INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this .

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.

2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.

3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below the first row and continuing on until complete.

4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.

5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

Xerox University Microfilms 300 North Zeeb Road Ann Arbor, Michigan 48106 77-2465 MOORE, David Lee, 1944* DISTRIBUTIONS OF FRESH WATER , EXCLUDING DIATOMACEAE, IN NORTHEASTERN OHIO WITH REFERENCE TO GLACIAL HISTORY. The Ohio State University, Ph.D., 1976 Botany

Xerox University Microfilms,a™Arbor,Michigan 401 oe

© 1976

DAVID LEE MOORE

ALL RIGHTS RESERVED DISTRIBUTIONS OF FRESH WATER ALGAE,

EXCLUDING DIATOMACEAE, IN NORTHEASTERN OHIO

WITH REFERENCE TO GLACIAL HISTORY

DISSERTATION

Presented in Partial Fulfillment of the Requirements

for the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

David L. Moore, B.A., B.S., M.S. 1976

Reading Committee Approved By

Dr. Clarence E. Taft

Dr. Emanuel D. Rudolph

Dr. H. P. Hostetter Advisor

Department of Botany DEDICATION

To the memory of my father, Lawrence W. Moore, whose untimely death during the written portion of my General Examination made com­ pletion of this project questionable.

ii ACKNOWLEDGEMENTS

Grateful appreciation is expressed to Dr. Clarence Taft for his direction and encouragement during the several stages of this research.

Appreciation is expressed as well to Dr. D.R. Whitney and the Statis­ tics Laboratory of the Department of Statistics, The Ohio State Uni­ versity for their help and suggestions, and to Dr. Jane Forsyth of

Bowling Green State University for assistance in determination of geological features, and to Dr. Charles King of The Ohio Biological

Survey for his suggestions from his field expertise.

Funding for this research was provided in part by The Ohio

Biological Survey and the Department of Botany, The Ohio State Uni­ versity.

iii AUTOBIOGRAPHY

I, David L. Moore, was 'born in Bellefontaine, Ohio on 16 Feb­

ruary, I9UU. The first two years of public school were spent at

Rosewood School. After moving to - Pennsylvania in 1952, secondary

schooling resumed at Scandia Elementary School. Junior and Senior

High School were completed in Warren, Pennsylvania, graduating in 1 9 6 2 .

In 1 9 6 7 I took my B.S. in Music at Eastern Nazarene College, Quincy,

Massachusetts. After two years in the U.S. Army as Sgt. and an over­

seas tour of duty in Viet Nam, I completed the B.A. in Biology at

Eastern Nazarene College, including two summers at The Adirondack

Field Biology Station, Wilmington, New York. The M.S. in Botany was

completed at The Ohio State University in 1973 under Dr. Ronald

Stuckey. Two summers were spent at F.T. Stone Laboratory, Put-in-Bay,

Ohio, followed by a summer of work at The University of Michigan

Biological Station, Douglas Lake. In 197^ the Ph.D. in Phycology

was completed at The Ohio State University under Dr. Clarence Taft.

In September, 197^ j ^ will assume the position Assistant Professor of

Biology at Utica College of Syracuse University, Utica, New York.

iv TABLE OF CONTENTS

Dedication — £[*

Acknowledgements

Autobiography

List of Tables ^

List of Figures •

Introduction ^

Methods 2

Results y

Discussion gl*

Conclusions

Literature Cited tjb

Part A: References utilized in ecological studies

Part B: References utilized in taxonomic identification

Appendix I Statistical Procedures

Appendix II List 6 9

Appendix III Y Groupings 109 LIST OF TABLES

Page

Table 1. CROSSTABS for PA001 to FA859 with GLSTAT (glacial 9

status: 1. Unglaciated, 2. Illinoian glaciated,

3. Wisconsin glaciated).

Table 2. CROSSTABS for PA001 to PA859 with GLSTAT (glacial 1^

status: Glaciated verses Unglaciated).

Table 3* PEARSON CORR for PA001 to PA859 with pH. 17

Table U. Phylogenetic groupings of taxa based on greater than 22

expected probabilities of concurrence among the study

sites.

Table 5. Analysis of Variance for Y groupings: 28

Y22 microporum explained in detail.

