Linear Alpha-Olefins (681.5030)

Total Page:16

File Type:pdf, Size:1020Kb

Linear Alpha-Olefins (681.5030) IHS Chemical Chemical Economics Handbook Linear alpha-Olefins (681.5030) by Elvira O. Camara Greiner with Yoshio Inoguchi Sample Report from 2010 November 2010 ihs.com/chemical November 2010 LINEAR ALPHA-OLEFINS Olefins 681.5030 B Page 2 The information provided in this publication has been obtained from a variety of sources which SRI Consulting believes to be reliable. SRI Consulting makes no warranties as to the accuracy completeness or correctness of the information in this publication. Consequently SRI Consulting will not be liable for any technical inaccuracies typographical errors or omissions contained in this publication. This publication is provided without warranties of any kind either express or implied including but not limited to implied warranties of merchantability fitness for a particular purpose or non-infringement. IN NO EVENT WILL SRI CONSULTING BE LIABLE FOR ANY INCIDENTAL CONSEQUENTIAL OR INDIRECT DAMAGES (INCLUDING BUT NOT LIMITED TO DAMAGES FOR LOSS OF PROFITS BUSINESS INTERRUPTION OR THE LIKE) ARISING OUT OF THE USE OF THIS PUBLICATION EVEN IF IT WAS NOTIFIED ABOUT THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES THE ABOVE LIMITATION MAY NOT APPLY TO YOU. IN SUCH STATES SRI CONSULTING’S LIABILITY IS LIMITED TO THE MAXIMUM EXTENT PERMITTED BY SUCH LAW. Certain statements in this publication are projections or other forward-looking statements. Any such statements contained herein are based upon SRI Consulting’s current knowledge and assumptions about future events including without limitation anticipated levels of global demand and supply expected costs trade patterns and general economic political and marketing conditions. Although SRI Consulting believes that the expectations reflected in the forward-looking statements are reasonable it cannot and does not guarantee without limitation future results levels of activity performance or achievements. Readers should verify through independent third-party sources any estimates projections or other forward-looking statements or data contained herein before reaching any conclusions or making any investment decisions. SRI Consulting is not responsible for the Reader’s use of any information in this publication. The absence of a specific trademark designation within this publication does not mean that proprietary rights may not exist in a particular name. No listing description or designation in this publication is to be construed as affecting the scope validity or ownership of any trademark rights that may exist therein. SRI Consulting makes no warranties as to the accuracy of any such listing description or designation nor to the validity or ownership of any trademark. Sample Report from 2010 © 2010 by the Chemical Economics Handbook—SRI Consulting November 2010 LINEAR ALPHA-OLEFINS Olefins 681.5030 C Page 3 TABLE OF CONTENTS Summary....................................................................................................................................................... 5 Introduction................................................................................................................................................. 10 Manufacturing Processes ............................................................................................................................ 11 Ethylene Oligomerization ....................................................................................................................... 11 Chevron Phillips Chemicals’ Ethylene Oligomerization (Ziegler Process)........................................ 13 INEOS’ Ethylene Oligomerization (Modified Ziegler Process)......................................................... 14 Shell’s Ethylene Oligomerization (Shell Higher Olefins Process—SHOP) ....................................... 15 Idemitsu’s Ethylene Oligomerization Process .................................................................................... 16 Vista’s Alfene® Process...................................................................................................................... 16 Exxon’s Ethylene Oligomerization Process........................................................................................ 16 DuPont’s Versipol™ Process ............................................................................................................. 17 SABIC/Linde alpha-SABLIN™ Process............................................................................................ 17 Other alpha-Olefin Synthesis Routes...................................................................................................... 17 Sasol’s Purification Process................................................................................................................ 