다양한 Evtol 유형별 호버 효율, 회전판 하중 및 필요 배터리 비에너지 분석 Analyses of Hover Lift Efficiency, Disc Loading and Required Battery Specific Energy for Various Evtol Types

Total Page:16

File Type:pdf, Size:1020Kb

다양한 Evtol 유형별 호버 효율, 회전판 하중 및 필요 배터리 비에너지 분석 Analyses of Hover Lift Efficiency, Disc Loading and Required Battery Specific Energy for Various Evtol Types 항공 우주 해상 J. Adv. Navig. Technol. 25(3): 203-210, Jun. 2021 다양한 eVTOL 유형별 호버 효율, 회전판 하중 및 필요 배터리 비에너지 분석 Analyses of Hover Lift Efficiency, Disc Loading and Required Battery Specific Energy for Various eVTOL Types 김 동 희1 · 장 한 용2 · 황 호 연3* 1세종대학교 물리천문학과, 항공우주공학과 2세종대학교 항공우주공학과 3*세종대학교 항공우주공학과, 지능형드론 융합전공학과 Dong-Hee Kim1 · Han-Yong Jang2 · Ho-Yon Hwang3* 1Department of Physics and Astronomy, and Department of Aerospace Engineering, Sejong University, Seoul, 05006, Korea 2Department of Aerospace Engineering, Sejong University, Seoul, 05006, Korea 3*Department of Aerospace Engineering, and Department of Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, Korea [요 약] 전 세계의 많은 대도시는 도시화에 따른 지상 및 지하 교통망이 포화되고 있다. 또한 지구온난화 방지를 위한 탄소배출 규제가 더욱 엄격해지고 있으며 이러한 문제의 해결책으로 복잡한 도심에서도 운행 가능한 eVTOL이 차세대 친환경 교통수단으로 각광 받고 있다. 본 연구에서는 eVTOL을 멀티콥터형, 양력+순항형, 추력편향형으로 분류하여 각 유형별 eVTOL들의 호버 효율과 회전 판 하중을 계산하였으며 공력해석 프로그램인 OpenVSP, Fluent와 JavaProp을 이용하여 각국의 감항당국 및 우버 사에서 발표한 보 고서를 바탕으로 가까운 미래에 실현될 eVTOL의 원활한 운행에 필요한 배터리 비에너지를 계산하고 분석하였다. [Abstract] In many metropolitan cities around the world, ground and underground transportation networks are saturated due to urbanization. In addition, regulations on carbon emissions to prevent global warming are becoming stricter, and eVTOL, which will be operating in complex cities, is gaining popularity as the next generation of eco-friendly transportation. In this study, the hover lift efficiency and disc loading of eVTOLs for each type were calculated by classifying eVTOLs into following types: multicopter, lift+cruise, and vectored thrust. In addition, using the aerodynamic analysis programs OpenVSP, Fluent and Javaprop, the specific battery energy required for the smooth operation of eVTOL, which will be realized in the near future, was calculated and analyzed base on reports published by Uber and airworthiness authorities of each country. Key word : Aircraft hovering, Aircraft power, Battery specific energy, eVTOL, UAM, Urban air mobility. https://doi.org/10.12673/jant.2021.25.3.203 Received 1 June; Revised 9 June 2021 Accepted (Publication) 25 