Table 6. Analysis of Variance for Y values. 30

Table 7» Format of data as punced on IBM cards 62

(standard 80 column width).

vi LIST OF FIGURES Page

Figure 1. Outline map of Ohio with study area indicated. k

Figure 2. Summary of identified taxa. 8

Figure 3. Breakdown of Analysis of Variance for Y ^22* 36

Figure h. Breakdown of Analysis of Variance for V31. 37

Figure 5. Geologic map and cross section of Ohio. 38 Figure 6. Glacial deposits of Ohio 39 h8 Figure 7- Physiographic sections of Ohio. Figure 8. Ohio's soil regions. h9

vii INTRODUCTION

General comments are scattered throughout the phycological literature regarding the occurrence of algae at particular locations with supportive ecological data. Many papers, particularly in recent years have elucidated nutrition (foods, mineral ions, and vitamins)

and physiological ranges favoring or hindering the growth of algal taxa. The early papers of W. and G.S. West (1909) and K. Munster

StrSm (192*0, "based on their extensive field collections and study, recounted on the general distributions of groups of algae and hypothe­

sized the parameters involved. W. and G.S. West (1909) noted the

abundance of desmids in the British flora and concluded that (l) the rich desmid area corresponded very accurately with areas of old geological formations, with igneous rock outcrops, that is with pre-

cambrian and older paleozoic rocks (together with intrusive igneous material), and (2) these were areas of greatest rainfall, resulting

in wet, mossy hillsides with numerous bogs.

Strcim (192*0 provided an overview of ideas dealing with the geographical distributions of freshwater algae and plankton. He designated four main groups or localities where freshwater algae

grow: (l) wet or inundated rocks, (2) subaerial growing places,

(3) freshwater localities in a stricter sense, and (if) snow or ice.

The subaerial habitats In the tropics contained the greatest number

1 of species and quantities, particularly in the Myxophyceae. Temper­ ate zones are characterized hy fewer species.

Other authors have discussed geographic distributions of algae based on field observations made by themselves and by others: Fritsch

(1907, 1931), Fritsch and Rich (1907), Pevalek (1916), Hughes (19^2),

Irene^-Marie (1939)? Butcher (19^6), and Rodhe (1 9 U8 ). Tryon and

Hartman (1959) edited a series of papers on the ecology of algae, delivered at a symposium at the Pymatuning Laboratory of Field

Biology, Jamestown, Pennsylvania. Both general and specific informa­ tion on factors affecting the distribution of algae were discussed.

The periodicity of algae has been discussed by Transeau (1913)?

Griffiths (1912), Delf (1915)? Strom (192*0, Hodgetts (1921, 1922),

Brown (1 9 0 8 ), Comere (1906), Fritsch (1903? 1906, 1 9 0 7 ), Fritsch and Rich (1907, 1909)? Kofoid (1908), Pevalek (1916), Rabanus (1915)? and Lund (1971).

This study was undertaken to determine whether or not a correla­ tion exists between the distribution of algal taxa and substrate based on patterns of glaciation. Patterns of distribution were correlated with a series of parameters: glacial status, glacial feature, pH, temperature, seasonal periodicity, habitat type, and land usage. Statistical tests on the data by means of computer pro­ grams was an attempt at more precise correlation. METHODS

A region delimited by all or parts of twenty counties was

selected as the study area (Fig. 1), which encompassed terrain

characterized as Wisconsin glaciated, Illinoian glaciated, or un­

glaciated. Geologic data in Ohio Division of Geological Survey

Bulletins (Forsyth, 1973 9 Root et atl, 1961, Totten, 1973 > White,

1 9 6 7 ) was supplimented by personal communication with Dr. Jane

Forsyth of Bowling Green State University as an aid in interpretation and determination of substrate and its influence on surface water quality in the study area.

Collections were made from October 1973 until November 1975*

Collections were usually made every two weeks from late March until early November and at three week intervals from November to March.

Several criteria were employed as an aid in determining sample sites: preliminary analysis and selections from topographic sheets, personal communication with area residents, and visual, recognizance when traveling by car through the study area. As a result, diverse habitat types such as ponds (less than four hectares), lakes (greater than four hectares), streams, ditches, seeps, swamps, and marshes were sampled.

Approximately 6,500 miles were traveled to adequately sample the study area. Most study sites were visited at least twice, at dif­ ferent seasons in order to gain a representation of those taxa with Mi Illinoian glaciated ID Y/lsconsln glaciated

Figure 1. Outline map of Ohio with study area indicated in

bold line. 5 seasonally limited, occurrence. Some floristically diverse sites were sampled up to seven times over the two years.

To facilitate handling and storage, four dram screw cap vials were chosen as collecting "bottles. Various collection methods were employed. In shallow water, grab samples were made by immersing collecting bottles just below the surface and allowing entering water to carry in both benthic and suspended forms. To concentrate organisms for laboratory analysis, sample water was poured through a # 20 mesh plankton tow net. Filamentous forms were collected with forceps, and squeezings were collected from algal mats. A turkey baster was utilized to collect from seeps, ditches, and shallow shorelines or puddles. Where water depth was .5 meters or greater, a $ 20 mesh plankton tow net was used to obtain representative plankton samples. If immersed or submersed vegetation or debris was present, scrapings and remains were collected to obtain addi­ tional epiphytic forms as well as those entangled in the mass.

