Opportunities and Challenges for

Professor R. John Hansman Director, MIT International Center for Air Transportation [email protected] MIT ICAT Urban Air Mobility

• On Demand Air Mobility motivated by growing surface congestion, success of TNCs and perceived technology transfer from electric vehicles, UAVs and automation MIT ICAT Urban Air Mobility

• UAM Markets – Intra-Urban – Inter-Urban

Inter-Urban

Intra-Urban MIT ICAT UAM Vehicles

vs. MIT ICAT UAM Vehicles

vs. MIT ICAT UAM Development

Over 2001 announced vehicle concepts (of varying credibility)

Example Flying Full-Scale Prototypes Other Advanced Developments Airbus A^3 Vahana Opener Blackfly Vertical Aerospace Seraph

Karem Bell

Volocopter 2x Astro Aerospace Elroy Rolls-Royce eHang 216 Pipistrel

Embraer Jaunt Air Mobility Kitty Hawk Heaviside Beta Technologies Ava XC

Many Additional Vehicle Concepts Joby Aviation S4 Workhorse Surefly Airbus CityAirbus

Kitty Hawk Cora

LIFT Boeing PAV Lilium Lilium Jet HEXA

1. The Vertical Flight Society, The Electric VTOL News World eVTOL Directory. October 2019 MIT Case Study Approach to Identify UAM ICAT Operational Constraints (LAX, BOS, DFW) 1. Identified Promising Markets 3. Applied Notional ConOps* to Each Mission

US Census Bureau OnTheMap

• Current helicopter charter services • US census and commuting data *ConOps assessed conventional technologies as well as electric propulsion and pilot automation • Housing market data www.trulia.com Nelson & Rae 4. Identified Operational Challenges in Missions

O – Malibu origin 2. Defined Reference Missions X – Century City destination n water route n direct route n increased speed route

O – Malibu origin X – Century City destination

Figure 1. Malibu to Century City flight profile development.

© 2016 Google Data LDEO-Columbia, NSF, NOAA SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat/Copernicus MIT UAM Operational Constraints ICAT Identified from City Case Studies

Constraints 1 Aircraft Noise and Community Acceptance 2 Availability of Takeoff and Landing Areas (TOLAs) 3 Scalability of Air Traffic Control (ATC) 4 Safety and Certification of Electric Aircraft Operations 5 Logistics of Network Operations 6 Pilot Availability and Advanced Autonomy 7 All-Weather Operation

Summary of Case Study Results: • P. D. Vascik and R. J. Hansman, “Constraint Identification in On-Demand Mobility for Aviation through an Exploratory Case Study of Los Angeles,” in 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017. • P. D. Vascik, R. J. Hansman, and N. S. Dunn, “Analysis of Urban Air Mobility Operational Constraints,” Manuscript Submitted for Publication, 2018. MIT UAM Operational Constraints ICAT Identified from City Case Studies

Constraints 1 Aircraft Noise and Community Acceptance 2 Availability of Takeoff and Landing Areas (TOLAs) 3 Scalability of Air Traffic Control (ATC) 4 Safety and Certification of Electric Aircraft Operations 5 Logistics of Network Operations 6 Pilot Availability and Advanced Autonomy 7 All-Weather Operation

Summary of Case Study Results: • P. D. Vascik and R. J. Hansman, “Constraint Identification in On-Demand Mobility for Aviation through an Exploratory Case Study of Los Angeles,” in 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017. • P. D. Vascik, R. J. Hansman, and N. S. Dunn, “Analysis of Urban Air Mobility Operational Constraints,” Manuscript Submitted for Publication, 2018. MIT Challenge to Site Infrastructure Near Demand ICAT Existing aviation infrastructure in Boston

Private Heliport Medical Heliport Airport Herb Chambers

WBZ Mass General Logan

Tufts

Brigham & Womens/ Boston Beth Israel Medical Center

Boston Globe MIT UAM Operational Constraints ICAT Identified from City Case Studies

Constraints 1 Aircraft Noise and Community Acceptance 2 Availability of Takeoff and Landing Areas (TOLAs) 3 Scalability of Air Traffic Control (ATC) 4 Safety and Certification of Electric Aircraft Operations 5 Logistics of Network Operations 6 Pilot Availability and Advanced Autonomy 7 All-Weather Operation

Summary of Case Study Results: • P. D. Vascik and R. J. Hansman, “Constraint Identification in On-Demand Mobility for Aviation through an Exploratory Case Study of Los Angeles,” in 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017. • P. D. Vascik, R. J. Hansman, and N. S. Dunn, “Analysis of Urban Air Mobility Operational Constraints,” Manuscript Submitted for Publication, 2018. MIT Current ATC Procedures Will Not Scale ICAT Controller Workload Constraint

São Paulo “helicontrol” Area Boston Logan Controlled Airspace – limited to 6 simultaneous helicopter – additional controller staffed for >3 operations15 operations – designated entry points and routes – designated helicopter routes

São Commuter Missions Air Taxi Missions Paulo Control Missions MIT ICAT ATC Surface Controlled Airspace BOS MIT ICAT ATC Surface Controlled Airspace BOS MIT Special Use Airspace ICAT Red Sox Game Example

Private Heliport Medical Heliport Airport Herb Chambers

WBZ Mass General Logan

Tufts

Brigham & Womens/ Boston Beth Israel Medical Center

Boston Globe MIT ATC Separation Standards ICAT For Terminal Area Operations

Aircraft Longitudinal Lateral Separation Req. Vertical Separation Req. Involved Separation Req.

