Effect of Growth Regulators on Leaf Development of Caladium

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Growth Regulators on Leaf Development of Caladium Proc. Fla. State Hort. Soc. 106:283-286. 1993. EFFECT OF GROWTH REGULATORS ON LEAF DEVELOPMENT OF CALADIUM S. E. Nixon of basal shoots of Anthurium (Henny and Fooshee, 1989), Auburn University to increase the number of lateral shoots of Dieffenbachia Auburn, Alabama (Wilson and Nell, 1983), and to increase the number of phylloclades and flowers of Schlumbergera (Heins et al., G. J. WlLFRET 1981). PBA increased the number of lateral shoots of An Gulf Coast Research & Education Center thurium (Higaki & Rasmussen, 1979), increased the IFAS, University of Florida number of cuttings produced from Dracaena (Criley, Bradenton, FL 34203 1980), and increased the number of lateral shoots of Pel- lionia (Henley and Poole, 1974) and Pilea (Henley and Additional index words, dikegulac, thidiazuron, benzyladenine, Poole, 1974). Thidiazuron (TDZ), used to defoliate mature tetrahydropyranylbenzyladenine, tuber, Caladium x Hor- green leaves in cotton, has been used to stimulate in vitro tulanum. shoot formation in apple (van Niewkerk et al., 1986). Henny and Fooshee (1990) showed that a TDZ drench at Abstract. Growth regulators N6-benzyladenine (BA), tetra the base of Alocasia plants increased the number of elon hydropyranylbenzyladenine (PBA), dikegulac, and thidiazu gated buds but reduced root growth. Similar TBZ treat ron (TDZ) were evaluated to ascertain their ability to negate ments of Syngonium yielded numerous elongated basal apical dominance of the terminal buds of caladium tubers buds which failed to develop and produce new leaves and to stimulate the development of lateral eyes. BA and (Henny and Fooshee, 1991). Dikegulac has been shown to PBA, at concentrations of 0, 12.5, 25, or 50 ppm applied as promote lateral branching on herbaceous plants such as a 15 min tuber soak on intact or de-eyed caladium 'Can- salvia and verbena (Anon., 1970) and has been used as a didum' and 'Postman Joyner', had no effect on number of chemical pinching agent on azaleas (Heursel, 1975; Lar leaves, leaf length, time to marketability, and plant height. son, 1978). Carter and Mahotiere (1991) reported that di BA, at concentrations of 0, 50, 100, 250, or 500 ppm on kegulac increased shoot number, decreased plant height, 'Elise', had no effect on leaf development and number. Di and had no effect on leaf area in "scooped" and intact kegulac (concentrations of 0, 100, 200, or 400 ppm) and caladium tubers. The objective of this research was to thidiazuron (concentrations 0, 0.5, or 1 ppm) were applied as evaluate the effect of four growth regulators when applied a 24-hr tuber soak on 'Candidum' and 'Postman Joyner'. No as a tuber soak on development of caladium leaves. differences were measured with dikegulac but thidiazuron retarded plant height and inhibited leaf development. Chem icals used: (1-methylethylidene)-a-L-xylo-2-hexulofuranoionic Materials and Methods acid, N6-benzyladenine, 6-benzylamino-9-(tetrahydropyran- Caladium tubers were planted in 6-inch diameter pots 2-yl), and N-phenyl-N^l^^-thiadiazol-S-ylurea. (1.6 qt) which were spaced on 10-inch centers on a raised bench in a glass greenhouse. The glass was shaded to Caladiums {Caladium x Hortulanum Birdsey) are an im exclude 40% of ambient light. One jumbo tuber (2.5-3.5 portant, attractive tropical foliage plant produced from a inches diameter) was placed in each container and covered tuber (Harbaugh and Tjia, 1985). They are grown as single with a medium of Florida sedge peat, coarse white builder's or multiple units in containers ranging from 4 to 24 inches sand, coarse vermiculite, and perlite (5:3:3:1, v/v) amended in diameter (Black and Tjia, 1979). Each tuber has a (per yd3) with dolomite limestone (7.5 lb), hydrated lime minimum of one dominant eye, which if allowed to grow (3 lb), granular calcium carbonate (7.5 lb), single super unaltered, will produce a single large leaf. This growth phosphate (5 lb), and Nutricote® 13N-5.7P-10.8K) (6 lb). type yields a tall plant and reduces the plant's marketabil Medium pH was initially 6.0. Pots were arranged on the ity. A preplant process known as "de-eying," which excises bench in a randomized split plot design with three replica the dominant eye, allows the lateral eyes to develop and tions per treatment and three pots per replication. Main produce more leaves (Harbaugh