Periodically, bulk samples were obtained for culture purposes. For each of U60 sample sites temperature, pH, habitat type, land usage, surficial geology, glaciation status, and glacial feature were noted.

Measurements of pH were made using both Hach Model AL-36B Portable

Test Kit and Hydrion papers.

Half of each sample was usually preserved with Transeau’s

Solution (6 parts water, 3 parts 95$ ethanol, 1 part U0$ formalin) to assure preservation of nannoplankton "before consumption "by captive predators or dissolution following death. The other half of the sample was maintained at either ^ C under 15 watts incandescent lighting or on culture racks at 22 C under ^000 LUX provided by one warm and five cool white flurescent lamps on a 12:12 LD (Light -

Dark) cycle. The latter was an effort to promote sexual reproduction of the taxa problematical to identify in the vegetative state.

All samples were numbered and dated by collection site, and then analyzed for algal taxa present using a Leitz Wetzler SM-LUX micro­ scope with magnification range of 100 to 1000 X. A minimum of ten slides per sample bottle were analyzed for taxa present. Presence- absence and general abundance data were recorded for each taxon.

If taxa new to the sample were still being recorded, additional slides were analyzed until no additional taxa appeared. A total of

1296 vials were analyzed from U60 collection sites. Semi-permanent slides from samples of each site were made using 10$ karo-formalin solution. RESULTS

Initial grouping of study sites by like physical parameters resulted in 137 dissimilar sites. The 859 algal taxa identified

from these sites were each tagged with a distinctive PA number

(Presence or Absence) for data tabulation (see appendix 1 for a com­ plete listing of PA001 to PA859)• The relative numbers of algal taxa defined by taxonomic groupings are presented (Fig. 2). The most important groups in terms of number of taxa are the families

Desmidiaceae and Oocystaceae (part of ).

The initial hypothesis was to determine whether or not any

correlation existed between the distribution of algal taxa and the pattern of glaciation. An SPSS CROSSTABS (Nie, 1975) of PA001 to

PA859 with GLSTAT (glacial status: 1. unglaciated, 2. Illinoian

glaciated, and 3- Wisconsin glaciated) generated correlations for

each of the PA-numbers (Table 1.). Tests of statistical significance

only indicate the likelihood that a relationship exists in the sample, but does not tell how strong the relationship might be quantitatively.

Therefore relationships may be difficult to interpret since a rela-

tionshij) may be statistically significant, and yet be substantively unimportant.

A significance level of less than .05 is considered generally

as a positive correlation between the PA-taxon and the GLSTAT

7 8

Chlorophyta : Volvocales..... TetrasporaXes... Ulotrlchales.... MicrosporaXes... CyXindrocapsaXes .. CladophoraXes..• Oedogoniales.... Chlorococcales.. ZygnemataXes.... Deemldiaceae... CharaXes...... Xanthophyta : HeterochloridaXes RhizochlorldaXes Heterococcales.. HeterotriOaales. Heterosiphonales Chrysophyta : Chrysomonadalea. Rhizochrysldales EugXenophyta : EuglenaXes..... Pyrrhophyta : Perid iniaXes.... Cyanophyta : ChroococcaXes... Chamaes iphonaXes HormogonaXes.... 100 150 & I

Figure 2. Summary of identified taxa. Table 1. CROSSTAES for PA001 to PA859 with GLSTAT (glacial status: Unglaciated verses Illinoian glaciated verses Wis­ consin glaciated); percentages indicate the proportion of all study sites, Unglaciated, Illinoian glaciated, or Wisconsin glaciated. A percentage greater than 29.9 + 1.5 for Ungla­ ciated is considered statistically significant, whereas a percentage greater than 15.3 ± 0.75 for Illinoian glaciated and 5^.7 + 2.7 for Wisconsin glaciated Is considered statis­ tically significant.