17 Paraffin Wax Cracking ....................................................................................................................... 18 Dehydration of Alcohols..................................................................................................................... 18 Isomerization of Internal Olefins........................................................................................................ 18 Supply and Demand by Region .................................................................................................................. 19 North America......................................................................................................................................... 19 Producing Companies......................................................................................................................... 19 Production........................................................................................................................................... 20 Consumption....................................................................................................................................... 22 Polyethylene Comonomers ............................................................................................................. 25 Linear low-density polyethylene (LLDPE) resins ...................................................................... 27 High-density polyethylene (HDPE) resins.................................................................................. 28 Elastomers and plastomers.......................................................................................................... 29 Oxo Alcohols .................................................................................................................................. 29 Detergent alcohols....................................................................................................................... 30 Plasticizer alcohols...................................................................................................................... 31 Polyalphaolefins.............................................................................................................................. 32 Oil Field Drilling Fluids.................................................................................................................. 36 Other Lubricant Additives .............................................................................................................. 36 Alkyldimethylamines and Dialkylmethylamines............................................................................ 37 Alkenylsuccinic Anhydrides........................................................................................................... 39 Synthetic Fatty Acids (C7-C9)........................................................................................................ 40 alpha-Olefin Sulfonates .................................................................................................................. 41 Linear Alkylbenzene....................................................................................................................... 42 Linear Mercaptans .......................................................................................................................... 42 Aluminum Alkyls............................................................................................................................ 43 Chlorinated Olefins......................................................................................................................... 43 SampleAlkyldiphenylether Disulfonates Report ................................................................................................ from 2010.... 43 Other ............................................................................................................................................... 44 Price .................................................................................................................................................... 45 Trade ................................................................................................................................................... 46 © 2010 by the Chemical Economics Handbook—SRI Consulting November 2010 LINEAR ALPHA-OLEFINS Olefins 681.5030 D Page 4 TABLE OF CONTENTS (continued) Western Europe....................................................................................................................................... 49 Producing Companies........................................................................................................................
Recommended publications
  • Rastislav Kulich Resume Dec 2010
