Early-Onset Obesity and Paternal 2Pter Deletion Encompassing the ACP1, TMEM18,Andmyt1l Genes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Obesity Gene, TMEM18, Is of Ancient Origin, Found in Majority Of
Almén et al. BMC Medical Genetics 2010, 11:58 http://www.biomedcentral.com/1471-2350/11/58 RESEARCH ARTICLE Open Access The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children Markus Sällman Almén1†, Josefin A Jacobsson1†, Jafar HA Shaik1, Pawel K Olszewski1,2, Jonathan Cedernaes1, Johan Alsiö1, Smitha Sreedharan1, Allen S Levine2,3, Robert Fredriksson1, Claude Marcus4, Helgi B Schiöth1* Abstract Background: TMEM18 is a hypothalamic gene that has recently been linked to obesity and BMI in genome wide association studies. However, the functional properties of TMEM18 are obscure. Methods: The evolutionary history of TMEM18 was inferred using phylogenetic and bioinformatic methods. The gene’s expression profile was investigated with real-time PCR in a panel of rat and mouse tissues and with immunohistochemistry in the mouse brain. Also, gene expression changes were analyzed in three feeding-related mouse models: food deprivation, reward and diet-induced increase in body weight. Finally, we genotyped 502 severely obese and 527 healthy Swedish children for two SNPs near TMEM18 (rs6548238 and rs756131). Results: TMEM18 was found to be remarkably conserved and present in species that diverged from the human lineage over 1500 million years ago. The TMEM18 gene was widely expressed and detected in the majority of cells in all major brain regions, but was more abundant in neurons than other cell types. We found no significant changes in the hypothalamic and brainstem expression in the feeding-related mouse models. There was a strong association for two SNPs (rs6548238 and rs756131) of the TMEM18 locus with an increased risk for obesity (p = 0.001 and p = 0.002). -
Open Dogan Phdthesis Final.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Functional Characterisation of MYT1L, a Brain-Specific Transcriptional Regulator
This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Functional characterisation of MYT1L, a brain-specific transcriptional regulator Kepa, Agnieszka Maria Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Functional characterisation of MYT1L, a brain-specific transcriptional regulator Agnieszka Kępa 2014 A thesis submitted to King’s College London for the degree of Doctor of Philosophy MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry ABSTRACT Abnormalities in brain development and maladaptive plasticity are thought to underlay a range of neurodevelopmental and neurological disabilities and disorders, such as autism spectrum disorders, schizophrenia and learning disability. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
A Compendium of Co-Regulated Protein Complexes in Breast Cancer Reveals Collateral Loss Events
bioRxiv preprint doi: https://doi.org/10.1101/155333; this version posted June 26, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A compendium of co-regulated protein complexes in breast cancer reveals collateral loss events Colm J. Ryan*1, Susan Kennedy1, Ilirjana Bajrami2, David Matallanas1, Christopher J. Lord2 1Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland 2The Breast Cancer Now Toby Robins Breast Cancer Research Centre and CRUK Gene Function Laboratory, The Institute of Cancer Research, London, SW3 6JB, United Kingdom. * Correspondence: [email protected] Summary Protein complexes are responsible for the bulk of activities within the cell, but how their behavior and composition varies across tumors remains poorly understood. By combining proteomic profiles of breast tumors with a large-scale protein-protein interaction network, we have identified a set of 258 high-confidence protein complexes whose subunits have highly correlated protein abundance across tumor samples. We used this set to identify complexes that are reproducibly under- or over- expressed in specific breast cancer subtypes. We found that mutation or deletion of one subunit of a complex was often associated with a collateral reduction in protein expression of additional complex members. This collateral loss phenomenon was evident from proteomic, but not transcriptomic, profiles suggesting post- transcriptional control. Mutation of the tumor suppressor E-cadherin (CDH1) was associated with a collateral loss of members of the adherens junction complex, an effect we validated using an engineered model of E-cadherin loss. -
Supporting Information Supplementary Methods Patients for Whole Genome Sequencing and Validation Cohort. Heparinized Bone Marrow
