia (Araceae: Colocasieae) for Thailand including a novel species and new species records from South-West Thailand PETER C. BOYCE* ABSTRACT. A review of Alocasia in Thailand is presented. One new species (A. hypoleuca) and three new records (A. acuminata, A. hypnosa & A. perakensis) are reported. A key to Alocasia in Thailand is presented and the new species is illustrated. INTRODUCTION Alocasia is a genus of in excess of 100 species of herbaceous, laticiferous, diminutive to gigantic, usually robust herbs. The genus has recently been revised for New Guinea (Hay, 1990), Australasia (Hay & Wise, 1991), West Malesia and Sulawesi (Hay, 1998), the Philippines (Hay, 1999) while post main-treatment novelties have been described for New Guinea (Hay, 1994) Borneo (Hay, Boyce & Wong, 1997; Hay, 2000; Boyce, 2007) & Sulawesi (Yuzammi & Hay, 1998). Currently the genus is least well understood in the trans-Himalaya (NE India to SW China) including the northern parts of Burma, Thailand, Lao PDR and Vietnam with only the flora of Bhutan (Noltie, 1994) partly covering this range. In the absence of extensive fieldwork the account presented here for Thailand can at best be regarded as provisional. STRUCTURE & TERMINOLOGY Alocasia plants are often complex in vegetative and floral structure and some notes on their morphology (based here substantially on Hay, 1998) are useful to aid identification. The stem of Alocasia, typically of most Araceae, is a physiognomically unbranched sympodium. The number of foliage leaves per module is variable between and within species and individuals, but during flowering episodes in some species it may be reduced to one.
    [Show full text]
  • Otanewainuku ED (Report Prepared on 13 August 2013)
    1 NZFRI collection wish list for Otanewainuku ED (Report prepared on 13 August 2013) Fern Ally Isolepis cernua Lycopodiaceae Isolepis inundata Lycopodium fastigiatum Isolepis marginata Lycopodium scariosum Isolepis pottsii Psilotaceae Isolepis prolifera Tmesipteris lanceolata Lepidosperma australe Lepidosperma laterale Gymnosperm Schoenoplectus pungens Cupressaceae Schoenoplectus tabernaemontani Chamaecyparis lawsoniana Schoenus apogon Cupressus macrocarpa Schoenus tendo Pinaceae Uncinia filiformis Pinus contorta Uncinia gracilenta Pinus patula Uncinia rupestris Pinus pinaster Uncinia scabra Pinus ponderosa Hemerocallidaceae Pinus radiata Dianella nigra Pinus strobus Phormium cookianum subsp. hookeri Podocarpaceae Phormium tenax Podocarpus totara var. totara Iridaceae Prumnopitys taxifolia Crocosmia xcrocosmiiflora Libertia grandiflora Monocotyledon Libertia ixioides Agapanthaceae Watsonia bulbillifera Agapanthus praecox Juncaceae Alliaceae Juncus articulatus Allium triquetrum Juncus australis Araceae Juncus conglomeratus Alocasia brisbanensis Juncus distegus Arum italicum Juncus edgariae Lemna minor Juncus effusus var. effusus Zantedeschia aethiopica Juncus sarophorus Arecaceae Juncus tenuis var. tenuis Rhopalostylis sapida Luzula congesta Asparagaceae Luzula multiflora Asparagus aethiopicus Luzula picta var. limosa Asparagus asparagoides Orchidaceae Cordyline australis x banksii Acianthus sinclairii Cordyline banksii x pumilio Aporostylis bifolia Asteliaceae Corunastylis nuda Collospermum microspermum Diplodium alobulum Commelinaceae
    [Show full text]
  • WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
    WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall .........................................................................................................