    RASTO KULICH, V Tunich 3, 120 00 Prague, Czech Republic, [email protected]; cell: +420 724 684 127 experience 2006- MCKINSEY & COMPANY PRAGUE, CZECH REPUBLIC (CR) present Senior engagement manager (Associate till Nov ‘08) Consistent top 20% performance rating Primary focus on strategic due diligences in consumer goods for private equity and strategic investors - 11 projects • Pet-food target in Netherlands, Germany and CEE, spirits in Turkey, food target in Ireland, FMCG target in Tanzania and Kenya, certification/testing target in France, frozen-food distribution in Poland and Czech, beverage target in Germany and Russia, online portal in Czech, due diligence guide for beverage client in UK, Internal Due Diligence Guide in Consumer Goods for McKinsey Europe Secondary focus sales & marketing – 10 projects including major pricing, commercial-excellence, lean and route-to- market projects in consumer-goods in Switzerland, South Africa, Czech, Poland, Russia • Created value estimated at $20 million via new route-to-market strategy for leading beverage client in Poland • Co-delivered profit increase of $25 million on European-wide pricing project for leading beverage client • Increased sales force productivity by 40% via commercial excellence project for pharmaceutical client in CR • Reduced number of calls in call center by 35% via addressing root cause in a lean project for energy company in CR 2006 - 2007 ERGONI.COM BOSTON, USA/MUMBAI, INDIA Co-founder • Co-founded internet startup built on mass-customization concept for luxury shirts
    [Show full text]
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • US5523508.Pdf
    |||||I|| US005523508A United States Patent (19) 11 Patent Number: 5,523,508 Krawczyk et al. 45) Date of Patent: Jun. 4, 1996 (54) PROCESS FOR LINEAR ALPHA-OLEFIN 4,689,437 8/1987 Murray ... ... 585/526 PRODUCTION: ELMINATING WAX 4,716,138 12/1987 Murray ... ... 502/117 PRECIPITATION 4,822,915 4/1989 Murray ...................................... 568/13 4,879,428 11/1989 Harandi et al. ......................... 585/533 75) Inventors: Mark A. Krawczyk, Chicago; Richard OTHER PUBLICATIONS E. Marinangeli; R. Joe Lawson, both of Arlington Heights, all of Ill. Ullman's Encyclopedia of Industrial Chemistry, 5th Ed., V. A13, pp. 245 et. ff., VCH (1989). (month unknown). 73) Assignee: UOP, Des Plaines, Ill. Primary Examiner–Shrive Beck Assistant Examiner-Timothy H. Meeks (21) Appl. No.: 366,153 Attorney, Agent, or Firm-Thomas K. McBride; Eugene I. 22 Filed: Dec. 29, 1994 Snyder (51} int. Cl. ............................................. CO7C 2/24 57 ABSTRACT 52 U.S. Cl. ... - - 585/523; 585/315; 585/316; Linear alpha-olefin formation via oligomerization of ethyl 585/329; 585/522; 585/526; 585/527 ene using transition metal catalysis leads to a Schultz-Flory 58) Field of Search ..................................... 585/315, 316, distribution of oligomers. At modest temperatures formation 585/329, 522, 523, 526, 527 of heavy oligomers which are waxy solids only partly soluble in the LAO product mix causes reactor plugging and I56) References Cited curtailing the time of continuous runs. Recycling a portion U.S. PATENT DOCUMENTS of a lighter oligomeric fraction obviates this problem and 3,641,191 2/1972 Fernald et al.................... 260/683.150 permits runs uninterrupted by solids formation.
    [Show full text]
  • HIGH-PERFORMANCE BLENDER EXPLORIAN SERIES VM0201 S Y M B O L S
    E310 HIGH-PERFORMANCE BLENDER EXPLORIAN SERIES VM0201 S YMBOL S Warning and Caution NEVER touch moving parts. Keep hands and utensils out of the container. Electric Shock Hazard High temperature when blending hot liquids Unplug while not in use, before cleaning, changing accessories or touching parts that move while the blender is in use Operate with the lid and lid plug in place Read and understand owner’s manual DO NOT immerse Parts will become hot with extended use. DO NOT touch the drive socket in the blender base or the drive spline in the blade base DO NOT use your 20 ounce (0.6 L) cup to heat ingredients or to blend hot liquids DO NOT use the cups (including the blade base or lids) in the microwave I O On/Off ©2018 Vita-Mix Corporation. No part of this publication may be reproduced or transmitted in any form or by any means, or pulse stored in a database or retrieval system, without the written permission of Vita-Mix Corporation. S PECIFICATION S Voltage: 220-240 V Height (with 48 oz. container on base): 18 inches Begin Your Adventure Frequency: 50-60 Hz Width: 8 inches vitamix.com Watts: 1000-1200 W Depth: 11 inches I M P O R TA N T I N STRUCTION S FOR S AFE U S E WARNING: to avoid the risk of serious injury when using your Vitamix® blender, basic safety precau- tions should be followed, including the following. READ ALL INSTRUCTIONS, SAFEGUARDS AND WARNINGS BEFORE OPERATING BLENDER. 1. Read all instructions.
