15/03/2017 QNC Mt Glorious 2017 Page 1 Class Family in Common

Total Page:16

File Type:pdf, Size:1020Kb

15/03/2017 QNC Mt Glorious 2017 Page 1 Class Family in Common QNC Mt Glorious 2017 15/03/2017 Class Family In Common Name Genus Species Record Type Birds Artamidae Pied Currawong Strepera graculina H Birds Cinclosomatidae Eastern Whipbird Psophodes olivaceus H Birds Climacteridae White-throated Treecreeper Cormobates leucophaea H Birds Columbidae Wonga Pigeon Leucosarcia melanoleuca H Birds Columbidae Brown Cuckoo-Dove Macropygia amboinensis V Birds Columbidae Rose-crowned Fruit-Dove Ptilinopus regina H Birds Columbidae Wompoo Fruit-Dove Ptilinopus magnificus H Birds Dicruridae Black-faced Monarch Monarcha melanopsis V Birds Megapodiidae Australian Brush-turkey Alectura lathami V Birds Meliphagidae Lewin's Honeyeater Meliphaga lewinii V Birds Meliphagidae Scarlet Honeyeater Myzomela sanguinolenta H Birds Meliphagidae New Holland Honeyeater Phylidonyris novaehollandiae V Birds Pachycephalidae Grey Shrike-thrush Colluricincla harmonica V Birds Pachycephalidae Golden Whistler Pachycephala pectoralis H Birds Pardalotidae Brown Gerygone Gerygone mouki V Birds Pardalotidae White-browed Scrubwren Sericornis frontalis V Birds Pardalotidae Yellow-throated Scrubwren Sericornis citreogularis V Birds Pardalotidae Large-billed Scrubwren Sericornis magnirostris V Birds Petroicidae Eastern Yellow Robin Eopsaltria australis V Birds Petroicidae Pale-yellow Robin Tregellasia capito P:LBW Birds Ptilonorhynchidae Green Catbird Ailuroedus crassirostris H Birds Zosteropidae Silvereye Zosterops lateralis V Fungi Auriculariaceaae Ear fungus Auricularia cornea P:PFW Fungi Auriculariaceae Jelly Ear Auricularia auricula-judae P:PFW Fungi Inocybaceae Crepidotus sp. V Fungi Meruliaceae Cymatoderma elegans V Fungi Mycenaceae Filoboletus manipularis V Fungi Physalacriaceae Cyptotrama aspratum V Fungi Polyporaceae Microporus xanthopus V Page 1 QNC Mt Glorious 2017 15/03/2017 Class Family In Common Name Genus Species Record Type Fungi Polyporaceae Turkey tail Trametes versicolor V Fungi Psathyrellaceae Coprinellus disseminatus P:PFW Fungi Stereaceae Stereum ostrea V Insects:Lepidoptera Hesperiidae Regent Skipper Euschemon rafflesia V:RT Insects:Lepidoptera Nymphalidae Yellow Admiral Vanessa itea V Insects:Lepidoptera Papilionidae Blue Triangle Graphium sarpedon V Pl:Ferns Adiantaceae Prickly maidenhair Adiantum hispidulum V Pl:Ferns Adiantaceae Giant Maidenhair Adiantum formosum V Pl:Ferns Adiantaceae Sickle fern Pellaea nana V Pl:Ferns Aspleniaceae Bird's nest fern Asplenium australasicum V Pl:Ferns Blechnaceae Rasp fern Doodia aspera V Pl:Ferns Dryopteridaceae Glossy Shield Fern Lastreopsis marginans V Pl:Ferns Polypodiaceae Fragrent Fern Microsorum scandens V Pl:Ferns Polypodiaceae Microsorum punctatum V Pl:Ferns Polypodiaceae Staghorn Platycerium superbum V Pl:Ferns Pteridaceae Adiantum silvaticum V Plants Zingiberaceae * Kahili Lily, ginger lily Hedychium gardnerianum P:LBW Plants Acanthaceae Love flower Pseuderanthemum variabile V Plants Anacardiaceae