June (30 June 2021) This is an Open Access article distributed under the terms of the Creative Commons Attribution *Corresponding Author: Ho-Yon Hwang Non-CommercialLicense(http://creativecommons .org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the Tel: +82-2-3408-3773 original work is properly cited. E-mail: [email protected] Copyright ⓒ 2021 The Korea Navigation Institute 203 www.koni.or.kr pISSN: 1226-9026 eISSN: 2288-842X J. Adv. Navig. Technol. 25(3): 203-210, Jun. 2021 Ⅰ. 서 론 전 세계 각국의 급격한 산업화에 따른 화석 연료 사용 1-2 eVTOL 유형 으로 탄소배출이 기하급수적으로 증가하여 지구온난화가 인류의 큰 문제로 다가오고 있다. 세계 각국은 이를 해결 eVTOL유형은 아직 규격화되지 않아 여러 방법으로 하기 위하여 전기차 장려와 함께 내연기관의 종말을 선 분류할 수 있다. 본 연구에서는 추력편향(vectored thrust) 언하는 등 여러 노력을 하고 있다[1]. 또한 현재 전 세계 이 없고 수직이착륙과 순항에 쓰이는 추력기(thruster)가 는 인구의 도시화가 가속화되는 중이며, 2050년에 이르러 분리되어 있는 양력 + 순항(lift + cruise) 방식과 고정익 서는 지구 인구 98억 명 중 68%인 약 66.6억 명이 도시 없이 회전익으로 구성된 멀티콥터(multicopter) 방식, 틸트 지역에 거주할 것으로 예상된다[2]. 이에 따라 도심 지역 로터(tiltrotor), 틸트날개(tiltwing)로 구성된 추력편향 방식 의 지상, 지하 교통망은 포화 상태에 도달하여 수요를 감 으로 분류하였다. 이 때 수직이착륙에만 쓰이는 추력기가 당하지 못할 것이고, 이러한 이유들로 최근 육상 교통수 있더라도 추력편향을 하는 추력기가 있다면 추력편향 방 단이 아닌 새로운 3차원 교통수단인 eVTOL (electric 식으로 분류하였다. vertical takeoff and landing)이 각광받고 있다. 1-1 eVTOL 개발 동향 Ⅱ. eVTOL 선정 및 제원 UAM (urban air mobility) 시장은 최근 몇 년간 급격 본 연구에서 분석할 eVTOL은 유인 여객용을 목적으 한 성장세를 보여 현재 전 세계적으로 100개가 넘는 로 하며, 이미 시제기가 나왔거나 어느 정도 청사진이 공 UAM기업이 있으며(그림 1)[3], 개발되었거나 개발 예정 개되어 MTOW (maximum take off weight)와 순항속도, 인 UAM 프로젝트가 300개를 넘어섰다[4]. 이 중 95개의 순항거리 등 분석에 필요한 최소한의 정보가 있는 기체 프로젝트가 여객용 eVTOL 개발에 중점을 두고 있다(그 로 선정하였다. 조건에 부합하는 eVTOL로 멀티콥터형 5 림 2). 또한 UAM 시장의 선두주자가 되기 위하여 미연 개, 양력 + 순항형 4개, 추력편향형 6개 총 15개의 기체 방항공청(FAA; federal aviation administration)은 14 CFR 를 선정하여 표 1에 정리하였다. 여기서 EASA가 제정한 Part 23의 세부 규정 중 eVTOL에 관한 규정을 개정하고 SC-VTOL-01 Issue 1에 따르면 소형급 VTOL 항공기의 [5], 유럽연합항공안전청(EASA; european aviation safety MTOW는 3,175 kg이하이며 총 승객 좌석 수는 9석 이하 agency)은 SC-VTOL에 관한 규정을 제정하는 등[6] 각국 여야 하는데[6], 표 1의 기체들은 이 조건을 모두 만족함 의 감항당국들은 발 빠르게 움직이고 있다. 을 확인할 수 있다. 표 1. 선정된 eVTOL 목록 Table 1. Selected eVTOL list. Name Company Category MTOW (kg) Passengers Ehang 184 Ehang Multicopter 360[4] 1 Ehang 216 Ehang Multicopter 650[7] 2 CityAirbus Airbus Multicopter 2,200[8] 5 Volocopter 2X Volocopter Multicopter 450[4] 2 Volocity Volocopter Multicopter 900[4] 2 그림 1. 