Oxidation of Long-Chain N-Alkanes by Mutants of a Thermophilic Alkane-Degrading Bacterium: Thermus Sp. ATN1
Total Page:16
File Type:pdf, Size:1020Kb
Oxidation of long-chain n-alkanes by mutants of a thermophilic alkane-degrading bacterium: Thermus sp. ATN1 Dem Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von José Luis García Ojeda aus Parral, Chihuahua, Mexiko 2013 Gutachter: 1. Prof. Dr. rer. nat. Rudolf Müller 2. Prof. Dr.-Ing. Wolfgang Calmano Tag der mündlichen Prüfung: 5. April 2013 TUBdok der Universitätsbibliothek der TU Hamburg-Harburg urn:nbn:de:gbv:830-tubdok-12557 Abstract In this work, mutants of the thermophilic bacterium, Thermus sp. ATN1, capable to de- grade long-chain n-alkanes at 70°C, have been constructed by classical mutagenesis. Long-chain n-alkanes were converted constitutively by these mutants to long-chain alde- hyde intermediates, mono- and dicarboxylic acids. Additionally, the gene encoding an alcohol dehydrogenase, suspected to be involved in the metabolism of long-chain n-alkanes in this strain, was disrupted by homologous re- combination in an attempt to create mutants producing terminally di-hydroxylated com- pounds. Only fatty acids were obtained. Over-oxidation of the alcohol products by the alkane monooxygenase complex in this strain or the presence of another alcohol dehy- drogenase are proposed as explanation for these results. Nevertheless, the constructed mutants were capable to produce long-chain α,ω- dicarboxylic acids with up to 28 carbon atoms by bioconversion of the corresponding n- alkanes and it is expected that saturated substrates with up to 32 carbon atoms can be converted by these mutants. This is the first known report on bioconversion of aliphatic hydrocarbons of chain lengths larger than 18 carbon atoms to mono and dicarboxylic ac- ids with a thermophilic bacterium. The broad range of long-chain diacid products obtained with these mutants could be produced for new types of polymers, adhesives, lubricant additives, pharmaceuticals and other novel applications. In addition, Thermus sp. ATN1 offers several advantages over other microorganisms for the production of long-chain α,ω-dicarboxylic acids. The strain is non-pathogenic and its thermophilic nature provides unique characteristics for process control to avoid culture contamination. Finally, the production of a biosurfactant by this thermophilic strain and its characteriza- tion are described. This biosurfactant showed advantages over commercial surfactants in the characterization tests, especially at high temperatures. The use of this biosurfactant as hydrocarbon bioavailability enhancer is demonstrated in the utilization of n- hexadecane by a mesophilic strain. Zusammenfassung In dieser Arbeit wurden Mutanten des thermophilen, Alkan-abbauenden Bakteriums Thermus sp. ATN1 durch klassische Mutagenese hergestellt. Langkettige n-Alkane wurden durch diese Mutanten zu langkettigen Aldehydezwischenprodukten, Mono- und Dicarbonsäuren konstitutiv bei 70 °C umgesetzt. Zusätzlich wurde das Gen, das für eine Alkoholdehydrogenase kodiert, durch homolge Rekombination ausgeschaltet. Dieses En- zym ist vermutlich am Abbau von langkettigen n-Alkanen in diesem Bakterienstamm be- teiligt. Diese Mutanten sollten eigentlich α,ω-di-hydroxylierte Verbindungen produzie- ren, es wurden jedoch nur Fettsäuren erhalten. Überoxidation der Alkoholprodukte durch den Alkanmonooxygenasekomplex in diesem Stamm oder das Vorhandensein einer wei- teren Alkoholdehydrogenase werden als Erklärungen für diese Ergebnisse vorgeschlagen. Dennoch waren die konstruierten Mutanten in der Lage, langkettige α,ω-Dicarbonsäuren mit bis 28 Kohlenstoffatomen durch Biokonversion der entsprechenden n-Alkane zu pro- duzieren. Es wird erwartet, dass gesättigte Substrate mit bis 32 Kohlenstoffatomen durch diese Mutanten umgesetzt werden können. Dieses ist der erste bekannte Bericht über eine Biokonversion von aliphatischen Kohlenwasserstoffen mit mehr als 18 Kohlenstoff- atomen zu den entsprechenden Mono- und Dicarbonsäuren mit einem thermophilen Bakterium. Das breite Spektrum von langkettigen α,ω-Dicarbonsäuren welche durch diese Mutanten hergestellt werden können, könnte für neue Typen von Polymeren, von Klebstoffen, von Schmierstoffadditiven, von Pharmazeutika und für andere neue Anwendungen genutzt werden. Außerdem bietet Thermus sp. ATN1 einige Vorteile über anderen Mikroorga- nismen für die Produktion von langkettigen α,ω-Dicarbonsäuren. Der Stamm ist nicht pathogen und seine thermophile Natur bietet einzigartige Vorteile für die Prozesskontrol- le, da bei hohen Temperaturen die Kontaminationswahrscheinlichkeit sehr viel geringer ist. Schließlich wurde die Produktion eines Biotensids durch diesen thermophile Stamm und dessen Charakterisierung beschrieben. Dieses