Deep yellow wood Rhodosphaera rhodanthema P:PFW Plants Annonaceae Zig-zag vine Melodorum leichhardtii V Plants Apocynaceae Bellbird Vine Melodinus australis P:PFW Plants Aracaeae Cunjevoi Alocasia brisbanensis V Plants Araceae Native Pothis Pothos longipes V Plants Araucariaceae Hoop pine Araucaria cunninghamii V Plants Arecaceae Picabeen palm Archontophoenix cunninghamiana V Plants Arecaceae Lawyer vine Calamus muelleri V Plants Bignoniaceae Wonga vine Pandorea pandorana V Plants Campanulaceae Forst Lobelia Lobelia trigonocaulis V Plants Capparaceae Wild Orange Capparis arborea V Page 2 QNC Mt Glorious 2017 15/03/2017 Class Family In Common Name Genus Species Record Type Plants Commelinaceae Aneilema acuminatum V Plants Commelinaceae Pollia sp. V Plants Cunoniaceae Soft Corkwood, rose-leaf mar Caldcluvia paniculosa P:PFW Plants Dioscoreaceae Native Yam Dioscorea transversa V Plants Elaeocarpaceae Blue Quandong Elaeocarpus grandis V Plants Elaeocarpaceae Carribin Sloanea woollsii V Plants Euphorbiaceae Native Bleeding heart Homalanthus nutans V Plants Euphorbiaceae Macaranga Macaranga tanarius V Plants Eupomatiaceae Bolwarra Eupomatia laurina P:PFW Plants Fabaceae Black Bean Castanospermum australe V Plants Lauraceae Hairy Walnut Endiandra pubens P:PFW Plants Lauraceae White Bolly gum Neolitsea dealbata V Plants Laxmanniaceae Palm lily Cordyline petiolaris V Plants Laxmanniaceae a palm lily Cordyline rubra V Plants Laxmanniaceae Mat Rush Lomandra longiflora V Plants Laxmanniaceae Creek Mat Rush Lomandra hystrix V Plants Leptaulaceae Silky Beech Citronella moorei P:PFW Plants Loranthaceae Brush Mistletoe Amylotheca dictyophleba V Plants Menispermaceae Tape vine Stephania japonica V Plants Mimosaceae Blackwood wattle Acacia melanoxylon V Plants Monimiaceae Wilkea Wilkea sp V Plants Moraceae Small-leaved fig Ficus obliqua P:PFW Plants Moraceae Creek sandpaper fig Ficus coronata V Plants Myrtaceae Lilly pilly Acmena smithii V Plants Myrtaceae Flooded Gum Eucalyptus grandis V Plants Passifloraceae * Corky passion vine Passiflora suberosa V Plants Passifloraceae * White passion flower Passiflora subpeltata V Plants Piperaceae Pepper Vine Piper hederaceum V Plants Pittosporaceae Orange thorn Pittosporum multiflorum V Page 3 QNC Mt Glorious 2017 15/03/2017 Class Family In Common Name Genus Species Record Type Plants Ranunculaceae Headache vine Clematis glycinoides V Plants Rosaceae Native raspberry Rubus hillii V Plants Rubiaceae Hairy Psychotria Psychotria loniceroides V Plants Sambucaceae Native Elderberry Sambucus australasica P:PFW Plants Sapindaceae Native Tamarind Diploglottis australis V Plants Smilacaceae Barbwire vine Smilax australis V Plants Solanaceae * Wild tobacco Solanum mauritianum V Plants Urticaceae Giant-leaved Stinging tree Dendrocnide excelsa V Plants Verbenaceae * Lantana Lantana camara V Plants Vitaceae Soft Water Vine Cayratia eurynema P:PFW Plants Vitaceae Native grape Cissus antarctica V Plants Zingiberaceae Native ginger Alpinia caerulea V Reptiles Agamidae Water Dragon Physignathus lesueurii P:PFW Page 4.