    [Show full text]
  • PJS Special Issue Cuevas and Briones.Indd
    Philippine Journal of Science 142: 69-82, Special Issue ISSN 0031 - 7683 Date Received: ?? ???????? 2013 Role of Light in the Life Stages of Mt. Makiling Populations of Alocasia zebrina, An Endangered Philippine Plant Species1 Niko Niño G. Briones and Virginia C. Cuevas Institute of Biological Sciences (IBS), College of Arts and Sciences, University of the Philippines Los Baños (UPLB), College, Laguna, the Philippines Populations of Alocasia zebrina growing in a secondary forest on Mt. Makiling were studied to determine the influences of sunlight on its life stage development. The study site was dominated by Swietenia macrophylla in association with some members of Palm family. Large canopy gaps were present that allowed ground penetration of high light intensity. The life stages of Alocasia zebrina were identified to be, namely seed, juvenile, adult vegetative and adult sexually mature, based mainly on the number of mature leaves and reproductive capability. Statistical analyses showed a positive correlation between the number of mature leaves and the increase of total monthly minutes of sunshine. Furthermore, the field data analysis suggested that light plays a major role in determining not only where A. zebrina population will be established, but also the rate at which an individual can complete an entire life cycle. Key Words: Alocasia zebrina, life stages, light intensity, Araceae, vegetation, endangered Philippine plant species INTRODUCTION petiole attached to the end of the midrib and extends up to 1.1 m has varying shades of distinct green and brown Except for A. macrorrhizos (L.) G. Don, all indigenous oblique streaks. The colours and design of the petiole with species in the genus Alocasia are endemic in the stripe has earned its local name as ‘gabing tigre’.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • Alocasia Macrorrhiza / Similar Spp
    Alocasia macrorrhiza / Similar spp . Usually prostrate or semi-prostrate at ground level; can grow to a metre high, without support. Common name: . Native to Malaysia, SE Asia and N. Australia. Alocasia, Cunjevoi, Elephant ears, . The flower heads are a spike of pale yellow- Giant taro, green flowers along the upper part of a stout stalk - spadex - and surrounded by a cream- Palatability to Livestock: coloured, hood-shaped spathe, in summer. Not known to be eaten. Berries are red, yellow or orange when ripe. Found growing wild in Queensland and Toxicity to Other Species: northern NSW, in moist gullies. Toxic to all animals, stock, humans and pets. Stock are not attracted to this plant in the fresh state; it may have a sweet smell. Poisonous Principle: . Sap is very corrosive to mucous membranes. Cyanogenetic glucocides, . Sharp needles of oxalate are found in the plant. Oxalate crystals, . A cuprea, Giant caladium. Unknown toxins. Effects: Signs and symptoms; . Intense irritation to, and swelling of, the lips, tongue, mouth, and throat. Health and Production Problems; . Recovery in most cases. Can be stinging or corrosive to humans when handled. Juice from leaf or rhizome can cause intense conjunctivitis or temporary blindness. Alocasia. Treatment; Picture: Helen Simmonds, Calga, NSW. Unknown, rinse with water. See Doctor or Vet. Integrated Control Strategy: . Garden plant escapee, . All parts are potentially irritant. Use herbicides, or weed out into disposable bags. Do not feed this plant to any livestock. Comments: Cunjevoi. A large perennial garden plant, with a thick Picture: Helen Simmonds. Calga, NSW. rootstock and thick stems, with a height and spread of about 2.5 metres.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Diseases of Edible Aroids in India and Their Management
    Diseases of Edible Aroids in India and Aroids: Plants belonging to the family Araceae their Management Among cultivable tropical tuber crops, the following are commercially cultivated edible aroids in India: 1. Amorphophalus paeoniifolius 2. Colocasia (C.esculenta var.esculenta and C.esculenta R.S.Misra var.antiquorum): Dasheen and Eddoe types Central Tuber Crops Research Institute Trivandrum (India) 3. Xanthosoma (Tannia) 4. Alocasia Amorphophallus tubers Amorphophallus mosaic disease and crop 1 Amorphophallus Mosaic Disease Collar rot of Amorphophallus Primary spread is through planting material. Secondary spread of the disease is through insect vectors, Myzus persicae Sulz., Aphis gossypii Glover, A. craccivora Koch. and Pentalonia nigronervosa coq. Disease symptoms include mosaic mottling of leaves and distortion of leaf lamina. Corms produced by the mottled plants are much smaller than those without mottled leaves. Management: Use of virus free planting material, spraying of systemic insecticides to prevent secondary spread Leaf blight caused by Phytophthora colocasiae Storage diseases in Amorphophallus 2 Management of Amorphophallus Diseases Major taro types in India •Use of healthy planting material without any apparent rotting symptoms •Treatment of the whole/cut tubers with cow-dung slurry mixed with Trichoderma before planting •Application of Trichoderma enriched compost in pits/field •Application of neem-cake @ 250g/pit •One foliar spray with Mancozeb (0.2%) and fenithrion (0.05%) at 60 and 90 DAP Taro Cultivation Field view
    [Show full text]
  • Fall Newsletter, 2019
    Fall Newsletter, 2019 structure (spathe) behind or surrounding it. Other Over the years, as different cultivars have members of this family include calla lilies become readily available, tropical plants have (Zantedeschia spp.), Philodendron, Caladium, become more common place in our summer beds Diffenbachia and the peace lily (Spathiphyllum). and pots. While elephant ears can flower, they do not One of the most impressive examples of this commonly produce them and if in fact they do, most are the leafy tropical, elephant ears. Although of the time it is hidden by the foliage. The flower thought to be one plant, there are three genera, can sometimes be fragrant and is typical of this Colocasia, Alocasia, and Xanthosoma. that make up family with a white, yellow or light green spathe what we commonly refer to as elephant ears. Even surrounding the spadix. though they look similar, there are a few ways to tell Colocasia’s and Alocasia’s are native to them apart. Colocasia’s have a heart shaped leaf tropical portions of southern Asia, Indonesia, whose tip points downward, Alocasia’s point Malaysia, New Guinea, parts of Australia and the upward and Xanthosoma’s leaf have a sagittate or Pacific Islands. While Xanthosoma’s are native to arrowhead shape. (See picture) tropical areas of the America’s. These plants belong to the Araceae or Arum When planting the corm in our non-tropical family which is mostly made up of tropical plants area, the soil temperature needs to be above 50°F with a few exceptions such as Jack-in-the-pulpits and past all danger of frost.