and Tjia, 1985). Unfortu plots were tuber type (intact vs. de-eyed) and subplots were nately de-eying is a very time consuming process and re chemical and concentration. Each cultivar was analyzed quires many hours of manual labor to do a large quantity separately using ANOVA through the SAS program. of tubers. Expt. 1. Tubers of 'Candidum' and Tostman Joyner' Several foliage plants have been treated successfully were either left intact or were de-eyed on 12 June 1991. with growth regulators to induce basal and lateral shoot After de-eying, tubers were immersed for 15 min in BA development. The most commonly used chemicals are N6- or PBA at concentrations of 0, 12.5, 25, or 50 ppm on 13 benzyladenine (BA) and 6-benzylamino-9-(tetrahydiapyran June and allowed to dry for 24 hr at 75°F. On 14 June, all 2-yl)-9H-purine (PBA) (Henny, 1990). BA has been shown tubers were planted and placed in the glass greenhouse. to increase the number of axillary shoots of Hylocereus (a The plants were observed daily and the date when the first rootstock used for many of the colorful grafted cactus) leaf was fully expanded was recorded. The number of ma (Shimomura and Fujihara, 1980), to increase the number ture leaves in each pot was counted weekly, starting on 28 June and finishing on 31 July. Date of marketability, de fined as 10 mature leaves per pot, was recorded daily. On Florida Agricultural Experiment Station Journal Series No. N-00834. 31 July and 1 August, the plants were measured for the Research partially supported by the University of Florida's LASER Pro following parameters: maximum height, length of the four gram for high school science students. Proc. Fla. State Hort. Soc. 106: 1993. 283 longest petioles per pot, length of the largest leaf blade, Table 2. Effect of BA and PBA preplant tuber soak on leaf development and total foliage weight. of caladium 'Postman Joyner' (1991). Expt. 2. Tubers of 'Elise' were left intact or de-eyed on 18 Aug., 1991. They were soaked for 30 min in BA at No. concentrations of 0, 50, 100, 250, or 500 ppm on 19 Aug., days to No. Plant Cone first days to Total height allowed to dry at 75°F for 24 hr, and were planted on 20 Tuber type Chemical (ppm ) leaf market leaves (inches) Aug. Data were collected on 20 October and the parameters recorded were: number of leaves per pot, maximum plant De-Eyed BA 0 19.1 28.7 22.4 19.2 height, and length and width of the largest four leaf blades. 12.5 19.8 31.4 24.2 18.8 25 18.8 Expt. 3. Tubers of 'Candidum' and Tostman Joyner' 29.0 24.1 18.8 50 20.0 31.0 22.4 20.4 were de-eyed or left intact on 15 June 1992. They were Intact BA 0 12.1 34.7 14.7 21.6 soaked for 24 hr in solutions of dikegulac (0, 100, 200, or 12.5 13.8 34.8 12.1 22.4 400 ppm) or TDZ (0, 0.5, or 1.0 ppm) and allowed to dry 25 11.5 29.0 19.6 20.7 for 24 hr. Tubers were planted on 18 June and placed in 50 11.4 34.0 16.2 21.1 De-Eyed PBA 0 21.9 32.9 21.2 the greenhouse. Plants were observed each day and the 20.0 12.5 18.9 31.1 26.2 20.0 date was recorded when the first leaf matured and when 25 19.7 30.3 27.1 19.9 the unit was marketable. Number of mature leaves per pot 50 19.6 30.8 24.1 20.9 was recorded weekly starting on 3 July and continuing Intact PBA 0 13.4 34.8 13.9 21.7 through 7 Aug. On 8 Aug. the plants were measured for 12.5 15.6 36.9 11.6 20.8 25 13.6 38.6 11.8 20.4 total leaves per pot, maximum height, length of the four 50 13.8 35.2 12.0 21.9 longest petioles per pot, and the weight of the total foliage. LSD (« = 0.05) 2.7 2.9 3.8 1.2 Results and Discussion Table 3. Composite effect of BA and PBA preplant tuber soak on Expt 1. BA and PBA had no significant effect on the caladium leaf development (1991). number of leaves or any of the other parameters measured (Table 1,2). The only significant differences found were No. days to between the intact and de-eyed treatments (Table 3). Tubers No. Plant first days to Total height of Tostman Joyner' treated with either BA or PBA and Cultivar Tuber type leaf market leaves (inches) left intact produced the first mature leaf 6.5 days earlier than from de-eyed tubers. 'Candidum' intact tubers pro Candidum De-Eyed 20.4 34.6 17.8 23.3 duced the first leaves only 2.4 days earlier than de-eyed Intact 18.0 38.8 13.4 25.7 LSD (« = 0.05) 1.8 3.1 2.6 1.2 tubers. Tubers of both cultivars which had been de-eyed Postman Joyner De-Eyed 19.7 30.6 24.0 19.8 produced marketable plants 4 days earlier than those left Intact 13.2 34.8 14.0 21.4 intact (Table 3).
