Elevation and Moths in a Central Eastern Queensland Rainforest

Total Page:16

File Type:pdf, Size:1020Kb

Elevation and Moths in a Central Eastern Queensland Rainforest bs_bs_banner Austral Ecology (2015) ••, ••–•• Elevation and moths in a central eastern Queensland rainforest ERICA H. ODELL,* LOUISE A. ASHTON AND ROGER L. KITCHING Environmental Futures Research Institute and Griffith School of Environment, Griffith University, 170 Kessels Road, Brisbane, Queensland 4111, Australia (Email: erica.odell@griffithuni.edu.au) Abstract Elevational gradients are powerful natural experiments for the investigation of ecological responses to changing climates. Automated modified Pennsylvania light traps were used to sample macro-moth assemblages for three consecutive nights at each of 24 sites ranging from 200 m asl to 1200 m asl within continuous tropical rainforest at Eungella, Queensland, Australia (21°S, 148°E). A total of 13 861 individual moths representing approximately 713 morphospecies and 10 045 individuals belonging to approximately 607 morphospecies where sampled during November 2013 and March 2014 respectively. Moth assemblages exhibited a strong elevational signal during both sampling seasons; we grouped these into lowland and upland assemblages.The dispersal pattern of moth assemblages across the landscape reflected the stratification of vegetation communities across elevation and correlated with shifts in eco-physical variables, most notably temperature and substrate organic matter. Regional historical biogeographical events likely contributed to the observed patterns.The analysis presented here identifies a set of statistically defined elevationally restricted moths which may be of use as part of a multi-taxon predictor set for monitoring future ecosystem level changes associated with elevation and, by implication, with climate. Key words: diversity, elevation, moth, rainforest, stratification. INTRODUCTION have resulted in functional asynchronies among important biological events (Root et al. 2003; Kiers Over the past century, average global temperatures et al. 2010; Thackeray et al. 2010; Rafferty & Ives have increased by 0.78°C (IPCC 2013) and are pre- 2011; Bellard et al. 2012; Nakazawa & Doi 2012). dicted to continue to rise throughout the 21st century Temperature, solar radiation, precipitation, sea level (National Research Council 2008). Pragmatic climate as well as the timing and magnitude of extreme events projections estimate a global shift in average tempera- are all anticipated to change under global climate tures by 3–6°C within the coming century (IPCC change. The likely impacts on biological diversity of 2013), with some areas, such as mountains and high change in several of these variables can be investigated latitudes experiencing greater levels of warming than using elevational gradients. Elevational gradients are others (Diaz et al. 2003; Nogués-Bravo et al. 2007; powerful natural experimental systems for investigat- Kohler & Maselli 2009; World Bank 2012). Under- ing ecological responses to climatic influences (Körner standing the impacts and responses of ecosystems to 2007). They offer a unique opportunity to observe climate change is essential if measures to ameliorate potential responses of ecosystems to climate change by and predict the impacts of climate change are to be presenting naturally steep climatic gradients within effective (Shaver et al. 2000). relatively small geographical ranges and therefore A broad range of organisms from several bio- allow sampling from a narrow species pool. This sub- geographical regions have been shown to have stitution of space for time, however, is not without responded to recent changes in the global climate issues especially given the uncertainty in trajectories of (Parmesan 2007; Cook et al. 2008; Thackeray et al. future change. Nevertheless, by