글로벌 UAM 레이더[3] Aurora Boeing Lift + Cruise 800[4] 2 Fig. 1. The global urban air mobility radar[3]. TF-2A Terrafugia Lift + Cruise 1,200[4] 3 Wisk (Kitty Cora Lift + Cruise 1,224[9] 2 Hawk) Beta ALIA Lift + Cruise 2,722[10] 6 Technologies Acubed Vahana Vectored Thrust 815[4] 2 Airbus Nexus 4EX Bell Vectored Thrust 3,175[4] 5 S4 Joby Vectored Thrust 2,177[4] 5 Lilium Jet Lilium Vectored Thrust 3,175[11] 7 S-A1 Hyundai Vectored Thrust 3,125[4] 5 그림 2. 글로벌 전기 추진 레이더[3] Maker Archer Vectored Thrust 1,508[12] 2 Fig. 2. The global electric propulsion radar[3]. https://doi.org/10.12673/jant.2021.25.3.203 204 다양한 eVTOL 유형별 호버 효율, 회전판 하중 및 필요 배터리 비에너지 분석 하여 들어오는 공기의 질량유량, 는 정상상태에 도달 한 공기의 속력, 는 디스크를 지나는 공기의 속력, 는 호버링 시 추력, 는 호버링 시 총 디스크 면적, 는 호버링 시 대기밀도이다. 이 때 는 대기온도 288 K, 해수면을 기준으로 하였다. 식 (1), (2), (3)을 조합하여 를 다음과 같이 나타낼 수 있다. (4) ∙ 2) 덕티드 팬 그림 3. VTOL 항공기들의 회전판 하중과 호버 효율간의 관계[13] 덕티드 팬의 경우 덕트에 의하여 호버링 시 유동 면적 Fig. 3. Correlation between disc loading and hover lift efficiency for various VTOL aircraft[13]. 이 제한되며 와 가 같아진다. 따라서 덕티드 팬의 호버링 파워는 다음과 같이 구할 수 있다[11]. Ⅲ. 호버 효율 및 회전판 하중 해석 (5) 회전판 하중(disc loading)은 전체 로터 디스크 면적에 ∙ (6) 대한 MTOW의 비율이다. 회전판 하중이 클수록 로터의 속도를 유지하는데 더 많은 전력이 필요하다 일반적으로 . 회전판 하중과 호버 효율은 반비례 한다. 회전판 하중을 ∙ (7) 줄이기 위하여 프로펠러 직경을 키운다면 호버 효율은 좋아지겠지만 돌풍에 더 민감해지거나 블레이드 익단 속 도 및 소음 제어에 제약이 생길 수 있으며 순항 속도에 여기서 는 호버링 시 총 디스크 면적, 는 호버링 도 영향을 미칠 수 있다. 또한 우버(uber) 사에서 발표한 시 노즐 출구비, 는 노즐 출구비가 1일 때의 총 디스 에어택시 크기의 상한선인 FAA의 상용항공운송 목적의 크 면적이다. 가변노즐 덕트의 경우 호버링 시 디스크 면 헬리포트 TLOF (touchdown and lift off) 규격[14]을 벗 적을 넓히기 위하여 출구비가 1보다 커지고, 순항 시에는 어날 수도 있다. 일반적인 VTOL 항공기의 호버 효율과 1보다 작아진다[11]. 회전판 하중 사이의 관계를 그림 3에 나타내었다. 3) 동축 반전 오픈 로터 3-1 호버링 파워 동축 반전 오픈 로터의 호버링 파워는 다음과 같이 계 산할 수 있다[16]. 호버 효율은 호버링 파워를 이용하여 구할 수 있다. 의 호버링 파워 계산은 크게 단일 오픈 로터인 경우 VTOL (8) 와, 덕티드 팬이 부착된 경우, 동축 반전 오픈 로터인 경우 로 나뉘며 다음과 같이 계산할 수 있다. 여기서 는 유도 동력 계수이다. 1) 단일 오픈 로터[15] 를 계산하는 방법은 여러 방법이 있지만, 본 연구에 서는 분리된 두 로터와 토크 균형에 필요한 추력을 고려 (1) 하여 를 1.266으로 가정하였다[16]. ∙ (2) 3-2 호버 효율 및 회전판 하중 (3) 실제 호버링 파워를 구하기 위해서는 식 (4),(7),(8)에 호버링 총 효율 를 곱해주어야 한다. 이 때 오픈 로 여기서 는 호버링 파워, 는 호버링 시 디스크를 통 터의 경우 는 다음과 같다. 205 www.koni.or.kr J. Adv. Navig. Technol. 25(3): 203-210, Jun. 2021 × × × (9) 여기서 는 팬 효율, 은 모터 효율, 는 파워일렉트 로닉스 효율, 는 배터리 효율이다. 덕티드 팬의 경우 는 다음과 같다. × × × × (10) 여기서 는 덕트 효율이다. 의 경우 임무 수행 상태에 따라 0.7~0.9의 값을 갖 으며 는 0.9~0.95, 는 0.95~0.98, 는 0.8~0.98, 는 0.92~0.96의 값을 갖는다. 이 때 는 호버링 시 순항 상태와 비교하여 다소 낮은 효율을 보이며 마찬가지로 호버링 시 고출력이 필요하므로 , , 도 낮은 효 율을 보인다. 하지만 정지추력 보상이 있어 호버링에 유 리한 덕티드 팬의 경우 는 호버링 시 가장 높은 효율 을 보인다[11][17]. 식 (4), (7), (8), (9), (10)을 이용하여 표 1의 eVTOL들 의 호버링 파워 및 호버 효율, 회전판 하중을 계산하여 표 2에 나타내었다. 