Recommended publications
  • Leaf Anatomy and C02 Recycling During Crassulacean Acid Metabolism in Twelve Epiphytic Species of Tillandsia (Bromeliaceae)
    Int. J. Plant Sci. 154(1): 100-106. 1993. © 1993 by The University of Chicago. All rights reserved. 1058-5893/93/5401 -0010502.00 LEAF ANATOMY AND C02 RECYCLING DURING CRASSULACEAN ACID METABOLISM IN TWELVE EPIPHYTIC SPECIES OF TILLANDSIA (BROMELIACEAE) VALERIE S. LOESCHEN,* CRAIG E. MARTIN,' * MARIAN SMITH,t AND SUZANNE L. EDERf •Department of Botany, University of Kansas, Lawrence, Kansas 66045-2106; and t Department of Biological Sciences, Southern Illinois University, Edwardsville, Illinois 62026-1651 The relationship between leaf anatomy, specifically the percent of leaf volume occupied by water- storage parenchyma (hydrenchyma), and the contribution of respiratory C02 during Crassulacean acid metabolism (CAM) was investigated in 12 epiphytic species of Tillandsia. It has been postulated that the hydrenchyma, which contributes to C02 exchange through respiration only, may be causally related to the recently observed phenomenon of C02 recycling during CAM. Among the 12 species of Tillandsia, leaves of T. usneoides and T. bergeri exhibited 0% hydrenchyma, while the hydrenchyma in the other species ranged from 2.9% to 53% of leaf cross-sectional area. Diurnal malate fluctuation and nighttime atmospheric C02 uptake were measured in at least four individuals of each species. A significant excess of diurnal malate fluctuation as compared with atmospheric C02 absorbed overnight was observed only in T. schiedeana. This species had an intermediate proportion (30%) of hydrenchyma in its leaves. Results of this study do not support the hypothesis that C02 recycling during CAM may reflect respiratory contributions of C02 from the tissue hydrenchyma. Introduction tions continue through fixation of internally re• leased, respired C02 (Szarek et al.
    [Show full text]
  • Status of Research on Rattans: a Review
    http://sciencevision.info Sci Vis 10 (2), 51-56 Research Review April-June, 2010 ISSN 0975-6175 Status of research on rattans: a review Lalnuntluanga1*, L. K. Jha2 and H. Lalramnghinglova1 1 Department of Environmental Science, Mizoram University, Aizawl 796009, India 1 Department of Environmental Science, North-Eastern Hill University, Shillong 793022, India Received 20 July 2010 | Accepted 28 July 2010 ABSTRACT Rattan forms one of the major biotic components in tropical and sub -tropical forest ecosys- tem. Contributions made by the researchers on the distribution, taxonomy and uses of rattan species in the world with special reference to India are reviewed here. Key words: Rattan; distribution; taxonomy; utilisation; N.E. states. INTRODUCTION Argentina, the Caribbean, Africa and South-East Asian regions. Rattan diversity is rich in Malay- The name ‘cane’ (rattan) stands collectively sia, Indonesia, Philippines, China, Bangladesh, for the climbing members of a big group of Sri Lanka, Myanmar and India. Rattan is of palms known as Lepidocaryoideae, fruit bearing great economic importance in handicraft and scales. Rattans/canes are prickly climbing palms furniture making because of its richness in fibre, with solid stems, belonging to the family Areca- with suitable toughness and easy for processing. ceae and the sub-family Calamoideae. They are The innumerable pinnate leaves, which extend scaly-fruited palms. The rattans/canes comprise up to two metres in length, with their mosaic more than fifty per cent of the total palm taxa arrangement play a major role in intercepting found in India.1 They are distributed throughout the splash effect of rains and improve the water South-East Asia, the Western Pacific and in the holding capacity of the soil.