Biotensid zeigte Vorteile gegenüber kom- merziellen Tensiden, besonders bei hohen Temperaturen. Die positive Wirkung dieses Biotensids zur Erhöhung der Bioverfügbarkeit und Abbaubarkeit von Kohlenwasserstof- fen, wurde am Beispiel des Abbaus von n-Hexadekan durch einen mesophilen Stamm bewiesen. Acknowledgments Many have been those that crossed my path and contributed in different but significant ways to the completion of this project. My gratitude goes to all of them. I would like to express my sincerest gratitude and appreciation to my supervisor Prof. Dr. Rudolf Müller for his invaluable support and guidance over these years, especially for trusting me the opportunity to work in his research group despite the particular circum- stances under which this research was completed. I would also like to thank Prof. Dr. Wolfgang Calmano and Prof. Dr. An-Ping Zeng for evaluating this thesis. Special thanks are also extended to Prof. Dr. Andreas Liese for supporting this work at the Institute of Technical Biocatalysis. I am also very grateful to all the colleagues I met at the Institute and in particular to those that directly contributed to this project: Maren Breuer, Pamela Vazquez and Ranganathan B. Venkatesan. Finally I would like to thank my family for their always unconditional support and in spe- cial to Dona, for her patience and encouragement during my pursuit of this Ph.D. Oxidation of long-chain n-alkanes by mutants of a thermophilic alkane-degrading bacterium: Thermus sp. ATN1 Contents 1. Introduction ........................................................................................ 13 1.1 Chemicals through biotransformation ................................................... 15 1.2 Two important industrial chemicals - Long-chain alcohols and long-chain dicarboxylic acids ........................................................................................... 17 1.2.1 Long-chain alcohols .................................................................................. 17 1.2.1.1 Applications for long-chain alcohols ................................................................ 17 1.2.1.2 Industrial production processes ...................................................................... 18 1.2.1.3 Long-chain alcohols through biocatalysis ........................................................ 20 1.2.1.3.1 Long-chain alcohols by enzymatic reduction of fatty acids ............................ 20 1.2.2 Long-chain dicarboxylic acids ................................................................... 20 1.2.2.1 Applications for long-chain dicarboxylic acids (LCDAs) .................................... 20 1.2.2.1.1 Application opportunities for LCDAs .............................................................. 21 1.2.2.2 LCDAs at industrial production scale ............................................................... 22 1.2.2.3 Industrial production processes of LCDAs ........................................................ 23 1.2.2.3.1 Cracking of vegetable oils ............................................................................... 24 1.2.2.3.2 Organic Synthesis ............................................................................................ 24 1.2.2.3.3 Biotransformation of paraffins and fatty acids .............................................. 25 1.2.2.4 Competing production processes .................................................................... 26 1.2.2.5 LCDAs through biotransformation - Process development .............................. 27 1.2.2.5.1 Biocatalyst improvement ................................................................................ 28 1.2.2.5.2 Bioprocess economics and optimization for successful development ........... 29 1.3 Bacterial long-chain alkane metabolism - Biocatalytic application for the production of chemicals ................................................................................. 33 1.3.1 Alkanes .................................................................................................... 33 1.3.2 Degradation of long-chain n-alkanes ........................................................ 33 1.3.2.1 Microbial uptake of long-chain n-alkanes as a carbon and energy source ........ 34 1.3.2.2 Bacterial aerobic n-alkane degradation pathways ........................................... 35 1 1.3.2.3 Regulation of bacterial n-alkane catabolic pathways ....................................... 37 1.3.2.3.1 Differential regulation of multiple alkane hydroxylases ................................ 38 1.3.2.3.2 Product repression ......................................................................................... 39 1.3.2.3.3 Catabolite repression ...................................................................................... 39