또한 호버 효율 및 회전판 하중을 그 림 4에 나타내었다. 이 때 덕티드 팬이 있는 경우 기체이 름 밑에 표기를 하여 구분하였다. 추력편향형 eVTOL의 경우 추력편향 방식을 틸트 로터와 틸트 윙으로 구분하 였으며 수직이착륙에만 쓰이는 로터가 있을 경우도 구분 하였다. 그림 4. eVTOL의 회전판 하중과 호버 효율간의 관계 Fig. 4. Correlation between disc loading and hover lift efficiency 표 2. eVTOL 호버링 파워 및 호버 효율, 회전판 하중 for various eVTOL. Table 2. eVTOL hovering power, efficiency and disc loading. Hovering power Hover lift efficiency Disc loading Name (kW) (kg/kW) (kg/m²) Ⅳ.
Recommended publications
  • Cost Analysis of Evtol Configuration Design for an Air Ambulances System in Japan
    Purdue University Purdue e-Pubs CESUN Conference Cost Analysis of eVTOL Configuration Design for an Air Ambulances System in Japan Yusuke Mihara Keio University Payuhavorakulchai Pawnlada Keio University Aki Nakamoto Keio University Tsubasa Nakamura Keio University Masaru Nakano Keio University Follow this and additional works at: https://docs.lib.purdue.edu/cesun Mihara, Yusuke; Pawnlada, Payuhavorakulchai; Nakamoto, Aki; Nakamura, Tsubasa; and Nakano, Masaru, "Cost Analysis of eVTOL Configuration Design for an Air Ambulances System in Japan" (2021). CESUN Conference. 3. https://docs.lib.purdue.edu/cesun/cesun2020/papers/3 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Cost Analysis of eVTOL Configuration Design for an Air Ambulance System in Japan Yusuke Mihara Payuhavorakulchai Pawnlanda Aki Nakamoto Dept. of System Design and Dept. of System Design and Dept. of System Design and Management Management Management Keio University Keio University Keio University Yokohama, Japan Yokohama, Japan Yokohama, Japan [email protected] [email protected] [email protected] Tsubasa Nakamura Masaru Nakano Dept. of System Design and Dept. of System Design and Management Management Keio University Keio University Yokohama, Japan Yokohama, Japan [email protected] [email protected] Abstract—Electric-vertical-takeoff-and-landing (eVTOL) cost per seat mile by 26% compared to helicopters [3]. The aircraft, known as urban air mobility or flying cars, are being safety of air EMS (Emergent Medical Services)will also be considered for widespread use as air taxis, emergency medical further increased by the development of flight controls, sense- transportation, sightseeing vehicles, and rural transportation, and-avoid technologies, and fully autonomous aircraft, owing to their reduced-size, low-cost, and low-noise consequently reducing the current problem of a high crash rate characteristics.
