Submitted As an Original Research Paper to XXXXXX Deletions and De
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The N-Cadherin Interactome in Primary Cardiomyocytes As Defined Using Quantitative Proximity Proteomics Yang Li1,*, Chelsea D
© 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs221606. doi:10.1242/jcs.221606 TOOLS AND RESOURCES The N-cadherin interactome in primary cardiomyocytes as defined using quantitative proximity proteomics Yang Li1,*, Chelsea D. Merkel1,*, Xuemei Zeng2, Jonathon A. Heier1, Pamela S. Cantrell2, Mai Sun2, Donna B. Stolz1, Simon C. Watkins1, Nathan A. Yates1,2,3 and Adam V. Kwiatkowski1,‡ ABSTRACT requires multiple adhesion, cytoskeletal and signaling proteins, The junctional complexes that couple cardiomyocytes must transmit and mutations in these proteins can cause cardiomyopathies (Ehler, the mechanical forces of contraction while maintaining adhesive 2018). However, the molecular composition of ICD junctional homeostasis. The adherens junction (AJ) connects the actomyosin complexes remains poorly defined. – networks of neighboring cardiomyocytes and is required for proper The core of the AJ is the cadherin catenin complex (Halbleib and heart function. Yet little is known about the molecular composition of the Nelson, 2006; Ratheesh and Yap, 2012). Classical cadherins are cardiomyocyte AJ or how it is organized to function under mechanical single-pass transmembrane proteins with an extracellular domain that load. Here, we define the architecture, dynamics and proteome of mediates calcium-dependent homotypic interactions. The adhesive the cardiomyocyte AJ. Mouse neonatal cardiomyocytes assemble properties of classical cadherins are driven by the recruitment of stable AJs along intercellular contacts with organizational and cytosolic catenin proteins to the cadherin tail, with p120-catenin β structural hallmarks similar to mature contacts. We combine (CTNND1) binding to the juxta-membrane domain and -catenin β quantitative mass spectrometry with proximity labeling to identify the (CTNNB1) binding to the distal part of the tail. -
Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human. -
Theranostics Transcriptomic Analysis Identifies a Tumor Subtype Mrna
Theranostics 2021, Vol. 11, Issue 1 132 Ivyspring International Publisher Theranostics 2021; 11(1): 132-146. doi: 10.7150/thno.47525 Research Paper Transcriptomic analysis identifies a tumor subtype mRNA classifier for invasive non-functioning pituitary neuroendocrine tumor diagnostics Xinjie Bao1#, Gengchao Wang2,3#, Shan Yu2,3#, Jian Sun4, Liu He2,3, Hualu Zhao2,3, Yanni Ma2,3, Fang Wang2,3, Xiaoshuang Wang2,3, Renzhi Wang1 and Jia Yu2,3,5 1. Department of Neurosurgery, Pituitary Center, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100730, PR China. 2. State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, PR China. 3. Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College (PUMC), Beijing 100005, PR China. 4. Department of Pathology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100730, PR China. 5. Medical Epigenetic Research Center, Chinese Academy of Medical Sciences (CAMS), Beijing 100005, PR China. #These authors contributed equally to this work. Corresponding authors: Jia Yu, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical -
Beyond K48 and K63: Non-Canonical Protein Ubiquitination
Tracz and Bialek Cell Mol Biol Lett (2021) 26:1 https://doi.org/10.1186/s11658‑020‑00245‑6 Cellular & Molecular Biology Letters REVIEW LETTER Open Access Beyond K48 and K63: non‑canonical protein ubiquitination Michal Tracz and Wojciech Bialek* *Correspondence: [email protected] Abstract Faculty of Biotechnology, Protein ubiquitination has become one of the most extensively studied post-trans- University of Wroclaw, Wroclaw, Poland lational modifcations. Originally discovered as a critical element in highly regulated proteolysis, ubiquitination is now regarded as essential for many other cellular pro- cesses. This results from the unique features of ubiquitin (Ub) and its ability to form various homo- and heterotypic linkage types involving one of the seven diferent lysine residues or the free amino group located at its N-terminus. While K48- and K63-linked chains are broadly covered in the literature, the other types of chains assembled through K6, K11, K27, K29, and K33 residues deserve equal attention in the light of the latest discoveries. Here, we provide a concise summary of recent advances in the feld of these poorly understood Ub linkages and their possible roles in vivo. Keywords: Ubiquitin, Non-canonical, Atypical ubiquitination, Ubiquitin chains Introduction Protein ubiquitination (interchangeably called ubiquitylation) involves the covalent attachment of the 76-amino acid eukaryotic molecule ubiquitin (Ub) to substrate pro- teins. An enzymatic cascade of a Ub activating enzyme (E1), Ub-conjugating enzymes (E2s), and Ub ligases (E3s) governs the process, which is now recognized as an essential post-translational protein modifcation (PTM) of eukaryotic cells [1]. Ubiquitination is initiated by E1, an enzyme requiring ATP for the activation of Ub, which forms a thi- oester bond between the C-terminal Gly carboxyl group of Ub and its active site Cys. -