    [Show full text]
  • Catalytic Pyrolysis of Plastic Wastes for the Production of Liquid Fuels for Engines
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supporting information for: Catalytic pyrolysis of plastic wastes for the production of liquid fuels for engines Supattra Budsaereechaia, Andrew J. Huntb and Yuvarat Ngernyen*a aDepartment of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail:[email protected] bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand Fig. S1 The process for pelletization of catalyst PS PS+bentonite PP ) t e PP+bentonite s f f o % ( LDPE e c n a t t LDPE+bentonite s i m s n HDPE a r T HDPE+bentonite Gasohol 91 Diesel 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. S2 FTIR spectra of oil from pyrolysis of plastic waste type. Table S1 Compounds in oils (%Area) from the pyrolysis of plastic wastes as detected by GCMS analysis PS PP LDPE HDPE Gasohol 91 Diesel Compound NC C Compound NC C Compound NC C Compound NC C 1- 0 0.15 Pentane 1.13 1.29 n-Hexane 0.71 0.73 n-Hexane 0.65 0.64 Butane, 2- Octane : 0.32 Tetradecene methyl- : 2.60 Toluene 7.93 7.56 Cyclohexane 2.28 2.51 1-Hexene 1.05 1.10 1-Hexene 1.15 1.16 Pentane : 1.95 Nonane : 0.83 Ethylbenzen 15.07 11.29 Heptane, 4- 1.81 1.68 Heptane 1.26 1.35 Heptane 1.22 1.23 Butane, 2,2- Decane : 1.34 e methyl- dimethyl- : 0.47 1-Tridecene 0 0.14 2,2-Dimethyl- 0.63 0 1-Heptene 1.37 1.46 1-Heptene 1.32 1.35 Pentane,
    [Show full text]
  • Holiday Turkey
    Holiday Turkey You can buy different types of turkeys to cook. Read the label on the turkey carefully. Fresh Turkey Frozen Stuffed Frozen Turkey without Stuffing Look for a best-before date on the Turkey Take the turkey out of the freezer package. You must cook the turkey You can also buy a and thaw in the refrigerator. before this date. frozen turkey that Leave the turkey in its original wrapping. What if there is no date on the has stuffing inside. Put it in a large pan. Put it in the coldest package? You can keep the turkey You do not thaw part of the refrigerator. in the refrigerator for 1 - 2 days this turkey - cook it It will take about 10 hours per kilogram before you cook it. from frozen! Follow (about 5 hours per pound) to thaw. For It takes longer to cook a fresh the directions on example, it could take 2 days for a small turkey. Add 5 minutes per kilogram the label. turkey and 4 days for a large turkey. (3 minutes per pound) to the times You must cook a thawed turkey in the cooking chart. within 24 hours. 1 Prepare the turkey 2 Cook turkey at 425°F for Preheat the oven to 425°F. the first 30 minutes Take the plastic off the turkey. Then turn the oven down to 325°F. Continue roasting for: Take out the neck and bag of giblets. Don’t leave them inside the turkey. 4.5 kg (10 lb) 2 1/4 – 2 1/2 hours You can cook the neck alongside the turkey or you 7 kg (15 lb) 2 1/2 – 3 hours can use the neck, heart and gizzard to make stock 9 kg (20 lb) 3 1/2 – 4 hours or gravy.
    [Show full text]
  • Title Crystallization of Stereospecific Olefin Copolymers (Special Issue on Physical Chemistry) Author(S) Sakaguchi, Fumio; Kita
    Crystallization of Stereospecific Olefin Copolymers (Special Title Issue on Physical Chemistry) Author(s) Sakaguchi, Fumio; Kitamaru, Ryozo; Tsuji, Waichiro Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(4): 295-315 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76134 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Crystallization of Stereospecifie Olefin Copolymers Fumio SAKAGUCHI,Ryozo KITAMARU and Waichiro TSUJI* (Tsuji Laboratory) Received August 13, 1966 The stereoregularity of isotactic poly(4-methyl-1-pentene) was characterized and isomorphism phenomena were examined for the copolymeric systems of 4-methyl-1-pentene with several olefins in order to study the crystallization phenomena in these olefin copoly- mers polymerized with stereospecific catalysts. The structural heterogeneity or the fine crystalline structure of poly(4-methyl-1-pentene) could be correlated with its molecular structure by viewing this stereoregular homopolymer as if it were a copolymer. Cocrystallization or isomorphism phenomenon was recognized for the copolymeric systems of 4-methyl-1-pentene with butene-1, pentene-1, decene-1 and 3-methyl-1-butene, while no evidence of the phenomenon was obtained for the copolymeric systems with styrene and propylene. The degree of the isomorphism of those copolymers was discussed with the informations on the crystalline phases obtained from the X-ray study, on the constitution of the copolymeric chains in the amorphous phases obtained from the viscoelastic studies and on the other thermodynamical properties of these systems. INTRODUCTION Many works have been made with regard to the homopolymerization of olefins with stereospecific catalysts, i. e. complex catalysts composed of the combination of organometallic compound and transitional metallic compound.