    [Show full text]
  • History and Current Status of Systematic Research with Araceae
    HISTORY AND CURRENT STATUS OF SYSTEMATIC RESEARCH WITH ARACEAE Thomas B. Croat Missouri Botanical Garden P. O. Box 299 St. Louis, MO 63166 U.S.A. Note: This paper, originally published in Aroideana Vol. 21, pp. 26–145 in 1998, is periodically updated onto the IAS web page with current additions. Any mistakes, proposed changes, or new publications that deal with the systematics of Araceae should be brought to my attention. Mail to me at the address listed above, or e-mail me at [email protected]. Last revised November 2004 INTRODUCTION The history of systematic work with Araceae has been previously covered by Nicolson (1987b), and was the subject of a chapter in the Genera of Araceae by Mayo, Bogner & Boyce (1997) and in Curtis's Botanical Magazine new series (Mayo et al., 1995). In addition to covering many of the principal players in the field of aroid research, Nicolson's paper dealt with the evolution of family concepts and gave a comparison of the then current modern systems of classification. The papers by Mayo, Bogner and Boyce were more comprehensive in scope than that of Nicolson, but still did not cover in great detail many of the participants in Araceae research. In contrast, this paper will cover all systematic and floristic work that deals with Araceae, which is known to me. It will not, in general, deal with agronomic papers on Araceae such as the rich literature on taro and its cultivation, nor will it deal with smaller papers of a technical nature or those dealing with pollination biology.
    [Show full text]
  • Report on the Vegetation of the Proposed Blue Hole Cultural, Environmental & Recreation Reserve
    Vegetation Report on the Proposed Blue Hole Cultural, Environmental & Recreation Reserve Report on the Vegetation of the Proposed Blue Hole Cultural, Environmental & Recreation Reserve 1.0 Introduction The area covered by this report is described as the proposed Lot 1 on SP144713; Parish of Alexandra; being an unregistered plan prepared by the C & B Group for the Douglas Shire Council. This proposed Lot has an area of 1.394 hectares and consists of the Flame Tree Road Reserve and part of a USL, which is a small portion of the bed of Cooper Creek. It is proposed that the Flame Tree Road Reserve and part of the USL be transferred to enable the creation of a Cultural, Environmental and Recreation Reserve to be managed in Trust by the Douglas Shire Council. The proposed Cultural, Environmental and Recreation Reserve will have an area of 1.394 hectares and will if the plan is registered become Lot 1 of SP144713; Parish of Alexandra; County of Solander. It is proposed that three Easements A, B & C over the proposed Lot 1 of SP144713 be created in favour of Lot 180 RP739774, Lot 236 RP740951, Lot 52 of SR537 and Lot 51 SR767 as per the unregistered plan SP 144715 prepared by the C & B Group for the Douglas Shire Council. 2.0 Trustee Details Douglas Shire Council 64-66 Front Street Mossman PO Box 357 Mossman, Qld, 4873 Phone: (07) 4099 9444 Fax: (07) 4098 2902 Email: [email protected] Internet: www.dsc.qld.gov.au 3.0 Description of the Subject Land The “Blue Hole” is a local name for a small pool in a section of Cooper Creek.
    [Show full text]