PA % Significance Taxon GISTAT

009 8 0 .0 0.0413 Anabaena oscillarioides UNG 018 55.2 0.0033 Anklstrodesmus falcatus UNO 019 8 0 .0 0.0431 Ankistrodesmus falcatus UNG var. mirabllis 027 60 .0 0.0142 Aphanocapsa elachista ILL 142 100.0 0.0276 pseudolunula UNG 147 36.4 0.0054 Closterium striolatum ILL 54.5 UNG 151 70.6 0.0003 Closterium venus UNG 152 68.4 0.0004 Closterium venus UNG var. incurvum 154 46.4 0.0384 Coelastrum microporum UNG 157 57.1 0.0049 Coelosphaerlum dubium ILL 159 60.0 0.0228 Coelosphaerium naegellanum UNG 173 8 0 .0 0.0431 bireme UNG 175 66.7 0.0307 Cosmarium biretum ILL var, triglbberum Table 1• Continued. 10

PA % Significance Taxon GLSTAT

187 66.7 0.0398 Cosmarium dldymochondrum ILL 194 58.3 0.0505 Cosmarium geometricum UNG var. suecium 202 29.4 0.0429 Cosmarium humile UNG 211 66.7 0.0364 Cosmarium laeve UNG var. septentrionale

223 64.3 0.0124 Cosmarium pachydermum UNG var. aetillopicum 224 5 0 .0 0.0777 Cosmarium phaseolus ILL forma minor

228 57.1 0.0359 Cosmarium portianum UNG 236 37.5 0.0362 Cosmarium quadrum ILL var. minus 238 75.0 0.0032 Cosmarium rectangularis ILL 240 57.1 0.0359 Cosmarium regnellil UNG 254 80.0 0.0431 Cosmarium subochthodes 260 66.7 0.0364 Cosmarium sulcatum UNG var. sumatranum 264 75.0 0.0027 Cosmarium turpinil ILL var. eximium 267 100.0 0.0080 Cosmarium undulatum UNG 271 100.0 0.0080 Cosmarium vexatum UNG 276 60.0 0.0154 Cruclgenia rectangularis UNG 290 7 0 .0 0.0132 Dactylococcopsls smlthli UNG 296 69.2 0.0038 DIctyoBphaerlum pulchellum UNG 298 100.0 0.0080 Dlnobryon bavarlcum UNG Table 1. Continued. 11

FA % Significance Taxon GLSTAT

299 63.6 0.0389 Dlnobryon divergens UNG 300 45.5 0.0125 Dlnobryon sertularia ILL 382 100.0 0.0002 Hyalothece dlssiliens ILL forma circularis 388 71.4 0.0429 Kirchnerlella lunarla UNG var. d ianae UNG 404 52.4 0.0503 Lepocinclls playfairiana UNG 407 100.0 0.0276 Iyngbya aesturrll UNG 438 40. 0 0.0394 Mlcrasterias truncata ILL 440 52.4 0.0161 Microcoleus lacustrlB UNG 459 19.6 0.0325 Nodularia spumigena UNG 498 33.3 0.0363 Osclllatoria agardhii ILL 504 50.0 0.0057 Oscillatoria bornetli UNG 543 45.5 0.0062 Fenlum cucurbltinum UNG 546 54.5 0.0396 Feridinlum cIncturn UNG 27.3 ILL 577 63.6 0.0258 Fhacus UNG var. maxima 582 100.0 0.0006 Fhormidlum minnesotense UNG 596 40.0 0.0562 Pithophora varla ILL 592 50.0 0.0488 Fleodorina callfomica ILL 628 5 0 .0 0.0485 granuletus UNG 642 51.5 0.0045 Scenedesmus raclborskl UNG forma granulatus

657 100.0 0.0276 Spirogyra aequinoctalis UNG Table 1. Continued 12

PA Significance Taxon GISTAT

665 30.8 0.0467 Splrullna laxlsslma ILL 687 100.0 0*0276 dIspar UNG 694 80.0 0.0431 Staurastrum grande UNG var. parvum 702 100.0 0.0080 Staurastrum neglectum UNG 706 66.7 0.0307 Staurastrum ornatum ILL var. asperum 711 83.3 0.0090 Staurastrum pseudopachrhynchum UNG 728 100.0 0.0509 Stlgonema mamillosum ILL 747 46*2 0.0208 mutlcum UNG forma punctulaturn

769 69.2 0.0038 Trachelomonas acumlnatus UNG 777 42.9 0.0436 Trachelomonas dybowskll ILL 784 64.3 0.0083 Trachelomonas hlsplda UNG var. crenulatocollarie

787 55.0 0.0116 Trachelomonas lacustrls UNG 792 100.0 0.0276 Trachelomonas rotunda UNG 810 100.0 0.0037 Trlbonema affine ILL 812 100.0 0.0276 Tribonema bombycinum UNG 820 84.2 0.0201 varlabllls WIS 835 100.0 0.0509 Zygnema inslgne ILL 837 66.7 0.0398 Mougeotia sp. ILL 838 100.0 0.0509 Spirogyra sp. ILL variable. When considering the GLSTAT values 1. unglaciated,

2. Illinoian glaciated, and 3* Wisconsin glaciated, 9^- positive

correlations -were generated (Appendix 2, program 3 CROSSTABS for

the variables GLSTAT, GLFEAT (glacial feature), HABTYPE (habitat type), MNTHCOL (month collected), LDUSGE (land usage), and general

calculations). If the GLSTAT variable value labels are combined as

1. glaciated and 2. unglaciated, the positive correlations total

72. Of these ^3 taxa correlate with unglaciated sites, and 29 taxa

correlate with glaciated sites (Table 2).