    [Show full text]
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • UK Offshore Oil and Gas
    House of Commons Energy and Climate Change Committee UK offshore oil and gas First Report of Session 2008–09 Volume II Oral and written evidence Ordered by The House of Commons to be printed date 17 June 2009 HC 341-II Published on date 30 June 2009 by authority of the House of Commons London: The Stationery Office Limited £16.50 The Committee Name The Energy and Climate Change Committee is appointed by the House of Commons to examine the expenditure, administration, and policy of the Department of Energy and Climate Change and associated public bodies. Current membership Mr Elliot Morley MP (Labour, Scunthorpe) (Chairman) Mr David Anderson MP (Labour, Blaydon) Colin Challen MP (Labour, Morley and Rothwell) Nadine Dorries MP (Conservative, Mid Bedfordshire) Charles Hendry MP (Conservative, Wealden) Miss Julie Kirkbride MP (Conservative, Bromsgrove) Anne Main MP (Conservative, St Albans) Judy Mallaber MP (Labour, Amber Valley) John Robertson MP (Labour, Glasgow North West) Sir Robert Smith MP (Liberal Democrats, West Aberdeenshire and Kincardine) Paddy Tipping MP (Labour, Sherwood) Dr Desmond Turner MP (Labour, Brighton Kemptown) Mr Mike Weir MP (Scottish National Party, Angus) Dr Alan Whitehead MP (Labour, Southampton Test) Powers The committee is one of the departmental select committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No 152. These are available on the Internet via www.parliament.uk. Publication The Reports and evidence of the Committee are published by The Stationery Office by Order of the House. All publications of the Committee (including press notices) are on the Internet at www.parliament.uk/parliamentary_committees/ecc.cfm.
    [Show full text]
  • Alfa Olefins Cas N
    OECD SIDS ALFA OLEFINS FOREWORD INTRODUCTION ALFA OLEFINS CAS N°:592-41-6, 111-66-0, 872-05-9, 112-41-4, 1120-36-1 UNEP PUBLICATIONS 1 OECD SIDS ALFA OLEFINS SIDS Initial Assessment Report For 11th SIAM (Orlando, Florida, United States 1/01) Chemical Name: 1-hexene Chemical Name: 1-octene CAS No.: 592-41-6 CAS No.: 111-66-0 Chemical Name: 1-decene Chemical Name: 1-dodecene CAS No.: 872-05-9 CAS No.: 112-41-4 Chemical Name: 1-tetradecene CAS No.: 1120-36-1 Sponsor Country: United States National SIDS Contract Point in Sponsor Country: United States: Dr. Oscar Hernandez Environmental Protection Agency OPPT/RAD (7403) 401 M Street, S.W. Washington, DC 20460 Sponsor Country: Finland (for 1-decene) National SIDS Contact Point in Sponsor Country: Ms. Jaana Heiskanen Finnish Environment Agency Chemicals Division P.O. Box 140 00251 Helsinki HISTORY: SIDS Dossier and Testing Plan were reviewed at the SIDS Review Meeting or in SIDS Review Process on October 1993. The following SIDS Testing Plan was agreed: No testing ( ) Testing (x) Combined reproductive/developmental on 1-hexene, combined repeat dose/reproductive/developmental on 1-tetradecene and acute fish, daphnid and algae on 1- tetradecene. COMMENTS: The following comments were made at SIAM 6 and have been incorporated in this version of the SIAR: 2 UNEP PUBLICATIONS OECD SIDS ALFA OLEFINS 1. The use of QSAR calculations for aquatic toxicity, 2. More quantitative assessment of effects; and 3. Provide more details for each endpoint. The following comments were made at SIAM 6, but were not incorporated into the SIAR for the reasons provided: 1.