monitoring the 2010). Changes in species distributions and elevational distributions of in situ assemblages, we can phenological events are among the most widely begin to understand how ecosystems may respond to a observed (Williams et al. 2003; Thomas et al. 2004; globally changing climate. In contrast to locations in Chen et al. 2009; Hughes 2012). Shifts in the timing of the Northern Hemisphere, Australia, in general, lacks flowering, bud burst, emergences, migrations and the necessary long-term historical datasets and nesting have been observed (Van Asch et al. 2007; phenological monitoring that have allowed for the Møller et al. 2008; Burkle et al. 2013), some of which detection of a range of biodiversity impacts of climate change to date (Hughes 2003). Recent climate *Corresponding author. warming in Australian is now well established with Accepted for publication April 2015. observable consequences for biodiversity (Steffen et al. © 2015 Ecological Society of Australia doi:10.1111/aec.12272 2 E. H. ODELL ET AL. 2009; IPCC 2014).The establishment of baseline dis- The region’s mountains are frequently covered by a cloud tribution data and the identification of potential pre- cap. This produces condensation which helps maintain a dictor species remains an essential need if our consistently moister environment in the upland forest, par- understanding of climate change, monitoring and ticularly in the dry season. Cloud forests are generally thought management responses are to be sensible and timely of as crucial for the maintenance of high elevation rainforest structure and the associated arthropod assemblages of upper (Hughes 2000; Huddleston 2012). The present paper elevational zones (Nadkarni et al. 2000; Oosterhoorn & contributes one such baseline. Kappelle 2000; Williams-Linera 2002). Direct precipitation Indicator species or groups of species whose behav- from cloud caps mitigates moisture loss and provides a stable iour mimics that of a larger set of variables are useful moist environment suitable for the development and mainte- for their ability to convey information about environ- nance of montane rainforest. Notophyll vine forests (Webb mental change (Bohac 1999; Niemi & McDonald 1978), characteristic of low nutrient soils, dominate higher 2004; Trindade-Filho & Loyola 2011). Individual elevations and gradate into mesophyll forests (Webb 1978) at species may be used to detect environmental changes lower elevations. Some baseline information is available on the but, when community level changes are probable, sets vegetation, of which most is derived from a permanent plot of organisms are likely to be more powerful and useful maintained by the Commonwealth Scientific and Industrial (Kitching et al. 2000; Kitching & Ashton 2013). Inver- Research Organisation (CSIRO) (Graham 2006) located to the south of the Clarke Range on basaltic soils. Much of the tebrates are widely accepted as powerful indicators of northern section of the Clarke Range, however, has developed ecosystem states. Aquatic taxa such as Ephemeroptera, upon an extensive granitic landscape (early Miocene to Plecoptera and Trichoptera have been widely used Palaeocene) (Graham 2006). Few studies provide detail on with considerable success to assess stream quality and vegetation composition or structure for forests on these gra- environmental health of rivers (Blattenberger et al. nitic soils. Little if any information is available on the associ- 2000; Carignan & Villard 2002; Wright et al. 2007; ated invertebrates. EHMP 2008). In terrestrial ecosystems, Lepidoptera (moths and butterflies) and Coleoptera (beetles) are commonly employed as indicator groups to measure Study design environmental quality (Niemelä et al. 2000; Rainio & Niemelä 2003; Maleque et al. 2009; Gerlach et al. The methodology of this study follows those of the Investigating 2013). The