Functional Characterisation of MYT1L, a Brain-Specific Transcriptional Regulator
This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Functional characterisation of MYT1L, a brain-specific transcriptional regulator Kepa, Agnieszka Maria Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Functional characterisation of MYT1L, a brain-specific transcriptional regulator Agnieszka Kępa 2014 A thesis submitted to King’s College London for the degree of Doctor of Philosophy MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry ABSTRACT Abnormalities in brain development and maladaptive plasticity are thought to underlay a range of neurodevelopmental and neurological disabilities and disorders, such as autism spectrum disorders, schizophrenia and learning disability. -
Early-Onset Obesity and Paternal 2Pter Deletion Encompassing the ACP1, TMEM18,Andmyt1l Genes
European Journal of Human Genetics (2014) 22, 471–479 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg ARTICLE Early-onset obesity and paternal 2pter deletion encompassing the ACP1, TMEM18,andMYT1L genes Martine Doco-Fenzy*,1, Camille Leroy1, Anouck Schneider2, Florence Petit3, Marie-Ange Delrue4, Joris Andrieux3, Laurence Perrin-Sabourin5, Emilie Landais1, Azzedine Aboura5, Jacques Puechberty2,6, Manon Girard6, Magali Tournaire6, Elodie Sanchez2, Caroline Rooryck4,Agne`s Ameil7, Michel Goossens8, Philippe Jonveaux9, Genevie`ve Lefort2,6, Laurence Taine4, Dorothe´e Cailley4, Dominique Gaillard1, Bruno Leheup10, Pierre Sarda2 and David Genevie`ve2 Obesity is a common but highly, clinically, and genetically heterogeneous disease. Deletion of the terminal region of the short arm of chromosome 2 is rare and has been reported in about 13 patients in the literature often associated with a Prader–Willi-like phenotype. We report on five unrelated patients with 2p25 deletion of paternal origin presenting with early- onset obesity, hyperphagia, intellectual deficiency, and behavioural difficulties. Among these patients, three had de novo pure 2pter deletions, one presented with a paternal derivative der(2)t(2;15)(p25.3;q26) with deletion in the 2pter region and the last patient presented with an interstitial 2p25 deletion. The size of the deletions was characterized by SNP array or array-CGH and was confirmed by fluorescence in situ hybridization (FISH) studies. Four patients shared a 2p25.3 deletion with a minimal critical region estimated at 1.97 Mb and encompassing seven genes, namely SH3HYL1, ACP1, TMEMI8, SNTG2, TPO, PXDN, and MYT1L genes. The fifth patient had a smaller interstitial deletion encompassing the TPO, PXDN, and MYT1L genes. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Myt1l Safeguards Neuronal Identity by Actively Repressing Many Non-Neuronal Fates Moritz Mall1, Michael S
LETTER doi:10.1038/nature21722 Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates Moritz Mall1, Michael S. Kareta1†, Soham Chanda1,2, Henrik Ahlenius3, Nicholas Perotti1, Bo Zhou1,2, Sarah D. Grieder1, Xuecai Ge4†, Sienna Drake3, Cheen Euong Ang1, Brandon M. Walker1, Thomas Vierbuchen1†, Daniel R. Fuentes1, Philip Brennecke5†, Kazuhiro R. Nitta6†, Arttu Jolma6, Lars M. Steinmetz5,7, Jussi Taipale6,8, Thomas C. Südhof2 & Marius Wernig1 Normal differentiation and induced reprogramming require human Myt1l (Extended Data Fig. 1). Chromatin immunoprecipita- the activation of target cell programs and silencing of donor cell tion followed by DNA sequencing (ChIP–seq) of endogenous Myt1l programs1,2. In reprogramming, the same factors are often used to in fetal neurons (embryonic day (E) 13.5) and ectopic Myt1l in mouse reprogram many different donor cell types3. As most developmental embryonic fibroblasts (MEFs) two days after induction identified 3,325 repressors, such as RE1-silencing transcription factor (REST) and high-confidence Myt1l peaks that overlapped remarkably well between Groucho (also known as TLE), are considered lineage-specific neurons and MEFs (Fig. 1a, Extended Data Fig. 2, Supplementary repressors4,5, it remains unclear how identical combinations of Table 1). Thus, similar to the pioneer factor Ascl1, Myt1l can access transcription factors can silence so many different donor programs. the majority of its cognate DNA binding sites even in a distantly related Distinct lineage repressors would have to be induced in different cell type. However, unlike Ascl1 targets8, the chromatin at Myt1l donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific a Myt1l Myt1l b Myt1l Ascl1 Random Myt1l 6 Ascl1 + Brn2 endogenous transcription factor Myt1-like (Myt1l) exerts its pro-neuronal Closed 0.030 function by direct repression of many different somatic lineage k programs except the neuronal program. -