    [Show full text]
  • Highly Efficient Olefin Isomerization Catalyzed by Metal Hydrides Derives from Dirhodium(Ii) Carboxylates and Catecholborane
    HIGHLY EFFICIENT OLEFIN ISOMERIZATION CATALYZED BY METAL HYDRIDES DERIVES FROM DIRHODIUM(II) CARBOXYLATES AND CATECHOLBORANE Gene A. Devora and Michael P. DoyleL' * Department of Chemistry, Trinity University, San Antonio, Texas 78212, USA Abstract. Dirhodium(ll) tetraacetate in combination with catecholborane catalyzes the iso- merization of alkenes and dienes. Effective isomerization occurs at 80-135°C with the use of only 0.1 mol % rhodium acetate. With 2-methyl-1,5-hexadiene the disubstituted double bond is prefer- entially isomerized. In addition, hydrogen transfer hydrogenation occurs with 1,4-cyclohexadienes. The mechanism of these reactions is proposed to involve organoborane addition across a Rh-0 bond which activates the catalyst for isomerization and hydrogenation. INTRODUCTION Catalytic isomerization of alkenes is a characteristic transformation of transition metal hy- drides that often accompanies hydrogenation1 and is one of the most thoroughly studied catalytic reactions.2"4 Compounds of cobalt, nickel, palladium, platinum, rhodium, and ruthenium are effective,2 but other transition metal compounds have also been employed for catalytic isomeriza- tions.2"4 Although the nature of this transformation is dependent on the catalyst, selectivity for alkene isomerization generally favors reactions with monosubstituted ethylenes over di- and tri-sub- stituted ethylenes. In the course of our investigations of the catalytic effectiveness of dirhodium(ll) tetrakis(carboxylates) we have uncovered a useful methodology for the generation of rhodium hydride species that, as we now report, are surprisingly effective for the isomerization of alkenes as well as for hydrogen transfer hydrogenation. MATERIALS AND METHODS Reactions were performed in a round bottom flask equipped with a screw cap that was fitted with a septum for convenient withdrawal of aliquots.
    [Show full text]
  • Not for Quotation Without Permission of the Author
    NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR DECISION CASE STUDY UNITED KINGDOM MOSSMORRAN-BWFOOT BAY Sally M. Macgill July 1982 CP-82- 4 0 Collaborative Papers report work which has not been performed solely at the International Institute for Applied Systems Analysis and which has received only limited review. Views or opinions expressed herein do not necessarily represent those of the Insti- tute, its National Member Organizations, or other organizations supporting the work. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria CONTENTS CHAPTER 1 : INTRODUCTION 1.1. Perspective 1.2. Status of Report 1.3. Outline CHAPTER 2 : THE DECISION STRUCTURE 2.1. Context for the Developments 2.2. Site Choice 2.3. The Main Parties to the Decision 2.4. The Main Events in the Decision Process CHAPTER 3: THE DIMENSIONS OF THE DECISION 3.1. Statement of Dimensions 3.2. National Benefits 3.3. Local Socio-Economic Benefits 3.4. Health and Safety Aspects 3.5. Environmental Impacts CHAPTER 4 : PARTY PERSPECTIVES ON VARIOUS DIMENSIONS 4.1. Overview of Conflicts 4.2. The Oil Companies: Shell and Esso 4.2.1. National Benefits 4.2.2. Local Socio-Economic Benefits 4.2.3. Health and Safety 4.2.4. Environment 4.3. The Scottish Development Department 4.4. Departments of Energy and Industry 4.5. The Local Authorities: Fife, Dunfermline and Kirkcaldy 4.5.1. National Benefits 4.5.2. Local Socio-Economic Effects 4.5.3. Health and Safety 4.5.4. Environment 4.6. The Forth Ports Authority 4.7. The Health and Safety Executive 4.8.
    [Show full text]