present study examines elevation-related the Biodiversity of Soil and Canopy Arthropods (IBISCA) changes in a Queensland tropical rainforest in order Queensland project (Ashton et al. 2011; Kitching et al. 2011). to select statistically defined sets of night-flying The continuity in sampling techniques allows for uncompro- Lepidoptera (moths) that may be used to monitor mised comparisons of data between Eungella and previous future ecosystem level changes. studies (see Ashton et al. 2011; Ashton 2013).The comparisons drawn among these studies, uncompromised by the use of incompatible methodologies, contributes to the development of a more general understanding of ecosystem responses to eleva- METHODS tion and climate, and how these respond to changing climate. This study was carried out along an elevational gradient at Eungella National Park to investigate changes in moth Study site assemblages between 200 m asl and 1200 m asl. Sampling occurred among elevational bands at 200 m elevation inter- Eungella (21°S, 148°E), located 80 km west of Mackay on vals at 200 m asl, 400 m asl, 600 m asl, 800 m asl, 1000 m asl the Clarke Range, is the largest patch of remnant rainforest and 1200 m asl. Four plots spaced at least 500 m apart were between the Wet Tropics of far northern Queensland and the established within each elevational band (Fig. 1, see Appen- Macpherson Range and Tweed Caldera in the subtropical dix S1 for site coordinates). However, in contrast to the south-east of Queensland and north-eastern New South IBISCA Queensland project, the spatial positioning of the Wales. The rainforests of the Eungella massif present a con- plots within each elevational band were not placed in a line to tinuum ranging from lowland rainforest at about 200 m asl to account for spatial autocorrelation factors. montane rainforest above 1100 m asl. In contrast to the forests of the Wet Tropics and the Tweed Caldera, the rain- forest of Eungella have been little studied ecologically. Eungella’s
Recommended publications
  • New Pyralidae from the Papuan Region
    1112 THE C.4NADIAN ENTO34OLOGIST February 1959 New Pyralidae from the Papuan Region (Lepidoptera)' By EUGENEMUNROE~ Insect Systematics and Biological Control Unit Entomology Division, Ottawa, Canada The following new species have been found in material submitted from various sources for identification. Glyphodes obscura, new species Fig. 1, 9, 13 Head, bndv and nvings above ntoderately dark greyish brown, wings with a faint purplish sheen, hind n.ing a little paler and somewhat translucent in basal txl-i-n-thirds. ,\larking very obscure. Fore wing above: antemedial band w-eaklv fulvous. dark-bordered. somen.hat oblique; discocellular patch obscure, quadrate; postmedial band weakly fulvous, dark-bordered, outwardly oblique to anal fold, then retracted to lower angle of cell and again outwardly oblique to inner margin; an obscure dark subterminal line, almost parallel to margin; a narrow dark terminal line; fringe a little ~alerthan wing, with a dark midline. Hind wing above: a distinct dark dot at lower angle of cell; a very obscure, regular, postmedial band; traces of a dark, crenulated, subterminal line; terminal line and fringe as on forc wing. Fore wing beneath: base and disc paler than al~ove;ancerntdial line lacking; discocellular marking dark, geminate, joined posteriorlv tn the inner end of ~ostmedialline; the latter dark, roughly L-shaped, the part behind the discocellular patch obsolete; termen and fringe as above. Hind wing beneath: much ns above. but discocellular dot obscure and postmedial band dark, not fulvous. Female a little paler than male. Expanse 40 to 44 mm. Male genitalia. Uncus long and rod-like, decurved, weakly expanded at tip with a corona of short setae above and with coarse hairy vestiture below; tegumen broad, irregularly domed; vinculum moderately wide, irregularly con- torted; transtilla strap-like, narrowed and raised in an inverted V in middle; valve broad, distally expanded, with a large, decurved, spine-like clasper; cor- emata large; penis short, aedoeagus poorly sclerotized, vesica with a forked, barbed cornutus.