Mouse Myt1l Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Myt1l Knockout Project (CRISPR/Cas9) Objective: To create a Myt1l knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Myt1l gene (NCBI Reference Sequence: NM_001093775 ; Ensembl: ENSMUSG00000061911 ) is located on Mouse chromosome 12. 25 exons are identified, with the ATG start codon in exon 6 and the TGA stop codon in exon 25 (Transcript: ENSMUST00000049784). Exon 9 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 9 starts from about 4.3% of the coding region. Exon 9 covers 10.17% of the coding region. The size of effective KO region: ~362 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 9 25 Legends Exon of mouse Myt1l Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 9 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 9 is aligned with itself to determine if there are tandem repeats. -
Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo -
Primepcr™Assay Validation Report
PrimePCR™Assay Validation Report Gene Information Gene Name filamin A interacting protein 1 Gene Symbol FILIP1 Organism Human Gene Summary Description Not Available Gene Aliases FILIP, KIAA1275 RefSeq Accession No. NC_000006.11, NT_007299.13 UniGene ID Hs.696158 Ensembl Gene ID ENSG00000118407 Entrez Gene ID 27145 Assay Information Unique Assay ID qHsaCEP0051038 Assay Type Probe - Validation information is for the primer pair using SYBR® Green detection Detected Coding Transcript(s) ENST00000237172, ENST00000370020, ENST00000393004 Amplicon Context Sequence CCGGGCAGGTGAGCTCAGACCCTTTTCGTGACCTTCCTCTTGTTATTTCTCTTTC CACTTCCTCTATACCATCAAGTCTCTTCTTTAGTAAGTCAACACTGCAGCTTAAT Amplicon Length (bp) 80 Chromosome Location 6:76023675-76023784 Assay Design Exonic Purification Desalted Validation Results Efficiency (%) 96 R2 0.9993 cDNA Cq 25.67 cDNA Tm (Celsius) 77.5 gDNA Cq 24.24 Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 1/4 PrimePCR™Assay Validation Report FILIP1, Human Amplification Plot Amplification of cDNA generated from 25 ng of universal reference RNA Melt Peak Melt curve analysis of above amplification Standard Curve Standard curve generated using 20 million copies of template diluted 10-fold to 20 copies Page 2/4 PrimePCR™Assay Validation Report Products used to generate validation data Real-Time PCR Instrument CFX384 Real-Time PCR Detection System Reverse Transcription Reagent iScript™ Advanced cDNA Synthesis Kit for RT-qPCR Real-Time PCR Supermix SsoAdvanced™ SYBR® Green Supermix Experimental Sample qPCR Human Reference Total RNA Data Interpretation Unique Assay ID This is a unique identifier that can be used to identify the assay in the literature and online. Detected Coding Transcript(s) This is a list of the Ensembl transcript ID(s) that this assay will detect. -
Various Anti-HSPA2 Antibodies Yield Different Results in Studies On
International Journal of Molecular Sciences Article Various Anti-HSPA2 Antibodies Yield Different Results in Studies on Cancer-Related Functions of Heat Shock Protein A2 Dorota Scieglinska *, Damian Robert Sojka, Agnieszka Gogler-Pigłowska, Vira Chumak and Zdzisław Krawczyk Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, 44-101 Gliwice, Poland; [email protected] (D.R.S.); [email protected] (A.G.-P.); [email protected] (V.C.); [email protected] (Z.K.) * Correspondence: [email protected] Received: 20 May 2020; Accepted: 15 June 2020; Published: 16 June 2020 Abstract: Heat shock proteins (HSPs) constitute a major part of the molecular chaperone system and play a fundamental role in cell proteostasis. The HSPA (HSP70) family groups twelve highly homologous HSPA proteins. Certain HSPAs are regarded as important cancer-related proteins, prospective therapeutic targets for cancer treatment, and also as potential cancer biomarkers. Heat Shock Protein A2 (HSPA2), a testis-enriched chaperone and one of the least characterized members of the HSPA family, has recently emerged as an important cancer-relevant protein with potential biomarker significance. Nevertheless, conflicting conclusions have been recently drawn both according to HSPA2 role in cancer cells, as well as to its prognostic value. In this work we have shown that one of the serious limitations in HSPA2 protein research is cross-reactivity of antibodies marketed as specific for HSPA2 with one or more other HSPA(s). Among non-specific antibodies were also those recently used for HSPA2 detection in functional and biomarker studies.