Recommended publications
  • Bruxner Park Flora Reserve Working Plan
    Bruxner Park Flora Reserve Working Plan Working Plan for Bruxner Park Flora Reserve No 3 Upper North East Forest Agreement Region North East Region Contents Page 1. DETAILS OF THE RESERVE 2 1.1 Introduction 2 1.2 Location 2 1.3 Key Attributes of the Reserve 2 1.4 General Description 2 1.5 History 6 1.6 Current Usage 8 2. SYSTEM OF MANAGEMENT 9 2.1 Objectives of Management 9 2.2 Management Strategies 9 2.3 Management Responsibility 11 2.4 Monitoring, Reporting and Review 11 3. LIST OF APPENDICES 11 Appendix 1 Map 1 Locality Appendix 1 Map 2 Cadastral Boundaries, Forest Types and Streams Appendix 1 Map 3 Vegetation Growth Stages Appendix 1 Map 4 Existing Occupation Permits and Recreation Facilities Appendix 2 Flora Species known to occur in the Reserve Appendix 3 Fauna records within the Reserve Y:\Tourism and Partnerships\Recreation Areas\Orara East SF\Bruxner Flora Reserve\FlRWP_Bruxner.docx 1 Bruxner Park Flora Reserve Working Plan 1. Details of the Reserve 1.1 Introduction This plan has been prepared as a supplementary plan under the Nature Conservation Strategy of the Upper North East Ecologically Sustainable Forest Management (ESFM) Plan. It is prepared in accordance with the terms of section 25A (5) of the Forestry Act 1916 with the objective to provide for the future management of that part of Orara East State Forest No 536 set aside as Bruxner Park Flora Reserve No 3. The plan was approved by the Minister for Forests on 16.5.2011 and will be reviewed in 2021.
    [Show full text]
  • A Review of Alocasia (Araceae: Colocasieae) for Thailand Including a Novel Species and New Species Records from South-West Thailand
    THAI FOR. BULL. (BOT.) 36: 1–17. 2008. A review of Alocasia (Araceae: Colocasieae) for Thailand including a novel species and new species records from South-West Thailand PETER C. BOYCE* ABSTRACT. A review of Alocasia in Thailand is presented. One new species (A. hypoleuca) and three new records (A. acuminata, A. hypnosa & A. perakensis) are reported. A key to Alocasia in Thailand is presented and the new species is illustrated. INTRODUCTION Alocasia is a genus of in excess of 100 species of herbaceous, laticiferous, diminutive to gigantic, usually robust herbs. The genus has recently been revised for New Guinea (Hay, 1990), Australasia (Hay & Wise, 1991), West Malesia and Sulawesi (Hay, 1998), the Philippines (Hay, 1999) while post main-treatment novelties have been described for New Guinea (Hay, 1994) Borneo (Hay, Boyce & Wong, 1997; Hay, 2000; Boyce, 2007) & Sulawesi (Yuzammi & Hay, 1998). Currently the genus is least well understood in the trans-Himalaya (NE India to SW China) including the northern parts of Burma, Thailand, Lao PDR and Vietnam with only the flora of Bhutan (Noltie, 1994) partly covering this range. In the absence of extensive fieldwork the account presented here for Thailand can at best be regarded as provisional. STRUCTURE & TERMINOLOGY Alocasia plants are often complex in vegetative and floral structure and some notes on their morphology (based here substantially on Hay, 1998) are useful to aid identification. The stem of Alocasia, typically of most Araceae, is a physiognomically unbranched sympodium. The number of foliage leaves per module is variable between and within species and individuals, but during flowering episodes in some species it may be reduced to one.