    [Show full text]
  • Anomala Grandis; 9
    ก1 ค าน า ความหลากหลายทางชีวภาพ (biological diversity หรือ biodiversity) หมายถึง สิ่งมีชีวิต นานาชนิด นานาพันธุ์ในระบบนิเวศ อันเป็นแหล่งที่อยู่อาศัยซึ่งมีมากมายและแตกต่างกันทั่วโลกทั้งระดับ พันธุกรรมหรือยีน (gene) ขึ้นไปถึงระดับชนิดหรือสปีชีส์ (species) จนถึงความหลากหลายของกลุ่มสิ่งมีชีวิต เชิงนิเวศวิทยา (ecological community) ประโยชน์ความหลากหลายทางชีวภาพมีอยู่อย่างมากมายทั้ง ทางตรงและทางอ้อม ประโยชน์ทางตรง ได้แก่ การให้เนื้อไม้ เป็นอาหาร เครื่องนุ่งห่ม ที่อยู่อาศัยและยารักษา โรค สําหรับประโยชน์ทางอ้อม ได้แก่ คุณค่าในการรักษาระบบนิเวศให้สามารถดํารงอยู่ได้ เช่น การรักษาหน้า ดิน การตรึงไนโตรเจนสู่ดิน การควบคุมความชื้น รวมถึงการท่องเที่ยวและนันทนาการ การรักษาความ หลากหลายทางชีวภาพในพื้นที่หนึ่งๆ ให้คงความอุดมสมบูรณ์ จําเป็นต้องมีข้อมูลความหลากหลายทางชีวภาพ ในพื้นที่นั้นก่อน การศึกษาข้อมูลดังกล่าวจะทําให้ทราบถึงการมีอยู่ของความหลากหลายทางชีวภาพในแต่ละ พื้นที่ ทําให้สามารถนําไปใช้ในการวางแผนบริหารจัดการทรัพยากรความหลากหลายในระดับพื้นที่และ ระดับประเทศให้คงความอุดมสมบูรณ์ต่อไปในอนาคต กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช ได้เห็นความสําคัญในการอนุรักษ์ความหลากหลาย ทางชีวภาพ ในปีงบประมาณ พ.ศ. 2557 จึงได้ส่งแผนการดําเนินการสํารวจความหลากหลายทางชีวภาพใน เขตรักษาพันธุ์สัตว์ป่าให้สําหรับสํานักบริหารพื้นที่อนุรักษ์ที่ 3 (บ้านโป่ง) โดยกลุ่มงานวิชาการดําเนินการ รายงานฉบับนี้เป็นรายงานผลการสํารวจความหลากหลายชนิดพรรณพืช แมลง และเห็ด ในป่าเบญจพรรณ พื้นที่เขตรักษาพันธุ์สัตว์ป่าแม่น้ําภาชี จังหวัดราชบุรี ซึ่งเป็นข้อมูลส่วนหนึ่งของความหลากหลายที่มีอยู่ในเขต รักษาพันธุ์สัตว์ป่าแม่น้ําภาชี สําหรับข้อมูลการสํารวจความหลากหลายที่ได้ดําเนินการที่ผ่านมา จะได้รวบรวม
    [Show full text]
  • The Herbivorous Insect Fauna of a Submersed Weed, Hydrilla Verticillata (Alismatales: Hydrocharitaceae)
    SESSION 5 Weeds of Aquatic Systems and Wetlands Proceedings of the X International Symposium on Biological Control of Weeds 307 4-14 July 1999, Montana State University, Bozeman, Montana, USA Neal R. Spencer [ed.]. pp. 307-313 (2000) The Herbivorous Insect Fauna of a Submersed Weed, Hydrilla verticillata (Alismatales: Hydrocharitaceae) C. A. BENNETT1 and G. R. BUCKINGHAM2 1 Department of Entomology and Nematology, University of Florida, and 2 USDA-ARS 1,2 Florida Biological Control Laboratory, P.O. Box 147100, Gainesville, Florida 32614-7100, USA Abstract Although relatively few insects have been reported to feed on submersed aquatic plants, field surveys on Hydrilla verticillata (L. F.) Royle for biological control agents have demonstrated that insect herbivores should be expected when surveying submersed aquatic plants in the native ranges. Beetles, or Coleoptera, especially the weevils (Curculionidae), are important herbivores. Weevils attack submersed plant species both when water is present and when water is absent during dry periods which leave the plants exposed. Pupal success appears to be the major determinant of weevil life cycle strategies. Donaciine leaf beetles (Chrysomelidae) attack the roots or crowns of submersed species, but their feeding and damage is difficult to determine. Leaf-mining Hydrellia flies (Diptera: Ephydridae) are diverse and common on submersed species. Other flies, the midges (Chironomidae), are also common on submersed species, but many utilize the plants only for shelter. However, midge larvae ate the apical meristems on the tips of hydrilla stems. Aquatic caterpillars (Lepidoptera: Pyralidae) are the herbivores most eas- ily observed on submersed species because of their large size and conspicuous damage, but their host ranges might be too broad for use as biological control agents.