IFR to IFR 1000 ft All classes up to 8 NM 3 NM

IFR to VFR 500 ft Class: B,C Radar Target up to 8 NM Resolution

IFR to 1000 ft N/A Obstruction 3 NM Tower or Pilot Visual “pass well clear” “pass well clear” “see and avoid” Separation “see and avoid” “see and avoid” Class: B,C,D MIT ICAT BOS Runway 4R IFR Separation Zone

Private Heliport Medical Heliport Airport Herb Chambers

WBZ Mass General Logan

Tufts

Brigham & Womens/ Boston Beth Israel Medical Center

Boston Globe MIT Controlled Airspace Cutout Example ICAT New York SFRA Example

New York Airspace Cutout MIT Impact of ATC Scenarios on Magnitude of Constraint ICAT San Francisco MSA Fully Static VFR Cutout & Segregated SUA Access

Accessible Population: 48% Accessible Population: 86% Accessible Commuter Residences: 57% Accessible Commuter Residences: 90% Accessible Commuter Workplaces: 24% Accessible Commuter Workplaces: 86% MIT ATC Restriction Analysis of US Major ICAT Metropolitan Statistical Areas

PhD Thesis of Parker Vascik MIT ATC Restriction Analysis of US Major ICAT Metropolitan Statistical Areas Population Coverage

Workplace Coverage PhD Thesis of Parker Vascik MIT UAM Operational Constraints ICAT Identified from City Case Studies

Constraints 1 Aircraft Noise and Community Acceptance 2 Availability of Takeoff and Landing Areas (TOLAs) 3 Scalability of Air Traffic Control (ATC) 4 Safety and Certification of Electric Aircraft Operations 5 Logistics of Network Operations 6 Pilot Availability and Advanced Autonomy 7 All-Weather Operation

Summary of Case Study Results: • P. D. Vascik and R. J. Hansman, “Constraint Identification in On-Demand Mobility for Aviation through an Exploratory Case Study of Los Angeles,” in 17th AIAA Aviation Technology, Integration, and Operations Conference, 2017. • P. D. Vascik, R. J. Hansman, and N. S. Dunn, “Analysis of Urban Air Mobility Operational Constraints,” Manuscript Submitted for Publication, 2018. MIT ICAT UAM Aircraft Development

Over 2001 announced vehicle concepts (of varying credibility)

Example Flying Full-Scale Prototypes Other Advanced Developments Airbus A^3 Vahana Opener Blackfly Vertical Aerospace Seraph

Karem Bell

Volocopter 2x Astro Aerospace Elroy Rolls-Royce eHang 216 Pipistrel

Embraer Jaunt Air Mobility Kitty Hawk Heaviside Beta Technologies Ava XC

Many Additional Vehicle Concepts Joby Aviation S4 Workhorse Surefly Airbus CityAirbus

Kitty Hawk Cora

LIFT Boeing PAV Lilium Lilium Jet HEXA

1. The Vertical Flight Society, The Electric VTOL News World eVTOL Directory. October 2019 MIT ICAT Broad Range of Vehicle Architectures

Actuating Hybrid Static Hybrid Rotor Lift Lift Lift Wing Lift

Few Propulsors

(1-3) google.com pipistrel.si elytronaircraft.com cartercopters.com Helicopter Tilt-lift Static Hybrid Fixed Wing Rotorcraft

Many Propulsors (4+) √ aurora.aero volocopter.com jobyaviation.com nasa.gov Multirotor DEP Tilt-lift Stopped Rotor DEP Fixed Wing

Multirotor DEP Powered Lift Fixed Wing Multirotor and DEP Powered Lift most widely proposed for UAM applications MIT Certification Challenges for Electric UAM ICAT Configurations

Risk Severity= Probability x Consequence High, Medium, Low Hazard Description Multirotor DEP Powered Lift Rotorcraft Fixed Wing

Common Mode Power Medium/ Failure High/High High/Medium Medium/Medium Medium (Low-/High-Altitude)

Battery Thermal Runaway High High High High Battery Energy Uncertainty High High Medium Medium Fly-By-Wire System Failure High High* Low** Low Bird Strike Medium Medium Medium Medium High-Level Autonomy High High High High Failure

The severity of some challenges changes with configurations MIT ICAT Hybrid Electric SSTOL Alternative

30% scale flight demonstrator of a 4 passenger, 2700 lb blown wing aircraft with <100 ft takeoff/landing distance

Takeoff Landing Distance < 100 ft

Unblown Stall Speed < 60kts

Distributed Electric Propulsion Blown Wing for High CL

Hybrid Electric Batteries Sized for TO&L Surge Engine Sized for Cruise Uber 2019 Elevate Conf. MIT ICAT MIT Beaverworks Prototype

Vehicle designed and built by 16.82 class in SY 2018-2019 MIT ICAT Subscale SSTOL Protoype

Flight demonstrator shows that high lift (CL > 10)is achievable in real-world flight environment but that there are control challenges to be addressed. MIT ICAT UAM V1