Pseudogene HSPA7 Is a Poor Prognostic Biomarker in Kidney
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theranostics Transcriptomic Analysis Identifies a Tumor Subtype Mrna
Theranostics 2021, Vol. 11, Issue 1 132 Ivyspring International Publisher Theranostics 2021; 11(1): 132-146. doi: 10.7150/thno.47525 Research Paper Transcriptomic analysis identifies a tumor subtype mRNA classifier for invasive non-functioning pituitary neuroendocrine tumor diagnostics Xinjie Bao1#, Gengchao Wang2,3#, Shan Yu2,3#, Jian Sun4, Liu He2,3, Hualu Zhao2,3, Yanni Ma2,3, Fang Wang2,3, Xiaoshuang Wang2,3, Renzhi Wang1 and Jia Yu2,3,5 1. Department of Neurosurgery, Pituitary Center, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100730, PR China. 2. State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, PR China. 3. Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, PR China. 4. Department of Pathology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100730, PR China. 5. Medical Epigenetic Research Center, Chinese Academy of Medical Sciences (CAMS), Beijing 100005, PR China. #These authors contributed equally to this work. Corresponding authors: Jia Yu, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
Beyond K48 and K63: Non-Canonical Protein Ubiquitination
Tracz and Bialek Cell Mol Biol Lett (2021) 26:1 https://doi.org/10.1186/s11658‑020‑00245‑6 Cellular & Molecular Biology Letters REVIEW LETTER Open Access Beyond K48 and K63: non‑canonical protein ubiquitination Michal Tracz and Wojciech Bialek* *Correspondence: [email protected] Abstract Faculty of Biotechnology, Protein ubiquitination has become one of the most extensively studied post-trans- University of Wroclaw, Wroclaw, Poland lational modifcations. Originally discovered as a critical element in highly regulated proteolysis, ubiquitination is now regarded as essential for many other cellular pro- cesses. This results from the unique features of ubiquitin (Ub) and its ability to form various homo- and heterotypic linkage types involving one of the seven diferent lysine residues or the free amino group located at its N-terminus. While K48- and K63-linked chains are broadly covered in the literature, the other types of chains assembled through K6, K11, K27, K29, and K33 residues deserve equal attention in the light of the latest discoveries. Here, we provide a concise summary of recent advances in the feld of these poorly understood Ub linkages and their possible roles in vivo. Keywords: Ubiquitin, Non-canonical, Atypical ubiquitination, Ubiquitin chains Introduction Protein ubiquitination (interchangeably called ubiquitylation) involves the covalent attachment of the 76-amino acid eukaryotic molecule ubiquitin (Ub) to substrate pro- teins. An enzymatic cascade of a Ub activating enzyme (E1), Ub-conjugating enzymes (E2s), and Ub ligases (E3s) governs the process, which is now recognized as an essential post-translational protein modifcation (PTM) of eukaryotic cells [1]. Ubiquitination is initiated by E1, an enzyme requiring ATP for the activation of Ub, which forms a thi- oester bond between the C-terminal Gly carboxyl group of Ub and its active site Cys. -
(12) United States Patent (10) Patent No.: US 8,609,416 B2 Barnett (45) Date of Patent: Dec
USOO8609416B2 (12) United States Patent (10) Patent No.: US 8,609,416 B2 Barnett (45) Date of Patent: Dec. 17, 2013 (54) METHODS AND COMPOSITIONS OTHER PUBLICATIONS COMPRISING HEAT SHOCKPROTEINS Novoselova et al., “Treatment with extracellular HSP70/HSC70 pro (75) Inventor: Michael E. Barnett, Manhattan, KS tein can reduce polyglutamine toxicity and aggregation.” J (US) Neurochem 94:597-606, 2005.* Johnson et al., (1993) Exogenous HSP70 becomes cell associated but (73) Assignee: Ventria Bioscience, Fort Collins, CO not internalized, by stressed arterial Smooth muscle cell. In vitro (US) Cellular and Developmental Biology—Animal, vol. 29A. No. 10, pp. 807-821. (*) Notice: Subject to any disclaimer, the term of this Bethke et al., (2002) Different efficiency of heat shock proteins patent is extended or adjusted under 35 (HSP) to activate human monocytes and dendritic cells; Superiority of U.S.C. 154(b) by 244 days. HSP60, The Journal of Immunology, vol. 169, pp. 6141-6148. Khan et al., (2008) Toll-like receptor 4-mediated growth of (21) Appl. No.: 12/972,112 endometriosis by human heat-shock protein 70, Human Reproduc tion, vol. 23, No. 10, pp. 2210-2219. (22) Filed: Dec. 17, 2010 Lasunskaia E.B., et al., (2003) Transfection of NSO myeloma fusion partner cells with HSP70 gene results in higher hybridoma yield by (65) Prior Publication Data improving cellular resistance to apoptosis, Biotechnology and Bioengineering 81 (4):496-504. US 2011 FO189751A1 Aug. 4, 2011 * cited by examiner Related U.S. Application Data (60) Provisional application No. 61/288,234, filed on Dec. Primary Examiner — Rosanne Kosson 18, 2009. -