    [Show full text]
  • Die Abgrenzung Der Unterfamilie Acentropinae. Wolfgang
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta, Bd. X II, Heft 2, April 1981, Würzburg, ISSN 0171-0079 Die Abgrenzung der Unterfamilie Acentropinae (Lepidoptera, Pyraloidea) von WOLFGANG SPEIDEL In der Fortführung meiner Nymphulinae-Studien stellte es sich, heraus, daß der Name Nymphulinae durch den älteren, Acentropinae, ersetzt werden muß. Eine moderne Gruppendefinition, die sich auch auf Merkmale der Genitalmorphologie stützt, wird erst durch den Schweden SYLVEN (1946: 27) geliefert. Seine Diag­ nose wird m it geringfügigen Modifikationen von MARION (1952) übernommen. Diese Autoren grenzen die Acentropinae, immer unter Ausklammerung der A rt Acentria nivea (OLIVER, 1791), von den Praustinae ab durch den Besitz einer wohlentwickelten Gnathos im d-Genitalapparat, die bei den Pyraustinae unbeweg­ lich, an ihrer Basis m it dem Tegumen verwachsen ist oder ganz fehlt. Gleichwohl handelt es sich bei diesem, die Acentropinae definierenden Merkmal, dem Be­ sitz einer beweglichen Gnathos, um ein plesiomorphes Merkmal, das sich bei vie­ len anderen Lepidopteren, nicht nur bei den Pyraloidea, auch findet. Es hat deshalb keinerlei Aussagekraft für oder gegen die Monophylie der Acentropinae. Die spezielle, ans Wasser gebundene Lebensweise der Raupe jedoch ist eine Neu­ erwerbung*^ ieser Gruppe, die sie von allen anderen Pyraloidea unterscheidet. Von LANGE (1956) wird auch die Ambia-Gruppe zu den Acentropinae gerech­ net. Es stellte sich jedoch neuerdings heraus, daß die in dieser Gruppe unterge­ brachten Arten an Land lebende Raupen besitzt, die sich, soweit bekannt, von Farnen nähren. MUNROE (1972) zieht daraus eine notwendige Konsequenz und isoliert die Ambia-Gruppe als Tribus Ambiini. Er bringt diese Gruppe in Bezie­ hung m it den Musotimini, die, soweit bekannt, als Raupe ebenfalls am Land von Farnen leben, aber einen Fortsatz am Sacculus der Valve tragen, der den Ambiini fehlt.
    [Show full text]
  • Forest Health Technology Enterprise Team Biological Control of Invasive
    Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book.
    [Show full text]
  • 7 HYDRILLA PEST STATUS of WEED Nature of Damage 91
    7 HYDRILLA J. K. Balciunas1, M. J. Grodowitz 2, A. F. Cofrancesco2, and J. F. Shearer2 1 USDA-ARS, Exotic and Invasive Weed Research Unit, Western Regional Research Center, Albany, California, USA 2 U.S. Army Engineer Research and Development Center, Waterways Experiment Station, Vicksburg, Mississippi, USA Nature of Damage PEST STATUS OF WEED Economic damage. In the United States, hydrilla of- Hydrilla verticillata (L.f.) Royle (hereafter, referred ten dominates aquatic habitats causing significant eco- to as “hydrilla”) (Fig. 1) is a submersed, rooted nomic damage (Fig. 2). Hydrilla interferes with a wide aquatic plant that forms dense mats in a wide variety variety of commercial operations. Thick mats hinder of freshwater habitats (canals, springs, streams, ponds, irrigation operations by reducing flow rates by as lakes, rivers, and reservoirs) (Langeland, 1990). Plants much as 90% (CDFA, 2000a) and impede the opera- grow from the substrate to the water’s surface in both tion of irrigation structures (Godfrey et al., 1996). shallow and deep water (0-15 m in depth) (Langeland, Hydroelectric power generation also is hindered by 1990; Buckingham, 1994). This plant is listed on the fragmented plant material that builds up on trash 1979 federal noxious weed list (USDA-NRCS, 1999) racks and clogs intakes. During 1991, hydrilla at Lake and also is identified in the noxious weed laws of Moultrie, South Carolina shut down the St. Stephen Florida (FDEP, 2000), Louisiana (LDWF, 2000), powerhouse operations for seven weeks resulting in Texas (TPWD, 2000), California (CDFA, 2000a), $2,650,000 of expenses due to repairs, dredging, and South Carolina (SCDNR, 2000), North Carolina fish loss.