    [Show full text]
  • WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
    WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall .........................................................................................................
    [Show full text]
  • Leaf Variegation in Caladium Steudneriifolium (Araceae): a Case of Mimicry?
    Evol Ecol (2009) 23:503–512 DOI 10.1007/s10682-008-9248-2 ORIGINAL PAPER Leaf variegation in Caladium steudneriifolium (Araceae): a case of mimicry? Ulf Soltau Æ Stefan Do¨tterl Æ Sigrid Liede-Schumann Received: 27 November 2007 / Accepted: 25 February 2008 / Published online: 6 March 2008 Ó Springer Science+Business Media B.V. 2008 Abstract The leaves of Caladium steudneriifolium (Araceae) of the understorey of a submontane rainforest in the Podocarpus National Park (South East Ecuador, 1,060 m a.s.l.) are plain green or patterned with whitish variegation. Of the 3,413 individual leaves randomly chosen and examined in April 2003, two-thirds were plain green, whereas one third were variegated (i.e., whitish due to absence of chloroplasts). Leaves of both morphs are frequently attacked by mining moth caterpillars. Our BLAST analysis based on Cytochrome-c-Oxidase-subunit-1 sequences suggests that the moth is possibly a member of the Pyraloidea or another microlepidopteran group. It was observed that the variegated leaf zones strongly resemble recent damages caused by mining larvae and therefore may mimic an attack by moth larvae. Infestation was significantly 4–12 times higher for green leaves than for variegated leaves. To test the hypothesis that variegation can be interpreted as mimicry to deter ovipositing moths, we first ruled out the possibility that variegation is a function of canopy density (i.e., that the moths might be attracted or deterred by factors unrelated to the plant). Then plain green leaves were artificially variegated and the number of mining larvae counted after 3 months.
    [Show full text]
  • Leaf Blotching in Caladium
    HORTSCIENCE 44(1):40–43. 2009. (Deng and Harbaugh, 2006; Wilfret, 1986). The presence of leaf spots is controlled by a single locus with two alleles that are inherited Leaf Blotching in Caladium (Araceae) independently from leaf shape but closely linked with the color of the main vein (Deng Is Under Simple Genetic Control and et al., 2008). Another major foliar trait in caladium is Tightly Linked to Vein Color leaf blotching, the occurrence of numerous irregularly shaped color areas between major Zhanao Deng1 and Brent K. Harbaugh veins on leaf blades. Leaf blotches may University of Florida, IFAS, Environmental Horticulture Department, appear singly or coalesce to large areas of Gulf Coast Research and Education Center, 14625 County Road 672, coloration, up to several inches on mature leaves. This pattern of coloration in combi- Wimauma, FL 33598 nation with bright colors has resulted in Additional index words. Caladium ·hortulanum, leaf characteristics, inheritance, breeding, attractive, highly valued and desired cala- ornamental aroids dium cultivars, including Carolyn Whorton and White Christmas. With large pink or Abstract. Cultivated caladiums (Caladium ·hortulanum Birdsey) are valued as important white blotches, ‘Carolyn Whorton’ and pot and landscape plants because of their bright, colorful leaves. Improving leaf ‘White Christmas’ have been the most pop- characteristics or generating new combinations of these characteristics has been one of ular fancy-leaved pink or white cultivars the most important breeding objectives in caladium. A major leaf characteristic in (Bell et al., 1998; Deng et al., 2005). Interest caladium is leaf blotching, the presence of numerous irregularly shaped color areas in incorporating this coloration pattern into between major veins on leaf blades.