Correlations of PA001 to PA859 with pH required a program capable of handling continuous value variables as opposed to the discrete value variables in CROSSTABS. Hence the SPSS program

PEARSON CORR or Pearson Product-Momentum Correlation Coefficients

(Nie, 1975) was employed (Appendix 2, program U). The results generated are summarized in table 3. The mean pH was 6.4927a but may be considered as 6.5. A significance level of less than .05

supports a positive correlation. A positive r value indicates that a particular taxon occurred with greater than expected statistical probability at a pH higher than 6.5a while a negative r indicates a positive correlation with pH values less than 6.5. Of the 93 taxa with positive correlations, 62 occurred with greater than statistically expected frequency at higher pH values, and 31 taxa occurred with greater than statistically expected frequency at lower pH values. 14 Table 2. CROSSTABS for PA001 to FA859 with GLSTAT (glacial status: Glaciated verses Unglaciated); percentage Indicates the proportion of all the study sites wherein a particular taxon occurred of a particular status, Glaciated or Ungla­ ciated. A percentage greater than 29.9 + 1.5 for Unglaciated is considered statistically significant, while a percentage greater than 70.1 + 3.5 for Glaciated is considered statis­ tically significant.

PA % Significance Taxon GLSTAT

009 80.0 0.0462 Anabaena oscillarloides UNG 018 55.2 0.0018 Ankistrodesmus falcatus UNG 019 80.0 0.0462 Ankistrodesmu3 falcatus UNG var. mirabilis 041 50.0 0.0063 braunil UNG 142 100. 0 0.0411 Closterium pseudolunula UNG 151 70.5 0.0003 Closterium venus UNG 152 68.4 0.0002 Closterium venus var. incurvum UNG 154 46.4 0.0566 Coelastrum microporum UNG 159 60.0 0.0166 Coelosphaerium dubium UNG 173 80.0 0.0462 Cosmarium bireme UNG 194 58.3 0.0549 Cosmarium geometricum var. suecicum UNG 202 71.4 0.0416 Cosmarium humile UNG 211 66.7 0.0346 Cosmarium laeve var. octangularis UNG Table 2. Continued 15

FA % Significance Taxon GLSTAT

223 64.3 0.0079 Cosmarium pachydermum var. aethiopicum UNG 224 50.0 0.0466 Cosmarium phaseolus var. minor UNG 228 57.1 0.0415 Cosmarium portianum UNG 240 57.1 0.0415 Cosmarium regnellii UNG 254 80.0 0.0462 Cosmarium subochthodes UNG

260 6 6 .7 0.0346 Cosmarium sulcatum var. sumatranum UNG

267 100.0 0.0107 Cosmarium undulatum UNG 271 100.0 0.0107 Cosmarium vexatum UNG 276 60.0 0.0166 Crucigenia rectangularis UNG

290 70.0 0.0119 Dactylococcopsis smith.il UNG 296 69.2 0.0033 Dictyosphaerium pulchellum UNG 298 100.0 0.0107 Dlnobryon bavaricum UNG 299 63.9 0.0276 Dlnobryon divergens UNG 388 71.4 0.0416 Kirchneriella lunarls var. dianae UNG 4 04 55.0 0.0290 Lepocinclis playfalriana UNG 407 100.0 0.0411 Lyngbya aestuarli UNG 440 57.9 0.0094 Microcoleus lacustris UNG 459 61.5 0.0216 Nodularia spumigena UNG CO

500 * 0.0382 Oscillatoria amphibia UNG 504 56.0 0.0030 Oscillatorla bornetil * UNG 543 45.4 0.0436 cucurbltinum UNG Table 2. Continued. 16

PA % Significance Taxon GLSTAT

577 63.6 0.0276 Phacus spirogyra var. maxima UNG 582 100.0 0.0007 Phormidium minnesotense UNG 64 2 51.6 0.0055 Scenedesmus reciborski var. granulatus UNG 657 100.0 0.0411 Spirogyra aequinoctialls UNG 687 100.0 0.0411 Staurastrum dispar UNG 694 80.0 0.0462 Staurastrum grande var. parvum UNG 702 100.0 0.0107 Staurastrum neglectum UNG 711 83.3 0.0137 Staurastrum pseudopachyrhynchura UNG 769 69.2 0.0033 Trachelomonas acuminatus UNG 784 64.3 0.0079 Trachelomonas hispida var. crenulatocollis fa. recta UNG 787 55.0 0.0171 Trachelomonas lacustrls UNG 792 100.0 0.0411 Trachelomonas rotunda UNG 812 100.0 0.0411 Trachelomonas bombycinum var. tenue UNG Table 3. PEARSON CORR for PA001 to PA860 with pH. The mean 17

pH value =6.5* H = greater than 6.5, L = less than 6 .5 .