    [Show full text]
  • The Pyraloidea of Eungella: a Moth Fauna in Its Elevational and Distributional Context
    THE PYRALOIDEA OF EUNGELLA: A MOTH FAUNA IN ITS ELEVATIONAL AND DISTRIBUTIONAL CONTEXT KITCHING, R. L.1, ASHTON, L. A.1,2, ORR, A. G.1 & ODELL, E. H.1 An intensive, two-season survey of moths along an elevational transect from 200 to 1200 m above sea level was an integral part of the recent Eungella biodiversity survey. The overall results have been published elsewhere. In this paper we examine in finer detail the patterns of distribution and faun istics of one of the dominant taxa from that dataset. The Pyraloidea comprise two families of so-called micro-moths, the Pyralidae and the Crambidae. Overall we sampled more than 7000 indi- viduals of more than 100 species. In spring these were principally in the lowland sites, but the summer samples were more evenly spread across elevations. In both seasons characteristic upland and lowland assemblages were apparent, separating at about 700 m above sea level. These elevational patterns were driven statistically by a small group of abundant species. Focusing on the Pyraustinae-Spilomelinae clade (91 species in our samples) and comparing them with samples from other Australian rainforest locations suggests that the Eungella forests represent the southernmost limits for 24 species, and the northern limits for five species. In other cases, the species is known from sites both north and south of Eungella. Keywords: Pyraloidea, Spilomelinae/Pyraustinae, Eungella, elevation, distribution 1 Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia ([email protected]) 2 School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China INTRODUCTION clear demarcation between moth ass emblages at 800 m The Lepidoptera, the butterflies and moths, are pre- above sea level and higher, compared with those at dominantly herbivorous and, within all ‘green’ eco- lower elevations (see ‘Methods’ below) for both spring systems, play an important role in connecting the (November) and late summer (March) samples.
    [Show full text]
  • The Pyraloidea of Eungella: a Moth Fauna in Its Elevational and Distributional Context
    THE PYRALOIDEA OF EUNGELLA: A MOTH FAUNA IN ITS ELEVATIONAL AND DISTRIBUTIONAL CONTEXT KITCHING, R. L.1, ASHTON, L. A.1,2, ORR, A. G.1 & ODELL, E. H.1 An intensive, two-season survey of moths along an elevational transect from 200 to 1200 m above sea level was an integral part of the recent Eungella biodiversity survey. The overall results have been published elsewhere. In this paper we examine in finer detail the patterns of distribution and faun istics of one of the dominant taxa from that dataset. The Pyraloidea comprise two families of so-called micro-moths, the Pyralidae and the Crambidae. Overall we sampled more than 7000 indi- viduals of more than 100 species. In spring these were principally in the lowland sites, but the summer samples were more evenly spread across elevations. In both seasons characteristic upland and lowland assemblages were apparent, separating at about 700 m above sea level. These elevational patterns were driven statistically by a small group of abundant species. Focusing on the Pyraustinae-Spilomelinae clade (91 species in our samples) and comparing them with samples from other Australian rainforest locations suggests that the Eungella forests represent the southernmost limits for 24 species, and the northern limits for five species. In other cases, the species is known from sites both north and south of Eungella. Keywords: Pyraloidea, Spilomelinae/Pyraustinae, Eungella, elevation, distribution 1 Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia ([email protected]) 2 School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China INTRODUCTION clear demarcation between moth ass emblages at 800 m The Lepidoptera, the butterflies and moths, are pre- above sea level and higher, compared with those at dominantly herbivorous and, within all ‘green’ eco- lower elevations (see ‘Methods’ below) for both spring systems, play an important role in connecting the (November) and late summer (March) samples.