    [Show full text]
  • Air Taxi SOLUTIONS GLENAIR
    GLENAIR • JULY 2021 • VOLUME 25 • NUMBER 3 LIGHTWEIGHT + RUGGED Interconnect AVIATION-GRADE Air Taxi SOLUTIONS GLENAIR Transitioning to renewable, green-energy fuel be harvested from 1 kilogram of an energy source. would need in excess of 6000 Tons of battery power much of this work includes all-electric as well as sources is an active, ongoing goal in virtually every For kerosene—the fuel of choice for rockets and to replace its 147 Tons of rocket fuel. And one can hybrid designs that leverage other sources of power industry. While the generation of low-carbon- aircraft—the energy density is 43 MJ/Kg (Mega only imagine the kind of lift design that would be such as small form-factor kerosene engines and footprint energy—from nuclear, natural gas, wind, Joules per kilogram). The “energy density” of the required to get that baby off the ground. hydrogen fuel cells. and solar—might someday be adequate to meet our lithium ion battery in the Tesla, on the other hand, And therein lies the challenge for the nascent air Indeed, it may turn out that the most viable air real-time energy requirements, the storage of such is about 1 MJ/kg—or over 40 times heavier than jet taxi or Urban Air Mobility (UAM) industry. In fact, the taxi designs are small jet engine configurations energy for future use is still a major hurdle limiting fuel for the same output of work. And yet the battery only realistic circumstance in which eVTOL air taxis augmented with backup battery power, similar in the wholesale shift to renewable power.
    [Show full text]
  • A Review of Current Technology and Research in Urban On-Demand Air Mobility Applications
    Delft University of Technology A review of current technology and research in urban on-demand air mobility applications Polaczyk, Nicholas; Trombino, Enzo; Wei, Peng; Mitici, Mihaela Publication date 2019 Document Version Accepted author manuscript Published in 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium 2019 Citation (APA) Polaczyk, N., Trombino, E., Wei, P., & Mitici, M. (2019). A review of current technology and research in urban on-demand air mobility applications. In 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium 2019 (pp. 333-343). Vertical Flight Society. Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. A Review of Current Technology and Research in Urban On-Demand Air Mobility Applications Dr. Mihaela Mitici, Ph. D Nicholas Polaczyk Enzo Trombino Dr. Peng Wei, Ph. D Assistant Prof. Aerospace BSc. Student Aerospace BSc. Student Aerospace Assistant Prof. Aerospace Engineering Engineering Engineering Engineering Delft University of Iowa State University Iowa State University Iowa State University Technology Ames, Iowa, United States Ames, Iowa, United States Ames, Iowa, United States Delft, the Netherlands ABSTRACT The purpose of this report is to summarize the current technology and challenges facing the market for eVTOL aircraft for urban on-demand air mobility applications.
    [Show full text]
  • White Paper on Urban Air Mobility Systems
    Table of Content Abstract.................................................................................................................1 Chapter 1 The UAM Concept................................................................... 2 Proposed Basic UAM Structure.....................................................................................3 Key components:........................................................................................................... 3 Command-and-Control Platform............................................................................... 9 Navigation and Positioning System.........................................................................10 Base Points.................................................................................................................... 10 Interface......................................................................................................................... 11 Key UAM Characteristics...............................................................................................12 What makes UAM a viable new transportation mode?..........................................13 Key differences between UAM and the current airline model.........................13 Key differences between AAVs and UAVs............................................................14 Key differences between AAVs and helicopters................................................. 14 Key advantages of UAM vs. existing ridesharing................................................15 Competition
    [Show full text]
  • Lilium Reveals New Air Taxi As It Celebrates Maiden Flight
    Lilium reveals new air taxi as it celebrates maiden flight Lilium Jet is the world’s first all-electric jet-powered five-seater air taxi Capable of traveling up to 300km in just 60 minutes, with zero operating emissions Lilium will manufacture and operate the Lilium Jet as part of a revolutionary on-demand air taxi service Munich 16 May 2019: Lilium, the Munich-based startup developing a revolutionary on- demand air taxi service, today revealed its new five-seater air taxi prototype for the first time. The unveiling of the new Lilium Jet came as the all-electric aircraft completed its maiden flight in the skies over Germany earlier this month. The full-scale, full-weight prototype is powered by 36 all-electric jet engines that allow it to take-off and land vertically, while achieving remarkably efficient horizontal, or cruise, flight. The simplicity of the aircraft design, with no tail, no rudder, no propellers, no gearbox and only one moving part in the engine not only contributes to the safety and affordability of the aircraft, but it has also allowed the design team to focus their efforts on creating a magical customer experience in the cabin, from panoramic windows to gull-wing doors. Celebrating the landmark, Daniel Wiegand, co-founder and CEO, said: “Today we are taking another huge step towards making urban air mobility a reality. In less than two years we have been able to design, build and successfully fly an aircraft that will serve as our template for mass production. Moving from two to five seats was always our ambition as it enables us to open up the skies to many more travelers.