FA Relative Significance Taxon pH r

004 H 0.01 I Anabaena afflnls 018 L -0.039 Ankistrodesmus falcatus 032 H 0.053 Aphanochaete repens 034 H 0.058 Aphanothecae microscopica

037 H 0.012 brauniana 039 L - 0.058 Asterococcus limneticus 049 H 0.012 Calothrix braunii 050 H 0.043 Calothrix epiphytlca 058 H 0.014 Chamaesiphon incrustans

066 H 0.018 Characlum debaryanum 073 H 0.015 Characium pringsheimii 081 H 0.021 Chlamydomonas mucicola 095 H 0.012 Chroococcus limneticus var. dIstans 100 L -0.019 Chroococcus pallidus 106 H 0.013 Cladophora glomerata 134 L - 0. 026 Closterium moniliferum 150 L - 0.059 Closterium ulna

155 L - 0.054 Coelastrum reticulaturn

156 H 0.037 Coelastrum sphaericum 157 L - 0.059 Coelosphaerlum dublum 160 H 0.001 Coelosphaerium pallidum Table 3. Continued 18

PA Relative Significance Taxon pH r

184 L - 0.036 Cosmarlum dentatum 187 H 0.059 Cosmarlum didymochondrum 190 ■ H 0.003 Cosmarlum favum 196 H 0.001 Cosmarlum granatum 222 H 0.0 03 Cosmarlum ochthosticum 242 H 0.043 Cosmarlum regnesl var. montanum 245 H 0.012 Cosmarlum scotlanum 251 L -0.017 Cosmarlum subcrenatum 253 L - 0.058 Cosmarlum subcuccumls 272 H 0.012 Cruclgenia fenestrata 293 L -0.047 Desmldium swartzll 301 H 0.028 Dinobryon sociale 305 L -0.038 Elakotothrix gelatlnosa 309 H 0.012 crassicolle 312 L - 0.029 Euastrum gemmaturn 315 H 0.003 Euastrum verrucosum var, reducturn

318 H 0.019 Euglena acus var, riglda 322 H 0.007 Euglena elastica 331 L - 0.035 Euglena sangulnea 351 H 0.034 Q-loeocapsa calcarea 353 H 0.003 Q-loeocapsa punctata 374 H 0.001 Gonium aoclale Table 3. Continued. 19

PA Relative Significance Taxon PH r

378 L - 0.049 Harpochytrlura hyalothecae 384 H 0.021 Hydrodictyon reticulatum 400 H 0.033 Lepocinclls buetschlll 426 H 0.025 Merismopedia elegans 434 H 0.022 Mlcrasterlas americana var. boldtil

437 L -0.029 Mlcrasterlas radlata 448 L -0.058 Monoraphidium braunii 463 H 0.037 Nostoc punctlforme 491 H 0.012 Ophlocytiura capltatum 499 H 0.029 Oscillatbrla amoena 504 L -0.057 Osclllatorla bornetil 521 H 0.009 Osclllatorla tenuis var. natans 522 L -0.042 Osclllatorla tenuis var. tergestina 533 H 0.020 duplex var. gracilinum 542 H 0.010 Pediastrum tetras var. tetradon 545 L -0.006 Peridinium borgei 546 L -0.009 Perldlnium cIncturn 550 H 0.036 Peridinium volzl 569 H 0.013 Phacus morll var. inseeta 570 L -0.043 Phacus nordstedtli 578 H 0.037 PhacuB suecius 582 L -0.008 Phormldium mlnnesotense Table 3* Continued 20

PA Relative Significance Taxon PH r

585 H 0.012 Pithophora oedogonla 506 H 0.011 Pithophora varia 599 L -0.058 truncatum 618 H 0.003 Scenedesmu3 arcuatus var. platydisca 629 H 0.005 Scenedesmus incrassatulus var. raononae 632 H 0.056 Scenedesmus longus var.