    [Show full text]
  • PJS Special Issue Cuevas and Briones.Indd
    Philippine Journal of Science 142: 69-82, Special Issue ISSN 0031 - 7683 Date Received: ?? ???????? 2013 Role of Light in the Life Stages of Mt. Makiling Populations of Alocasia zebrina, An Endangered Philippine Plant Species1 Niko Niño G. Briones and Virginia C. Cuevas Institute of Biological Sciences (IBS), College of Arts and Sciences, University of the Philippines Los Baños (UPLB), College, Laguna, the Philippines Populations of Alocasia zebrina growing in a secondary forest on Mt. Makiling were studied to determine the influences of sunlight on its life stage development. The study site was dominated by Swietenia macrophylla in association with some members of Palm family. Large canopy gaps were present that allowed ground penetration of high light intensity. The life stages of Alocasia zebrina were identified to be, namely seed, juvenile, adult vegetative and adult sexually mature, based mainly on the number of mature leaves and reproductive capability. Statistical analyses showed a positive correlation between the number of mature leaves and the increase of total monthly minutes of sunshine. Furthermore, the field data analysis suggested that light plays a major role in determining not only where A. zebrina population will be established, but also the rate at which an individual can complete an entire life cycle. Key Words: Alocasia zebrina, life stages, light intensity, Araceae, vegetation, endangered Philippine plant species INTRODUCTION petiole attached to the end of the midrib and extends up to 1.1 m has varying shades of distinct green and brown Except for A. macrorrhizos (L.) G. Don, all indigenous oblique streaks. The colours and design of the petiole with species in the genus Alocasia are endemic in the stripe has earned its local name as ‘gabing tigre’.
    [Show full text]
  • The Exclusively Neotropical Genus Scaphispatha Was Formerly Considered Monospecific. the Type Species
    A REVISION OF SCAPHISPATHA (ARACEAE – CALADIEAE) INCLUDING A NEW SPECIES Eduardo Gomes Gonçalves1 ABSTRACT (A revision of Scaphispatha (Araceae – Caladieae) including a new species) The formerly considered monospecific genus Scaphispatha (Araceae – Caladieae) is here revised. Scaphispatha robusta E.G.Gonç, a second species for the genus is newly described from the Cerrado Biome and the transition Cerrado- Amazonia. It differs from S. gracilis Brongn. ex Schott by the much more robust petioles and leaves, primary lateral veins drying clearer than the lamina, lateral secondary veins conspicously more prominent than tertiary veins and for the female spadix with 11-15 rows of flowers visible in side view. A key to separate both species is provided, as well as ink illustrations and general remarks on the genus. Key-words: Scaphispatha, Cerrado, Caladieae, Araceae, geophyte. RESUMO (Revisão de Scaphispatha (Araceae – Caladieae), incluíndo a descrição de uma nova espécie para o gênero) O gênero Scaphispatha (Araceae – Caladieae), até então considerado monoespecífico, é aqui revisado. Scaphispatha robusta E.G.Gonç., uma segunda espécie para o gênero é descrita para o bioma Cerrado e a transição Cerrado-Amazonia. Difere de S. gracilis Brongn. ex Schott pelos pecíolos e folhas muito mais robustas, nervuras laterais mais claras que o limbo quando secas, nervuras laterais secundárias mais proemi- nentes que as terciárias e pela porção feminina do espádice com 11-15 espirais de flores visíveis em vista lateral. Uma chave para separar as espécies, assim como ilustrações em nanquim e aspectos gerais para o gênero são apresentados. Palavras-chave: Scaphispatha, Cerrado, Caladieae, Araceae, geófita. INTRODUCTION was recognized when plants from Pará state The exclusively neotropical genus (Northern Brazil) flowered in cultivation.