This Is the Accepted Version of the Author's Manuscript. Reis SD, Pinho BR, Oliveira JMA "Modulation of Molecular Chapero
This is the Accepted Version of the Author’s Manuscript. Reis SD, Pinho BR, Oliveira JMA "Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders". Molecular Neurobiology. September 2016 DOI: 10.1007/s12035-016-0120-z Link to Publisher: https://link.springer.com/article/10.1007%2Fs12035-016-0120-z Links to Full Text (RedCube, shared via Springer Nature) – View Only http://rdcu.be/kwjE 1 ! Title page Modulation of molecular chaperones in Huntington’s disease and other polyglutamine disorders Sara D. Reis, Brígida R. Pinho, Jorge M. A. Oliveira* REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal *Corresponding author: Jorge M. Ascenção Oliveira Tel. +351 220428610 Email: [email protected] Acknowledgements This work was supported by Fundação para a Ciência e a Tecnologia (FCT): Strategic award UID/QUI/50006/2013, and by the research grant PTDC/NEU-NMC/0412/2014 (PI: JMAO), co- financed by the European Union (FEDER, QREN, COMPETE) – POCI-01-0145-FEDER- 016577. SDR acknowledges FCT for her PhD Grant (PD/BD/113567/2015). BRP acknowledges FCT for her PostDoc Grant (SFRH/BPD/102259/2014). We thank Ana Isabel Duarte (PhD, U. Coimbra) and Maria Clara Quintas (PhD, U. Porto) for reading and commenting the initial manuscript draft. 2 ! Abstract Polyglutamine expansion mutations in specific proteins underlie the pathogenesis of a group of progressive neurodegenerative disorders, including Huntington’s disease, spinal and bulbar muscular atrophy, dentatorubral-pallidoluysian atrophy, and several spinocerebellar ataxias. The different mutant proteins share ubiquitous expression and abnormal proteostasis, with misfolding and aggregation, but nevertheless evoke distinct patterns of neurodegeneration. -
Molecular Cloning and Characterization of Cdna Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus Dromedarius
Int. J. Mol. Sci. 2011, 12, 4214-4236; doi:10.3390/ijms12074214 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius Mohamed S. Elrobh *, Mohammad S. Alanazi, Wajahatullah Khan, Zainularifeen Abduljaleel, Abdullah Al-Amri and Mohammad D. Bazzi Genomic Research Chair Unit, Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia; E-Mails: [email protected] (M.S.A.); [email protected] (W.K.); [email protected] (Z.A.); [email protected] (A.A.-A.) [email protected] (M.D.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +966-146-759-44; Fax: +966-146-757-91. Received: 5 May 2011; in revised form: 9 June 2011; / Accepted: 15 June 2011 / Published: 27 June 2011 Abstract: Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. -
Association of Single Nucleotide Polymorphism of Hsp90ab1 Gene with Thermotolerance and Milk Yield in Sahiwal Cows
Vol. 9(8), pp. 99-103, September, 2015 DOI: 10.5897/AJBR2015.0837 Article Number: F90783054978 ISSN 1996-0778 African Journal of Biochemistry Research Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJBR Full Length Research Paper Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows 1 2 2 2 2 Lalrengpuii Sailo *, I. D. Gupta , Archana Verma , Ramendra Das and M. V. Chaudhari 1AG Division, IVRI, Izzatnagar, India. 2DCB Division, NDRI, Karnal, India. Received 18 April, 2015; Accepted 27 July, 2015 Heat shock proteins play a critical role in the development of thermotolerance and protection from cellular damage associated with heat stresses. The study was undertaken to investigate the association of single nucleotide polymorphisms (SNPs) of Hsp90ab1 gene with thermo-physiological parameters viz, respiration rate (RR), rectal temperature (RT), heat tolerance coefficient (HTC) and total milk yield in Sahiwal cows. The RR and RT were recorded once in different seasons, viz., winter, spring, and summer, at the probable extreme hot hours of the day. Polymorphism of Hsp90ab1 gene, evaluated by comparative sequencing revealed five SNPs, viz., T17871421C, C17871485del, C17872061T, T17872112C and T17872148G. Individuals with CT genotype recorded significantly (P≤0.01) lower RT (°C) than CC genotype in Sahiwal cows. The CT genotype animals also had better production parameter in terms of total milk yield (TMY) (P<0.01). Therefore, our results inferred that CT genotype in Sahiwal cows may be an aid to selection and breeding to enhance thermo-tolerance. Key words: Hsp90ab1, SNPs, respiration rate, rectal temperature, total milk yield, Sahiwal. -
Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells
Published OnlineFirst September 12, 2019; DOI: 10.1158/2326-6066.CIR-18-0934 Research Article Cancer Immunology Research Mirc11 Disrupts Inflammatory but Not Cytotoxic Responses of NK Cells Arash Nanbakhsh1, Anupallavi Srinivasamani1, Sandra Holzhauer2, Matthew J. Riese2,3,4, Yongwei Zheng5, Demin Wang4,5, Robert Burns6, Michael H. Reimer7,8, Sridhar Rao7,8, Angela Lemke9,10, Shirng-Wern Tsaih9,10, Michael J. Flister9,10, Shunhua Lao1,11, Richard Dahl12, Monica S. Thakar1,11, and Subramaniam Malarkannan1,3,4,9,11 Abstract Natural killer (NK) cells generate proinflammatory cyto- g–dependent clearance of Listeria monocytogenes or B16F10 kines that are required to contain infections and tumor melanoma in vivo by NK cells. These functional changes growth. However, the posttranscriptional mechanisms that resulted from Mirc11 silencing ubiquitin modifiers A20, regulate NK cell functions are not fully understood. Here, we Cbl-b, and Itch, allowing TRAF6-dependent activation of define the role of the microRNA cluster known as Mirc11 NF-kB and AP-1. Lack of Mirc11 caused increased translation (which includes miRNA-23a, miRNA-24a, and miRNA-27a) of A20, Cbl-b, and Itch proteins, resulting in deubiquityla- in NK cell–mediated proinflammatory responses. Absence tion of scaffolding K63 and addition of degradative K48 of Mirc11 did not alter the development or the antitumor moieties on TRAF6. Collectively, our results describe a func- cytotoxicity of NK cells. However, loss of Mirc11 reduced tion of Mirc11 that regulates generation of proinflammatory generation of proinflammatory factors in vitro and interferon- cytokines from effector lymphocytes. Introduction TRAF2 and TRAF6 promote K63-linked polyubiquitination that is required for subcellular localization of the substrates (20), Natural killer (NK) cells generate proinflammatory factors and and subsequent activation of NF-kB (21) and AP-1 (22). -
Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog. -
Polymorphisms of PRLHR and HSPA12A and Risk of Gastric and Colorectal Cancer in the Chinese Han Population
Su et al. BMC Gastroenterology (2015) 15:107 DOI 10.1186/s12876-015-0336-9 RESEARCH ARTICLE Open Access Polymorphisms of PRLHR and HSPA12A and risk of gastric and colorectal cancer in the Chinese Han population Qinghua Su1, Yuan Wang2, Jun Zhao1, Cangjian Ma1, Tao Wu1, Tianbo Jin3,4 and Jinkai Xu1* Abstract Background: Gastric and colorectal cancers have a major impact on public health, and are the most common malignant tumors in China. The aim of this research was to study whether polymorphisms of CHCHD3P1-HSP90AB7P, GRID1, HSPA12A, PRLHR, SBF2, POLD3 and C11orf93-C11orf92 genes are associated with the risk of gastric and colorectal cancers in the Chinese Han population. Methods: We genotyped seven single nucleotide polymorphisms (SNPs) from seven genes. We selected 588 patients with gastric cancer and 449 with colorectal cancer, along with 703 healthy controls. All these SNPs were evaluated using the χ2 test and genetic model analysis. Results: The genotype “A/T” of rs12413624 in PRLHR gene was associated with a decreased risk of colorectal cancer in allele model analysis [odds ratio (OR) = 0.81; 95 % confidence interval (CI) = 0.68–0.97; p = 0.018] and log-additive model analysis (OR = 0.81; 95 % CI = 0.66–0.98; p = 0.032). The genotype “A/G” of rs1665650 in HSPA12A gene was associated with a decreased risk of gastric cancer in overdominant model analysis (OR = 0.77; 95 % CI = 0.60–0.99; p =0.038). Conclusions: Our results provide evidence that variants of PRLHR gene are a protective factor in colorectal cancer and variants of HSPA12A gene are a protective factor in gastric cancer in the Chinese Han population. -
A Master Autoantigen-Ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A Master Autoantigen-ome Links Alternative Splicing, Female Predilection, and COVID-19 to Autoimmune Diseases Julia Y. Wang1*, Michael W. Roehrl1, Victor B. Roehrl1, and Michael H. Roehrl2* 1 Curandis, New York, USA 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA * Correspondence: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.30.454526; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chronic and debilitating autoimmune sequelae pose a grave concern for the post-COVID-19 pandemic era. Based on our discovery that the glycosaminoglycan dermatan sulfate (DS) displays peculiar affinity to apoptotic cells and autoantigens (autoAgs) and that DS-autoAg complexes cooperatively stimulate autoreactive B1 cell responses, we compiled a database of 751 candidate autoAgs from six human cell types. At least 657 of these have been found to be affected by SARS-CoV-2 infection based on currently available multi-omic COVID data, and at least 400 are confirmed targets of autoantibodies in a wide array of autoimmune diseases and cancer. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in