    [Show full text]
  • Bruxner Park Flora Reserve Working Plan
    Bruxner Park Flora Reserve Working Plan Working Plan for Bruxner Park Flora Reserve No 3 Upper North East Forest Agreement Region North East Region Contents Page 1. DETAILS OF THE RESERVE 2 1.1 Introduction 2 1.2 Location 2 1.3 Key Attributes of the Reserve 2 1.4 General Description 2 1.5 History 6 1.6 Current Usage 8 2. SYSTEM OF MANAGEMENT 9 2.1 Objectives of Management 9 2.2 Management Strategies 9 2.3 Management Responsibility 11 2.4 Monitoring, Reporting and Review 11 3. LIST OF APPENDICES 11 Appendix 1 Map 1 Locality Appendix 1 Map 2 Cadastral Boundaries, Forest Types and Streams Appendix 1 Map 3 Vegetation Growth Stages Appendix 1 Map 4 Existing Occupation Permits and Recreation Facilities Appendix 2 Flora Species known to occur in the Reserve Appendix 3 Fauna records within the Reserve Y:\Tourism and Partnerships\Recreation Areas\Orara East SF\Bruxner Flora Reserve\FlRWP_Bruxner.docx 1 Bruxner Park Flora Reserve Working Plan 1. Details of the Reserve 1.1 Introduction This plan has been prepared as a supplementary plan under the Nature Conservation Strategy of the Upper North East Ecologically Sustainable Forest Management (ESFM) Plan. It is prepared in accordance with the terms of section 25A (5) of the Forestry Act 1916 with the objective to provide for the future management of that part of Orara East State Forest No 536 set aside as Bruxner Park Flora Reserve No 3. The plan was approved by the Minister for Forests on 16.5.2011 and will be reviewed in 2021.
    [Show full text]
  • PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest
    PLANT COMMUNITY FIELD GUIDE Introduction to Rainforest Communities Table of Contents (click to go to page) HCCREMS Mapping ....................................................................... 3 Field Data Sheet ............................................................................. 4 Which of the following descriptions best describes your site? ................................................................ 5 Which plant community is it? .......................................................... 9 Rainforest communities of the Lower Hunter .................................. 11 Common Rainforest Species of the Lower Hunter ........................................................................ 14 A picture guide to common rainforest species of the Lower Hunter ........................................................... 17 Weeding of Rainforest Remnants ................................................... 25 Rainforest Regeneration near Black Jacks Point ............................ 27 Protection of Rainforest Remnants in the Lower Hunter & the Re-establishment of Diverse, Indigenous Plant Communities ... 28 Guidelines for a rainforest remnant planting program ..................... 31 Threatened Species ....................................................................... 36 References ..................................................................................... 43 Acknowledgements......................................................................... 43 Image Credits ................................................................................
    [Show full text]
  • A Review of Alocasia (Araceae: Colocasieae) for Thailand Including a Novel Species and New Species Records from South-West Thailand
    THAI FOR. BULL. (BOT.) 36: 1–17. 2008. A review of Alocasia (Araceae: Colocasieae) for Thailand including a novel species and new species records from South-West Thailand PETER C. BOYCE* ABSTRACT. A review of Alocasia in Thailand is presented. One new species (A. hypoleuca) and three new records (A. acuminata, A. hypnosa & A. perakensis) are reported. A key to Alocasia in Thailand is presented and the new species is illustrated. INTRODUCTION Alocasia is a genus of in excess of 100 species of herbaceous, laticiferous, diminutive to gigantic, usually robust herbs. The genus has recently been revised for New Guinea (Hay, 1990), Australasia (Hay & Wise, 1991), West Malesia and Sulawesi (Hay, 1998), the Philippines (Hay, 1999) while post main-treatment novelties have been described for New Guinea (Hay, 1994) Borneo (Hay, Boyce & Wong, 1997; Hay, 2000; Boyce, 2007) & Sulawesi (Yuzammi & Hay, 1998). Currently the genus is least well understood in the trans-Himalaya (NE India to SW China) including the northern parts of Burma, Thailand, Lao PDR and Vietnam with only the flora of Bhutan (Noltie, 1994) partly covering this range. In the absence of extensive fieldwork the account presented here for Thailand can at best be regarded as provisional. STRUCTURE & TERMINOLOGY Alocasia plants are often complex in vegetative and floral structure and some notes on their morphology (based here substantially on Hay, 1998) are useful to aid identification. The stem of Alocasia, typically of most Araceae, is a physiognomically unbranched sympodium. The number of foliage leaves per module is variable between and within species and individuals, but during flowering episodes in some species it may be reduced to one.
    [Show full text]
  • WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
    WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall .........................................................................................................