    [Show full text]
  • Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands
    SMITHSONIAN INSTITUTION Contributions from the United States National Herbarium Volume 52: 1-415 Monocotyledons and Gymnosperms of Puerto Rico and the Virgin Islands Editors Pedro Acevedo-Rodríguez and Mark T. Strong Department of Botany National Museum of Natural History Washington, DC 2005 ABSTRACT Acevedo-Rodríguez, Pedro and Mark T. Strong. Monocots and Gymnosperms of Puerto Rico and the Virgin Islands. Contributions from the United States National Herbarium, volume 52: 415 pages (including 65 figures). The present treatment constitutes an updated revision for the monocotyledon and gymnosperm flora (excluding Orchidaceae and Poaceae) for the biogeographical region of Puerto Rico (including all islets and islands) and the Virgin Islands. With this contribution, we fill the last major gap in the flora of this region, since the dicotyledons have been previously revised. This volume recognizes 33 families, 118 genera, and 349 species of Monocots (excluding the Orchidaceae and Poaceae) and three families, three genera, and six species of gymnosperms. The Poaceae with an estimated 89 genera and 265 species, will be published in a separate volume at a later date. When Ackerman’s (1995) treatment of orchids (65 genera and 145 species) and the Poaceae are added to our account of monocots, the new total rises to 35 families, 272 genera and 759 species. The differences in number from Britton’s and Wilson’s (1926) treatment is attributed to changes in families, generic and species concepts, recent introductions, naturalization of introduced species and cultivars, exclusion of cultivated plants, misdeterminations, and discoveries of new taxa or new distributional records during the last seven decades.
    [Show full text]
  • Alocasia Macrorrhiza / Similar Spp
    Alocasia macrorrhiza / Similar spp . Usually prostrate or semi-prostrate at ground level; can grow to a metre high, without support. Common name: . Native to Malaysia, SE Asia and N. Australia. Alocasia, Cunjevoi, Elephant ears, . The flower heads are a spike of pale yellow- Giant taro, green flowers along the upper part of a stout stalk - spadex - and surrounded by a cream- Palatability to Livestock: coloured, hood-shaped spathe, in summer. Not known to be eaten. Berries are red, yellow or orange when ripe. Found growing wild in Queensland and Toxicity to Other Species: northern NSW, in moist gullies. Toxic to all animals, stock, humans and pets. Stock are not attracted to this plant in the fresh state; it may have a sweet smell. Poisonous Principle: . Sap is very corrosive to mucous membranes. Cyanogenetic glucocides, . Sharp needles of oxalate are found in the plant. Oxalate crystals, . A cuprea, Giant caladium. Unknown toxins. Effects: Signs and symptoms; . Intense irritation to, and swelling of, the lips, tongue, mouth, and throat. Health and Production Problems; . Recovery in most cases. Can be stinging or corrosive to humans when handled. Juice from leaf or rhizome can cause intense conjunctivitis or temporary blindness. Alocasia. Treatment; Picture: Helen Simmonds, Calga, NSW. Unknown, rinse with water. See Doctor or Vet. Integrated Control Strategy: . Garden plant escapee, . All parts are potentially irritant. Use herbicides, or weed out into disposable bags. Do not feed this plant to any livestock. Comments: Cunjevoi. A large perennial garden plant, with a thick Picture: Helen Simmonds. Calga, NSW. rootstock and thick stems, with a height and spread of about 2.5 metres.
    [Show full text]
  • Ornamental Garden Plants of the Guianas, Part 3
    ; Fig. 170. Solandra longiflora (Solanaceae). 7. Solanum Linnaeus Annual or perennial, armed or unarmed herbs, shrubs, vines or trees. Leaves alternate, simple or compound, sessile or petiolate. Inflorescence an axillary, extra-axillary or terminal raceme, cyme, corymb or panicle. Flowers regular, or sometimes irregular; calyx (4-) 5 (-10)- toothed; corolla rotate, 5 (-6)-lobed. Stamens 5, exserted; anthers united over the style, dehiscing by 2 apical pores. Fruit a 2-celled berry; seeds numerous, reniform. Key to Species 1. Trees or shrubs; stems armed with spines; leaves simple or lobed, not pinnately compound; inflorescence a raceme 1. S. macranthum 1. Vines; stems unarmed; leaves pinnately compound; inflorescence a panicle 2. S. seaforthianum 1. Solanum macranthum Dunal, Solanorum Generumque Affinium Synopsis 43 (1816). AARDAPPELBOOM (Surinam); POTATO TREE. Shrub or tree to 9 m; stems and leaves spiny, pubescent. Leaves simple, toothed or up to 10-lobed, to 40 cm. Inflorescence a 7- to 12-flowered raceme. Corolla 5- or 6-lobed, bluish-purple, to 6.3 cm wide. Range: Brazil. Grown as an ornamental in Surinam (Ostendorf, 1962). 2. Solanum seaforthianum Andrews, Botanists Repository 8(104): t.504 (1808). POTATO CREEPER. Vine to 6 m, with petiole-tendrils; stems and leaves unarmed, glabrous. Leaves pinnately compound with 3-9 leaflets, to 20 cm. Inflorescence a many- flowered panicle. Corolla 5-lobed, blue, purple or pinkish, to 5 cm wide. Range:South America. Grown as an ornamental in Surinam (Ostendorf, 1962). Sterculiaceae Monoecious, dioecious or polygamous trees and shrubs. Leaves alternate, simple to palmately compound, petiolate. Inflorescence an axillary panicle, raceme, cyme or thyrse.