    [Show full text]
  • Wh/Kg Batteries
    Technical and Environmental Assessment of All-Electric 180-Passenger Commercial Aircraft by Albert Reuben Gnadt B.S. Mechanical Engineering, University of Wisconsin-Madison, 2015 Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2018 @ Massachusetts Institute of Technology 2018. All rights reserved. Signature redacted A u th o r................................................................................................................................. Department of Aeronautics and Astronautics February 1, 2018 Signature redacted C ertified by ................................................................ ... Sleven R. H. Barrett Associate Professor, Aeronautics and Astronautics Thesis Supervisor Signature redacted Accepted by.......................................... .................... Hamsa Balakrishnan MASSACHUSETS INSTITUTE OF TECHNOLOGY Associate Professor, Aeronautics and Astronautics Chair, Graduate Program Committee MAR 12 2019 LIBRARIES ARCHIVES 2 Technical and Environmental Assessment of All-Electric 180-Passenger Commercial Aircraft by Albert Reuben Gnadt Submitted to the Department of Aeronautics and Astronautics on February 1, 2018 in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract Aviation emissions contribute to climate change, and all-electric aircraft offer an opportunity
    [Show full text]
  • Electric Aircraft Start to “Amp” Up!
    JANUARY 2020 ELECTRIC AIRCRAFT START TO “AMP” UP! 1 By Erin I. Rivera According to Richard Branson, “If you want to be a millionaire, start with a billion dollars and launch a new airline.” This is one of those “funny because it’s true” sayings. The idea applies equally to most new undertakings in aviation, including the design, certification and manufacture of a new aircraft. In this article, we will examine one of the most ambitious initiatives in modern aviation: electric aircraft and urban air mobility. We aim to update readers on current developments in electric and hybrid-electric aircraft as well as examine what we can expect from the first generation of eco-friendly aircraft. We will also take a look into electric Vertical Take-Off and Landing (eVTOL) aircraft and the developments occurring in Urban Air Mobility (UAM). Finally, we discuss the Federal Aviation Administration’s (FAA) certification process, its application to eVTOL aircraft and the certification challenges applicable to eVTOL aircraft currently in development. The High Cost of Business as Usual One of the main barriers to aviation innovation has been the aircraft certification process, which often stopped dead innovation in aircraft design before it even left the drawing board. The Federal Aviation Administration’s (FAA) certification regulations – which provide IKEA®-like, step-by-step instructions for building, designing and testing an aircraft – often penalize the introduction of new technology. If the aircraft design or technology does not fall squarely within the certification regulations, then designers can expect to incur additional time and cost to satisfy the FAA’s inquisition (e.g., Issue Paper process, Equivalent Level of Safety (ELOS), Special Conditions).