635 H 0.028 Scenedesmus ovalternus var. graevenitxii 651 H 0.001 amerlcanum var. undulatum 671 H 0.003 Staurastrum aculeatum 683 L -0.02A Staurastrum cuspidatum 689 L -0.059 Staurastrum glabrum 706 H 0.034 Staurastrum ornaturn var. asperum 710 H 0.034 Staurastrum polymorphum var. pusilium 721 H 0.043 Stichococcus bacillaris 735 H 0.038 wisconBlnense 738 H 0.037 Tetraedron duospinum 757 H 0.037 Tetraedron tumidulura 758 H 0.046 lagerheimii 769 L -0.018 Trachelomonas acumlnatus 771 H 0.012 Trachelomonas armata var. steinii Table 3. Continued 21

PA Relative Significance Taxon pH r

774 l -0.018 Trachelomonas charkowiensls 784 L -0.014 Trachelomonas hispida var. crenulatocollaris forma recta 790 H 0.037 Trachelomonas pulcherrima var. minor 804 H 0.037 Trachelomonas volvocina var. punctata 805 H 0.008 Trachelomonas volzli 811 L -0.042 Tribonema bombyclnum 839 H 0.025 Vaucheria sp.

849 L -0.038 Closterium rostraturn Table 4. Phylogenetic groupings of taxa based on greater than expected probabilities of concurrence among study sites. E s Expected Occurrence E N = Number of concurrent species N - E - p S*Fd r.STD = Standard deviation . .

Order Family P =

Volvocales(5) 2,83 Ohlamydomonadaceae(1) 2.91 Chlamydomonas(9) 2.91 Volvocaceae(5) 5.68

Tetrasporales(10) 4.65 Gloeocystis(5) 4.61 Palmella(1) 6.93 Ulotrlchales(6) 6.12 (6) 6.12 Gemlnella(5) 14.58 Ulothrix(6) 2.38

MIcrospora(4) 4.60

Chaetophoraceae(8) 3.36 SfclgeocIonium(5) 3.24

Pithophora(2) 9.90

* The number of species per genus or genera per family used In calculating P Is enclosed in parentheses. Table 4. Continued 23

Order Family Genus P =

Bulbochaete(5) 2.48 Characlumf12) 5.20

Hydrodlctyaceae(3) 4.51 Pediastrum(17) 16.07 Sorastrum(3) 3.48

Botryoeoccus(3) 3.43

Oooystaceae(24) 24.23 Ariklstrodesmus(15) 7.93 Kirchnerlella(8) 8.81 Lagerhelmla(5) 2.85 Monoraphidlum(6) 7.04 Oocystis(13) 16.76 Schroederla(2) 4.80 Tetraedron(21) 23-52 (7) 23.88 Cruclgenia(7) 2.62 • Scenedesmus(32) 16.88 (3) 5.54

Zygnematales(16 ) 3.16 (3) 4.42 Splrogyra(9) 2.89 Table 4, Continued.

Order Family Genus P =

Desmidiaceae(12) 19.04

Closterium(45) 17.48 Cosmarlum(109) 76.17 Desmidlum(2) 3.48 Euastrum(10) 11.91 Hyalothece(3) 3.25 Mlcrasterlas(7) 8.29 Pleurotaenlum(7) 5.81 (2) 6.93 Stauras trum(51) 38,63

Euglena(18) 8,04

Lepoclnclls(7) 3.81 Phacus (28) 15,. 93 Trachelomonas(39) 26.96

Xanthophy c eae(9) 5 .86 Ophlocytlum(8) 3.53 Tribonema(5) 5-46 Vaucheria(5) 2.65

Dinophyceae(5) 6.47 Glenodinlum(8 ) 8.76

Peridinium(7) 5 .1 0 Table 4. Continued. 25

Order Family Genus P =

Chroococcales(13) 13.12 Aphanocapsa(6) 10.04 Aphanothece(3) 7.62 Chroococcus(13) 9.30 Coelosphaerium(4) 2.93 Dactylococcopsis(2) 2.36 Glaucocystst(2) 2.43 Gomphosphaerla(3) 2.81 Merismopedia(6) 3.21

Oscillatoriaceae(6) 4.91 Iyngbya(14) 5.38 Osclllatorla(26) 11.09 Spirulina(5) 2.93

Cyllndrospermum(3) 6.93

Rivulariaceae(5) 8.12 Calothrix(5) 4.91 Gloeotrichla(3) 2.39 The correlations of TEMP with PA001 to PA859 generated 140 positive correlations (significance levels or r greater than .05) using PEARSON CORR. Of these 116 taxa occurred with greater than statistically expected frequency at temperatures higher than 8.4 C, while 28 taxa occurred with greater than statistically expected fre­ quency at temperatures lower than 8.4 C. This large number of positive correlations may he misleading since the mean incorporates the low winter temperatures when few taxa were recorded.