    [Show full text]
  • Diseases of Edible Aroids in India and Their Management
    Diseases of Edible Aroids in India and Aroids: Plants belonging to the family Araceae their Management Among cultivable tropical tuber crops, the following are commercially cultivated edible aroids in India: 1. Amorphophalus paeoniifolius 2. Colocasia (C.esculenta var.esculenta and C.esculenta R.S.Misra var.antiquorum): Dasheen and Eddoe types Central Tuber Crops Research Institute Trivandrum (India) 3. Xanthosoma (Tannia) 4. Alocasia Amorphophallus tubers Amorphophallus mosaic disease and crop 1 Amorphophallus Mosaic Disease Collar rot of Amorphophallus Primary spread is through planting material. Secondary spread of the disease is through insect vectors, Myzus persicae Sulz., Aphis gossypii Glover, A. craccivora Koch. and Pentalonia nigronervosa coq. Disease symptoms include mosaic mottling of leaves and distortion of leaf lamina. Corms produced by the mottled plants are much smaller than those without mottled leaves. Management: Use of virus free planting material, spraying of systemic insecticides to prevent secondary spread Leaf blight caused by Phytophthora colocasiae Storage diseases in Amorphophallus 2 Management of Amorphophallus Diseases Major taro types in India •Use of healthy planting material without any apparent rotting symptoms •Treatment of the whole/cut tubers with cow-dung slurry mixed with Trichoderma before planting •Application of Trichoderma enriched compost in pits/field •Application of neem-cake @ 250g/pit •One foliar spray with Mancozeb (0.2%) and fenithrion (0.05%) at 60 and 90 DAP Taro Cultivation Field view
    [Show full text]
  • A REVIEW Summary Dieffenbachia May Well Be the Most Toxic Genus in the Arace
    Journal of Ethnopharmacology, 5 (1982) 293 - 302 293 DIEFFENBACH/A: USES, ABUSES AND TOXIC CONSTITUENTS: A REVIEW JOSEPH ARDITTI and ELOY RODRIGUEZ Department of Developmental and Cell Biology, University of California, Irvine, California 92717 (US.A.) (Received December 28, 1980; accepted June 30, 1981) Summary Dieffenbachia may well be the most toxic genus in the Araceae. Cal­ cium oxalate crystals, a protein and a nitrogen-free compound have been implicated in the toxicity, but the available evidence is unclear. The plants have also been used as food, medicine, stimulants, and to inflict punishment. Introduction Dieffenbachia is a very popular ornamental plant which belongs to the Araceae. One member of the genus, D. seguine, was cultivated in England before 1759 (Barnes and Fox, 1955). At present the variegated D. picta and its numerous cultivars are most popular. The total number of Dieffenbachia plants in American homes is estimated to be in the millions. The plants can be 60 cm to 3 m tall, and have large spotted and/or variegated (white, yellow, green) leaves that may be 30 - 45 cm long and 15 - 20 cm wide. They grow well indoors and in some areas outdoors. Un­ fortunately, however, Dieffenbachia may well be the most toxic genus in the Araceae, a family known for its poisonous plants (Fochtman et al., 1969; Pam el, 1911 ). As a result many children (Morton, 1957, 1971 ), adults (O'Leary and Hyattsville, 1964), and pets are poisoned by Dieffenbachia every year (Table 1 ). Ingestion of even a small portion of stem causes a burn­ ing sensation as well as severe irritation of the mouth, throat and vocal cords (Pohl, 1955).
    [Show full text]