Supporting Information Supplementary Methods Patients for whole genome sequencing and validation cohort. Heparinized bone marrow samples were obtained from 8 RAEB patients with informed consent for WGS according to the ethics review board of Shanghai Institute of Hematology. Briefly, these 8 patients were 4 RAEB-1, 4 RAEB-2, 5 males, 3 females, 1 with complex karyotype, 1 with +8, 5 with normal karyotype, and classified as intermediate to very high risk level. 6 patients died 4-23 months after diagnosis of infection, hemorrhage, cerebral infarction or evolution to AML (complete information see Table S1). The validation cohort consisted of 188 various subtypes of MDS patients diagnosed and treated in Shanghai Ruijin Hospital and Shanghai No.6 People’s Hospital. All patients provided written informed consent. Bone marrow and paired buccal samples were obtained after informed consent. DNA sample preparation. Mononuclear cells (MNC) were separated by density gradient centrifugation using Ficoll in 8 RAEB patients and 188 MDS patients from validation cohort. Subsequently, CD34+ cells were isolated by magnetic cell separation (Miltenyi Biotech, Bergisch Gladbach, Germany) to reach a purity of 89-97.7% (average: 93.1%) in 8 RAEB patients. Flow through CD34- cells were also collected for analysis. Skin biopsy was obtained for analysis of normal genome and extracted by DNeasy Blood & Tissue Kit (Qiagen). Genomic DNA of CD34+ cells were isolated by QuickGene DNA whole blood kit L (FUJIFILM, Life Science). Genomic DNA of MNC from validation set was extracted by Wizard® Genomic DNA Purification Kit (Promega). DNA library preparation. Genomic DNA was sheared by sonication 1 and adaptors were ligated to the resulting fragments. -
Myt1l Safeguards Neuronal Identity by Actively Repressing Many Non-Neuronal Fates Moritz Mall1, Michael S
LETTER doi:10.1038/nature21722 Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates Moritz Mall1, Michael S. Kareta1†, Soham Chanda1,2, Henrik Ahlenius3, Nicholas Perotti1, Bo Zhou1,2, Sarah D. Grieder1, Xuecai Ge4†, Sienna Drake3, Cheen Euong Ang1, Brandon M. Walker1, Thomas Vierbuchen1†, Daniel R. Fuentes1, Philip Brennecke5†, Kazuhiro R. Nitta6†, Arttu Jolma6, Lars M. Steinmetz5,7, Jussi Taipale6,8, Thomas C. Südhof2 & Marius Wernig1 Normal differentiation and induced reprogramming require human Myt1l (Extended Data Fig. 1). Chromatin immunoprecipita- the activation of target cell programs and silencing of donor cell tion followed by DNA sequencing (ChIP–seq) of endogenous Myt1l programs1,2. In reprogramming, the same factors are often used to in fetal neurons (embryonic day (E) 13.5) and ectopic Myt1l in mouse reprogram many different donor cell types3. As most developmental embryonic fibroblasts (MEFs) two days after induction identified 3,325 repressors, such as RE1-silencing transcription factor (REST) and high-confidence Myt1l peaks that overlapped remarkably well between Groucho (also known as TLE), are considered lineage-specific neurons and MEFs (Fig. 1a, Extended Data Fig. 2, Supplementary repressors4,5, it remains unclear how identical combinations of Table 1). Thus, similar to the pioneer factor Ascl1, Myt1l can access transcription factors can silence so many different donor programs. the majority of its cognate DNA binding sites even in a distantly related Distinct lineage repressors would have to be induced in different cell type. However, unlike Ascl1 targets8, the chromatin at Myt1l donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific a Myt1l Myt1l b Myt1l Ascl1 Random Myt1l 6 Ascl1 + Brn2 endogenous transcription factor Myt1-like (Myt1l) exerts its pro-neuronal Closed 0.030 function by direct repression of many different somatic lineage k programs except the neuronal program. -
Mouse Myt1l Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Myt1l Knockout Project (CRISPR/Cas9) Objective: To create a Myt1l knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Myt1l gene (NCBI Reference Sequence: NM_001093775 ; Ensembl: ENSMUSG00000061911 ) is located on Mouse chromosome 12. 25 exons are identified, with the ATG start codon in exon 6 and the TGA stop codon in exon 25 (Transcript: ENSMUST00000049784). Exon 9 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 9 starts from about 4.3% of the coding region. Exon 9 covers 10.17% of the coding region. The size of effective KO region: ~362 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 9 25 Legends Exon of mouse Myt1l Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 9 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 9 is aligned with itself to determine if there are tandem repeats. -
Submitted As an Original Research Paper to XXXXXX Deletions and De