    [Show full text]
  • TVF WG 2 Technical Report
    PREPUBLICATION COPY Subject to Further Editorial Correction COMMERCIAL INTRA-CITY ON-DEMAND ELECTRIC-VTOL STATUS OF TECHNOLOGY Graphic art from Uber Anubhav Datta Associate Professor University of Maryland at College Park AN AHS/NARI TRANSFORMATIVE VERTICAL FLIGHT WORKING GROUP-2 REPORT January 15, 2018 1 FY 2017 TVF Working Group-2: Commercial Intra-city ANUBHAV DATTA, University of Maryland, Chair / WG Lead MIKE HIRSCHBERG, American Helicopter Society (AHS) Int. JOSEF KALLO, German Aerospace Center (DLR) SEAN ELBERS, Lockheed Martin SEAN WAKAYAMA, The Boeing Company JUAN ALONSO, Stanford University EMILIO BOTERO, Stanford University CANDICE CARTER, Kansas State University BRENT MILLS, U. S. Army Research Laboratory WANYI NG, University of Maryland ERIC TIJERINO, Self DETLEV KONIGORSKI, Airbus, Commercial Airplanes NIJO ABRAHAM, NASA Langley ERIC BARTSCH, Chanute Consulting CHRISTOPHER CADOU, University of Maryland CARL RUSSELL, NASA Ames FRANCISCO MARTINS, Embraer VALENTINI LUIZ, Embraer MATTHIAS STRACK, German Aerospace Center (DLR) 2 Preface Since August 2014, the American Helicopter Society (AHS) International has lead a series of workshops with the help of NASA, AIAA and SAE, on what it termed a Transformative Vertical Flight (TVF) initiative, to explore the potential, and track the development of, many emerging electric and hybrid-electric propulsion technologies that might enable and drive new forms of air transportation in the future. Air transportation is defined broadly, with both manned and un- manned operations within its scope, and both civilian and military operations. The primary emphasis was on the potential for on-demand air-taxi operations with vertiport-capable configurations and design. However the initiative also includes, with equal emphasis, the capability for commercial package delivery, and the delivery of strategic military assets.
    [Show full text]
  • The Promise of Energy-Efficient Battery-Powered Urban Aircraft
    The promise of energy-efficient battery-powered urban aircraft BRIEF REPORT Shashank Sripad and Venkatasubramanian Viswanathan Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 This manuscript was compiled on June 18, 2021 Improvements in rechargeable batteries are enabling several elec- generally with a fixed-wing, (3) Vectored Thrust, generally tric urban air mobility (UAM) aircraft designs with up to 300 miles of fixed-wing aircraft where the thrust providing system of the range with payload equivalents of up to 7 passengers. We find that aircraft is used both in vertical and forward flight by maneu- novel UAM aircraft consume between 130 Wh/passenger-mile up to vering the direction of thrust; can be further categorized into ∼1,200 Wh/passenger-mile depending on the design and utilization, (3a) Tilt-rotor, where rotors used in vertical flight tilt via relative to an expected consumption of over 220 Wh/passenger-mi rotating shafts to be used in forward flight, (3b) Tilt-wing, for terrestrial electric vehicles and 1,000 Wh/passenger-mile for com- where the tilting action is performed by wings onto which the bustion engine vehicles. We also find that several UAM aircraft de- rotors are attached, and (3c) Tilt-duct, similar to tilt-rotor but signs are approaching technological viability with current Li-ion bat- the thrust is generated by propellers that use rotors housed teries, based on the specific power-and-energy while rechargeability within cylindrical ducts, sometimes called ducted fans. and lifetime performance remain uncertain. These aspects highlight The power requirement in vertical flight is strongly influ- the technological readiness of a new segment of transportation.
    [Show full text]
  • Qell and Lilium Investor Presentation
    Investor Presentation — March 2021 Management Presentation Disclaimer This presentation is provided for informational purposes only and has been prepared to assist interested parties in making their own evaluation with respect to a potential business combination between Lilium GmbH (“Lilium” or the “Company”), Qell Acquisition Corp. (“Qell”) and the holding company that will acquire Lilium and Qell (“New Lilium”) in the proposed business combination and related transactions (the “Proposed Transaction”) and for no other purpose. Lilium, Qell and New Lilium are collectively referred to herein as the “Lilium Group”. No representations or warranties, express or implied, are given in, or in respect of, this presentation. To the fullest extent permitted by law, in no circumstances will the Lilium Group or any of their respective subsidiaries, shareholders, affiliates, representatives, partners, directors, officers, employees, advisers or agents be responsible or liable for any direct, indirect or consequential loss or loss of profit arising from the use of this presentation, its contents, its omissions, reliance on the information contained within it, or on opinions communicated in relation thereto or otherwise arising in connection therewith. Industry and market data used in this presentation have been obtained from third-party industry publications and sources, as well as from research reports prepared for other purposes that the Lilium Group believes are reasonable. The Lilium Group has not independently verified the data obtained from these sources and cannot assure you of the data’s accuracy or completeness, and this data is subject to change. This presentation does not purport to be exhaustive or to contain all the information that may be required to make a full analysis of the Lilium Group or the Proposed Transaction.