    [Show full text]
  • Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea
    EMU Vol. 96,89-101,1996 0 Royal Australasian Ornithologists Union 1996 0158-4197/96/0289 + 12 Received 10-4-1995, accepted 14-7-1995 Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea Andrew L. MacklJ and Debra D. Wright132 University of Miami, Department of Biology, Coral Gables, Florida 33124, USA Department of Ornithology, Academy of Natural Sciences, 19th and Parkway, Philadelphia, Pennsylvania 19103, USA Summary: During 1989-93, 170 species of birds were ob- net capture rates. Comparisons among four other sites in served and 1787 individuals captured in mist nets at the southern Papua New Guinea reveal striking similarities Crater Mountain Biological Research Station, Chimbu among sites in number of species and trophic organisation. Province, Papua New Guinea. Populations of many species Range extensions, weights and natural history observations fluctuated on annual or supra-annual schedules; 46 species are reported for many species. Feeding observations of nec- were considered transients. Areas of the forest where many tarivorous and frugivorous birds at over 50 species of plant understorey trees had been removed exhibited reduced mist are reported. In a review of the ecology of New Guinea's avifauna, Management Area, a conservation project based on Beehler (1982) reported that no long-term field studies land-use management by the traditional Pawaiian and had been carried out in diverse avian communities of Gimi landowners. The station is 10 km east of Haia in New Guinea. Since then there has been some progress, Chimbu Province, Papua New Guinea (6"43.4'S, mostly in lowland sites (Bell 1982a, 1982b, 1982c, 145'5.6'E) at c.
    [Show full text]
  • Psychotria Nervosa Family: Rubiaceae
    Stephen H. Brown, Horticulture Agent Bronwyn Mason, Master Gardener Lee County Extension, Fort Myers, Florida (239) 533-7513 [email protected] http://lee.ifas.ufl.edu/hort/GardenHome.shtml Psychotria nervosa Family: Rubiaceae Common name: Wild coffee; shiny-leaved wild coffee Synonyms (discarded names): Psychotria undata Origin: Florida; Southern Mexico; Bahamas; Caribbean; Central America; Northern South America U.S.D.A. Zone: 9-12 (20°F Minimum) Growth Rate: Fast Plant Type: Shrub Leaf Persistence: Evergreen Flowering Months: Spring and summer Light Requirements: Low; medium; high Salt Tolerance: Moderate Drought Tolerance: Low to moderate; often found wilting in late spring. Soil Requirements: Wide Nutritional Requirements: Low Major Potential Pests: Scales; sooty mold Typical Dimensions: 6 -7 feet tall with an equivalent width Propagation: Seeds or cuttings Human hazards: None Uses: Florida-friendly landscape; understory; border; foundation; mass planting; informal hedge; rain garden; specimen; butterfly and wildlife attractant Upright shrub growing in a mix moist forest Natural Geographic Distribution Wild coffee is found in the higher areas of swamps and in hydric and mesic hammocks and areas that are seasonally wet and dry. It is also found in limestone (highly alkaline) soils. It grows as far north as northeast Florida (Duval County) in cold protected areas. It is widely distributed in south and central Florida. Growth Habit Wild coffee is an upright, multi-stemmed, ever- green shrub. Under natural shaded conditions it is likely to be a lanky plant, taller than it is wide. In cultivation, it often appears as a bushy, wide spreading shrub with many more branches than A cultivated shrub under an oak mid-September its uncultivated counterpart.
    [Show full text]
  • PJS Special Issue Cuevas and Briones.Indd
    Philippine Journal of Science 142: 69-82, Special Issue ISSN 0031 - 7683 Date Received: ?? ???????? 2013 Role of Light in the Life Stages of Mt. Makiling Populations of Alocasia zebrina, An Endangered Philippine Plant Species1 Niko Niño G. Briones and Virginia C. Cuevas Institute of Biological Sciences (IBS), College of Arts and Sciences, University of the Philippines Los Baños (UPLB), College, Laguna, the Philippines Populations of Alocasia zebrina growing in a secondary forest on Mt. Makiling were studied to determine the influences of sunlight on its life stage development. The study site was dominated by Swietenia macrophylla in association with some members of Palm family. Large canopy gaps were present that allowed ground penetration of high light intensity. The life stages of Alocasia zebrina were identified to be, namely seed, juvenile, adult vegetative and adult sexually mature, based mainly on the number of mature leaves and reproductive capability. Statistical analyses showed a positive correlation between the number of mature leaves and the increase of total monthly minutes of sunshine. Furthermore, the field data analysis suggested that light plays a major role in determining not only where A. zebrina population will be established, but also the rate at which an individual can complete an entire life cycle. Key Words: Alocasia zebrina, life stages, light intensity, Araceae, vegetation, endangered Philippine plant species INTRODUCTION petiole attached to the end of the midrib and extends up to 1.1 m has varying shades of distinct green and brown Except for A. macrorrhizos (L.) G. Don, all indigenous oblique streaks. The colours and design of the petiole with species in the genus Alocasia are endemic in the stripe has earned its local name as ‘gabing tigre’.