SOX11 deletions and mutations in human developmental disorders Submitted as an Original Research Paper to XXXXXX Deletions and de novo variants involving SOX11 are associated with a human neurodevelopmental disorder 1 SOX11 deletions and mutations in human developmental disorders Abstract SOX11 is a transcription factor which is proposed to play a role in brain development. A role for SOX11 in human developmental disorders was suggested by a recent report of SOX11 mutations in 2 patients with Coffin-Siris syndrome. Here we further investigate the role of SOX11 variants in neurodevelopmental disorders. We identified 6 individuals with chromosome 2p25 deletions involving SOX11. These individuals had non-syndromic intellectual disability with microcephaly, developmental delay and shared dysmorphic features. We next utilised trio exome sequencing to identify 3 novel de novo SOX11 variants. Two of these individuals had a phenotype compatible with Coffin-Siris syndrome while 1 had non-syndromic intellectual disability. The pathogenicity of these mutations was confirmed using an in vitro gene expression system. To further investigate the role of loss of SOX11 in microcephaly we knocked down SOX11 in xenopus. Morphants had significant reduction in head size compared to controls. This suggests that SOX11 loss of function can be associated with microcephaly. We thus propose that SOX11 deletion or mutation can present with either non-syndromic intellectual disability or a Coffin-Siris phenotype. 2 SOX11 deletions and mutations in human developmental disorders Introduction The vertebrate SOX protein family consists of 30 genes [Pillai-Kastoori et al, 2015]. The SOX genes are classified into 8 subfamilies (SOXA-SOXJ) on the basis of sequence similarity. -
Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth
ORIGINAL www.jpeds.com • THE JOURNAL OF PEDIATRICS ARTICLES Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth Joan Kaufman, PhD1,2,3, Janitza L. Montalvo-Ortiz, PhD3, Hannah Holbrook,BA4, Kerry O'Loughlin,BA4, Catherine Orr, PhD4, Catherine Kearney,MA1, Bao-Zhu Yang, PhD3, Tao Wang, PhD5,6, Hongyu Zhao, PhD5, Robert Althoff, MD, PhD4, Hugh Garavan, PhD4, Joel Gelernter,MD3,7, and James Hudziak,MD4 Objective To determine if measures of adverse childhood experiences and DNA methylation relate to indices of obesity in youth. Study design Participants were derived from a cohort of 321 8 to 15-year-old children recruited for an investi- gation examining risk and resilience and psychiatric outcomes in maltreated children. Assessments of obesity were collected as an add-on for a subset of 234 participants (56% female; 52% maltreated). Illumina arrays were used to examine whole genome epigenetic predictors of obesity in saliva DNA. For analytic purposes, the cohort ana- lyzed in the first batch comprised the discovery sample (n = 160), and the cohort analyzed in the second batch the replication sample (n = 74). Results After controlling for race, sex, age, cell heterogeneity, 3 principal components, and whole genome testing, 10 methylation sites were found to interact with adverse childhood experiences to predict cross-sectional mea- sures of body mass index, and an additional 6 sites were found to exert a main effect in predicting body mass index (P < 5.0 × 10−7, all comparisons). Eight of the methylation sites were in genes previously associated with obesity risk (eg, PCK2, CxCl10, BCAT1, HID1, PRDM16, MADD, PXDN, GALE), with several of the findings from the dis- covery data set replicated in the second cohort. -
The Role of Genetic Polymorphisms in Chronic Pain Patients
International Journal of Molecular Sciences Review The Role of Genetic Polymorphisms in Chronic Pain Patients Nebojsa Nick Knezevic 1,2,3,*, Tatiana Tverdohleb 1, Ivana Knezevic 1 and Kenneth D. Candido 1,2,3 1 Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA; [email protected] (T.T.); [email protected] (I.K.); [email protected] (K.D.C.) 2 Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA 3 Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA * Correspondence: [email protected]; Tel.: +1-(773)-296-5619; Fax: +1-(773)-296-5362 Received: 27 April 2018; Accepted: 1 June 2018; Published: 8 June 2018 Abstract: It is estimated that the total annual financial cost for pain management in the U.S. exceeds 100 billion dollars. However, when indirect costs are included, such as functional disability and reduction in working hours, the cost can reach more than 300 billion dollars. In chronic pain patients, the role of pharmacogenetics is determined by genetic effects on various pain types, as well as the genetic effect on drug safety and efficacy. In this review article, we discuss genetic polymorphisms present in different types of chronic pain, such as fibromyalgia, low back pain, migraine, painful peripheral diabetic neuropathy and trigeminal neuralgia. Furthermore, we discuss the role of CYP450 enzymes involved in metabolism of drugs, which have been used for treatment of chronic pain (amitriptyline, duloxetine, opioids, etc.). We also discuss how pharmacogenetics can be applied towards improving drug efficacy, shortening the time required to achieve therapeutic outcomes, reducing risks of side effects, and reducing medical costs and reliance upon polypharmacy.