    [Show full text]
  • Opportunities and Challenges for Urban Air Mobility
    Opportunities and Challenges for Urban Air Mobility Professor R. John Hansman Director, MIT International Center for Air Transportation [email protected] MIT ICAT Urban Air Mobility • On Demand Air Mobility motivated by growing surface congestion, success of TNCs and perceived technology transfer from electric vehicles, UAVs and automation MIT ICAT Urban Air Mobility • UAM Markets – Intra-Urban – Inter-Urban Inter-Urban Intra-Urban MIT ICAT UAM Vehicles vs. MIT ICAT UAM Vehicles vs. MIT ICAT UAM Aircraft Development Over 2001 announced vehicle concepts (of varying credibility) Example Flying Full-Scale Prototypes Other Advanced Developments Airbus A^3 Vahana Opener Blackfly Vertical Aerospace Seraph Karem Bell Volocopter 2x Astro Aerospace Elroy Rolls-Royce eHang 216 Pipistrel Embraer Jaunt Air Mobility Kitty Hawk Heaviside Beta Technologies Ava XC Many Additional Vehicle Concepts Joby Aviation S4 Workhorse Surefly Airbus CityAirbus Kitty Hawk Cora LIFT Boeing PAV Lilium Lilium Jet HEXA 1. The Vertical Flight Society, The Electric VTOL News World eVTOL Directory. October 2019 MIT Case Study Approach to Identify UAM ICAT Operational Constraints (LAX, BOS, DFW) 1. Identified Promising Markets 3. Applied Notional ConOps* to Each Mission US Census Bureau OnTheMap • Current helicopter charter services • US census and commuting data *ConOps assessed conventional technologies as well as electric propulsion and pilot automation • Housing market data www.trulia.com Nelson & Rae 4. Identified Operational Challenges in Missions O – Malibu origin 2. Defined Reference Missions X – Century City destination n water route n direct route n increased speed route O – Malibu origin X – Century City destination Figure 1. Malibu to Century City flight profile development.
    [Show full text]
  • Air Budjets: a VTOL Virtual Operator Company in Portugal (Versão Corrigida Após Defesa)
    UNIVERSIDADE DA BEIRA INTERIOR Engenharia Air budJets: A VTOL virtual operator company in Portugal (Versão corrigida após defesa) Manuel Mendes Duarte Dissertação para obtenção do Grau de Mestre em Engenharia Aeronáutica (Ciclo de estudos integrado) Orientador: Prof. Doutor Jorge Miguel dos Reis Silva Covilhã, julho de 2019 i ii Para a minha família, iii iv “When Henry Ford made cheap, reliable cars, people said, 'Nah, what's wrong with a horse?' That was a huge bet he made, and it worked” Elon Musk v vi Agradecimentos Em primeiro lugar, agradeço ao Professor Jorge Reis Silva que desde muito cedo me acolheu no NIT e encaminhou-me ao longo desta etapa académica. Agradeço ainda à Engª. Emília Baltazar, que me ajudou constantemente, mostrou-me ferramentas e métodos importantes para a elaboração de artigos e da dissertação de mestrado. Ao Professor António José da Silva Pires, docente do Departamento de Gestão e Economia, por me ter recebido e partilhado conhecimentos e ferramentas para a elaboração de um plano de negócios. De modo a perceber a posição dos empresários da região da Covilhã e Castelo Branco sobre a necessidade de transportes na região, agradeço ao Eng.º Jorge Amaral da Mecalbi, à Eng.ª Lurdes Carvalho da Quinta dos Termos, à Dr.ª Giovana Cabral da Twintex e por fim à Dr.ª Maria Carlos do Associação Empresarial da Beira Baixa por me terem concedido tempo para os consultar e entrevistar. Quero ainda agradecer, de uma forma muito especial, à Engª Cláudia Pires, que me apoiou e acreditou em mim desde o início, por me ter ajudado em todos os trabalhos, pesquisas, projetos e na elaboração das aplicações que guiaram ao culminar desta etapa.
    [Show full text]