    [Show full text]
  • Oria Stage Ii Expansion Keep River
    Laccophilus revis ORIA STAGE II EXPANSION KEEP RIVER BASELINE AQUATIC FAUNA & TARGETED SAWFISH SURVEYS 2013 8 April 2014 ORIA Stage II Expansion – Keep River Baseline Aquatic Fauna & Targeted Sawfish Surveys September/October 2013 Prepared for: LandCorp Wesfarmers House, 40 The Esplanade, Perth WA 6000 Locked bag 5, Perth Business Centre, Perth WA 6849 Phone: (61 8) 9482 7499, Fax: (61 8) 9481 0861 by: Wetland Research & Management 16 Claude Street, Burswood, WA 6100 Ph +61 8 9361 4325 e-mail: [email protected] Final Report v3 8 May 2014 Frontispiece: (top to bottom) juvenile dwarf sawfish ( Pristis clavata ) at EST03; freshwater whipray ( Himantura dalyensis ) at SR4; saltwater crocodile (Crocodylus porosus ) at K1-2 (photos by WRM ©). ii Study Team WRM Project Management: Andrew Storey Fieldwork: Adam Harman & Alex Riemer Macroinvertebrate identification: Kim Nguyen, Bonita Clark, Simon Ward Report: Jess Delaney & Sue Davies Internal review: Andrew Storey External Experts Chironomidae taxonomy: Dr Don Edward (The University of Western Australia) Acknowledgements This project was undertaken by Wetland Research & Management (WRM) on behalf of LandCorp. WRM would like to thank the Department of Water staff in Kununurra for logistical support, in particular Duncan Palmer and Luke Donovan. We would also like to thank Helen Larson, Richard George and Don Bennett for constructive discussions, and Deb Pearce, Peter Stubbs and Helen Larson for comments on the draft report. Water and sediment sample analyses were conducted by the ChemCentre W.A. Recommended Reference Format WRM (2014). ORIA Stage II – Keep River Baseline Aquatic Fauna and Targeted Sawfish Survey September/October 2013. Unpublished report to LandCorp prepared by Wetland Research & Management.
    [Show full text]
  • Downloaded from Brill.Com10/02/2021 12:14:41PM Via Free Access T  E,  142, 1999
    WOLFGANG SPEIDEL & WOLFRAM MEY Museum für Naturkunde, Humboldt-Universität, Berlin CATALOGUE OF THE ORIENTAL ACENTROPINAE (LEPIDOPTERA, CRAMBIDAE) Speidel, W. & W. Mey, 1999. Catalogue of the Oriental Acentropinae (Lepidoptera, Cram- bidae). – Tijdschrift voor Entomologie 142: 125-142, figs.1-3. [ISSN 0040-7496]. Published 22 September 1999. The catalogue contains all taxa of Acentropinae (= Nymphulinae) described from the Oriental Region with the references for every taxon. There are many new generic combinations for which the catalogue should be consulted. New synonyms: Neoschoenobia decoloralis Hampson, 1919 is a new junior synonym of Neoschoenobia testacealis Hampson, 1900; Cataclysta dohrni Hering, 1903 and Ephormotris oc- topis Meyrick, 1933 are new junior synonyms of Ephormotris dilucidalis Guérin-Méneville, [1832] 1829-1858 (Botys) comb. n. Oligostigma tripunctalis Snellen, 1876 is a junior primary homonym of Oligostigma tripunctalis Walker, [1866] 1865. This and the replacement name Aulacodes klimai Bryk, 1937 are new junior synonyms of Eoophyla parapomasalis Hampson, 1897 (Aulacodes) comb. n.; Oligostigma auropunctalis var. javanica Strand, 1914 is a new junior synonym of Eoophyla excisalis Snellen, 1901 (Oligostigma) comb. n.; Oligostigma hapilistale Strand, 1919 is a new junior synonym of Strepsinoma croesusalis Walker, 1859 (Cataclysta); Stenicula Snellen, 1901 and Micromania Swinhoe, 1894 (junior homonym of Micromania Christoph, 1893) are provisionally treated as new junior synonyms of Paracymoriza Warren, 1890; Paraponyx [sic] rugosalis Möschler, 1890 is a new junior synonym of Parapoynx fluctuos- alis Zeller, 1852 (Nymphula). Corespondence: W. Speidel, Humboldt-Universität zu Berlin, Museum für Naturkunde, In- validenstr. 43, D-10115 Berlin. Germany. E-mail: [email protected] Key-words. – Pyraloidea; Crambidae; Acetropinae; Nymphulinae; catalogue; Oriental region The Acentropinae belong to the pyraloid family or catalogues.