    [Show full text]
  • Synopsis and Typification of Mexican and Central American
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2018 Band/Volume: 120B Autor(en)/Author(s): Berger Andreas Artikel/Article: Synopsis and typification of Mexican and Central American Palicourea (Rubiaceae: Palicoureeae), part I: The entomophilous species 59-140 ©Naturhistorisches Museum Wien, download unter www.zobodat.at Ann. Naturhist. Mus. Wien, B 120 59–140 Wien, Jänner 2018 Synopsis and typification of Mexican and Central American Palicourea (Rubiaceae: Palicoureeae), part I: The entomophilous species A. Berger* Abstract The prominent but complex genus Psychotria (Rubiaceae: Psychotrieae) is one of the largest genera of flow- ering plants and its generic circumscription has been controversial for a long time. Recent DNA-phyloge- netic studies in combination with a re-evaluation of morphological characters have led to a disintegration process that peaked in the segregation of hundreds of species into various genera within the new sister tribe Palicoureeae. These studies have also shown that species of Psychotria subg. Heteropsychotria are nested within Palicourea, which was traditionally separated by showing an ornithophilous (vs. entomophilous) pol- lination syndrome. In order to render the genera Palicourea and Psychotria monophyletic groups, all species of subg. Heteropsychotria have to be transferred to Palicourea and various authors and publications have provided some of the necessary combinations. In the course of ongoing research on biotic interactions and chemodiversity of the latter genus, the need for a comprehensive and modern compilation of species of Pali­ courea in its new circumscription became apparent. As first step towards such a synopsis, the entomophilous Mexican and Central American species (the traditional concept of Psychotria subg.
    [Show full text]
  • Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
    PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae.
    [Show full text]
  • Identification Challenges in Examination of Commercial Plant Material of Psychotria Viridis
    Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 72 No. 4 pp. 747ñ755, 2015 ISSN 0001-6837 Polish Pharmaceutical Society NATURAL DRUGS IDENTIFICATION CHALLENGES IN EXAMINATION OF COMMERCIAL PLANT MATERIAL OF PSYCHOTRIA VIRIDIS ANNA P. KOWALCZUK1*, ANNA £OZAK1, ROBERT BACHLI—SKI3, ANNA DUSZY—SKA3, JOANNA SAKOWSKA1 and JORDAN K. ZJAWIONY2 1National Institute of Medicines, Che≥mska 30/34, 00-725 Warszawa, Poland 2Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677, USA 3Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583 Warszawa, Poland Abstract: Psychotria viridis (chacruna) is a hallucinogenic plant with psychoactive properties associated with the presence of N,N-dimethyltryptamine (DMT). This species is primarily known as an ingredient of the bev- erage Ayahuasca, but dry leaves are also smoked by recreational users. The plant is controlled in Poland and France and its proper identification poses many challenges due to the fact that genus Psychotria is relatively large and there are other species that are easily confused with chacruna. The aim of the present work was to develop an effective authentication procedure for the dried and shredded leaves of P. viridis, to be used in com- parison of chemical and botanical characteristics of its commercial products. Dried leaves of P. viridis origi- nating from Brazil, Peru and Hawaii were purchased from Internet providers. For DMT identification, thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) methods have been elaborated, validated and applied. In order to clarify the existing differences among samples, chemometric methods have been used. Botanical features and the gas chromatography tandem mass spectrometry (GC-MS) chromatograms have been analyzed using hierarchical cluster analysis (HCA).
    [Show full text]