    [Show full text]
  • Freshwater Animal Diversity Assessment Developments in Hydrobiology 198
    Freshwater Animal Diversity Assessment Developments in Hydrobiology 198 Series editor K. Martens Freshwater Animal Diversity Assessment Edited by E.V. Balian1,C.Le´veˆque2, H. Segers1 & K. Martens3 1Belgian Biodiversity Platform, Freshwater Laboratory, Royal Belgian Institute of Natural Sciences, Vautierstraat 29 B-1000, Brussels, Belgium 2Antenne IRD, MNHN-DMPA, 43 rue Cuvier, Case Postale 26, Paris cedex 05 75231, France 3Freshwater Laboratory, Royal Belgian Institute of Natural Sciences, Vautierstraat 29 B-1000, Brussels, Belgium; Department of Biology, University of Ghent, K.L. Ledeganckstraat 35, Gent 9000, Belgium Reprinted from Hydrobiologia, Volume 595 (2008) 123 Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN-13: 978-1-4020-8258-0 Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands Cite this publication as Hydrobiologia vol. 595 (2008). Cover illustration: A few inhabitants of fresh water. (clockwise from top left): Simulium arcticum (larva) - photo by Michael Spironello; Crangonyx richmondensis - photo by Jonathan Witt; Protorthemis coronata - photo by Vincent J Kalkman; Altolamprologus calvus (Chisanse) - photo by Ad Konings Frontispiece: Diadeco Bild & Produktionsbyra˚, Sweden Printed on acid-free paper All Rights reserved Ó 2008 Springer No part of this material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Printed in the Netherlands TABLE OF CONTENTS Colour section ix, xiv–xvi Foreword R.J. Naiman 1–2 An introduction to the Freshwater Animal Diversity Assessment (FADA) project E.V.
    [Show full text]
  • Order Family Subfamily Genus Species Subspecies Author Year Series Region Units Lepidoptera Crambidae Acentropinae Acentria Ephe
    Order Family Subfamily Genus species subspecies author year series region units Lepidoptera Crambidae Acentropinae Acentria ephemerella (Denis & Schiffermüller) 1C, 1D Nearctic, Palearctic trays Lepidoptera Crambidae Acentropinae Anydraula glycerialis (Walker) 1D Australasian trays Lepidoptera Crambidae Acentropinae Argyractis berthalis (Schaus) 1C Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis dodalis Schaus 1B Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis elphegalis (Schaus) 1B Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis flavalis (Warren) 1B Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis iasusalis (Walker) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis paulalis (Schaus) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis sp. 1C, 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis tetropalis Hampson 1D African trays Lepidoptera Crambidae Acentropinae Argyractis triopalis Hampson 1D African trays Lepidoptera Crambidae Acentropinae Argyractoides catenalis (Guenée 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractoides chalcistis (Dognin) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractoides gontranalis (Schaus) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Aulacodes acroperalis Hampson 1D Australasian trays Lepidoptera Crambidae Acentropinae Aulacodes adiantealis (Walker) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Aulacodes aechmialis Guenée 1D Neotropical trays Lepidoptera
    [Show full text]