Because of the difficulty of handling the large number of variables in a multi-level correlation of several parameters at once an attempt was made to cluster or group the PA-numbers. The determi nation that biologically-sensible clusterings should reflect recog­ nized phylogenetic or taxonomic groups was made. For this procedure a program (Appendix 2, program 3) was suggested by Dr. D.R. Whitney of the Department of Statistics, The Ohio State University. A phylogenetic grouping based on greater than expected probabilities of concurrence among the study sites was generated by the expression N —F = P, where P is the probability of concurrence, N is the number STD of actual concurrences of taxa between the 137 sites, E is the expected concurrence based on random occurrences among the sites for each taxon, and STD is the standard deviation. The results are summarized in table 4. Groupings of a generic, familic, or ordinic level with a probability level of greater than 2.0 are considered statistically significant. These groupings, Yq ^ to Y^g (Appendix 3) •were correlated with each of the variables GLSTAT, GLFEAT, MNTHCOL, pH, TEMP, HABTYPE, and LDUSGE using an SAS package (Service, 1972).

The results are summarized in table 5. A breakdown of the correla­ tion for Yg2 Coelastrum microporum is given in table 6 as an example. Table 5* Analysis of Variance for Y groupings: Y22 28 Coelastrum mlcrouorum explained In detail.

Y22. Mean for # occurrences divided by N where N=137, la 0.20438. Variable.. Label Value Interpretation

G-LSTAT. •. 1. Unglaciated 0.090774 Probability of F=0.2476 2. Illinoian -0.07064 >.05 therefore not glaciated significant. 3. Wisconsin 0.02680 glaciated pH, (range 2.5 - 0.03940575 Probability of Kr0.2205 9.5) > .0 5 therefore not significant. TEMP. (range 01. 0.00428018 Probability of 5^=0.5097 35.° C) >.05 therefore not significant. MNTHCOL.. 1 . Dec.-Feb. 0.00252766 Of the /Values the third 2. Mar.-May -0.04396153 is the largest; hence 3. June-Aug. 0.15405153 the alga is most usu­

4. Sept.-Nov. 0.11251766 ally found In summer but In the fall as well. Table 5* Continued 29

Variable Label @ Value Interpretat1on

1 . Lake 0.03815556 Probability of F=0.0357 2. Pond 0.16798394 <•05 therefore Is 3. Stream -0.13576313 significant 4. Ditch-seep -0.10541534 Most common In 5. Marsh 0.12744718 ponds and marshes, 4 6. Swamp 0.09240821 but found as well In swamps. LDUSG-E... 1.Cultivated 0.02858482 Probability of Pb:0.8365 2. Pasture -0.04807712 >“.05 therefore not 3. Stream 0.01947262 significant. 4. Wood lot 0.13617898 5. Roadside -0.02489907 6. Farm pond proximal to house or barn 30 Table 6. Analysis of Variance for Y values

Y PA Taxonomic Equivalent PARAMETER Significance Interpretation

*16 079 Chlamydomonas globosa

151 Closterium venus *23 GTS TAT 0.0099 usually on Un­ glaciated. HABTYPE 0.0103 usually in ponds.

¥ 2 5 191 Cosmarlum formosulum HABTYPE 0.0610 usually in pasture ponds.

*26 196 Cosmarlum granaturn pH 0.0037 usually at pH higher than 7.0. MNTHCOL 0.0369 greatest in sum­ mer, less in fall,

*27 224 Cosmarlum uhaseolus var. minor MNTHCOL 0.0404 greatest in fall.

403 Lenoclnclls ovum GLSTAT 0.0300 usually in Ungla­ ciated and xllinoi* an glaciated. l32 430 Merlsmouedla tenuis3 lma GLSTAT 0.0433 usually in Illinoi* an glaciated. Table 6. Continued 31

PA Taxonomic Equivalent PARAMETER Significance Interpretation

Y34 439 Mlcrasterlas truncata var, semlradiata MNTHCOL 0.0320 usually in sum­ mer and fall.

35 496 Onhlocytlum parvulum HABTYPE 0.0041 usually in marshes or swamps• Osclllatorla acutisslma 36 497 MNTHCOL 0.0431 usually in c winter and fall. Osclllatorla ancgustlssima 38 502 GIBTAT 0.0427 usually in un- glaciated, but also in Wiscon­ sin glaciated. Xzj-o 542 Pediastrum tetras var. tetrad on LDUSGE 0.0115 usually in ponds. 564 Phacus curvlcauda 41 HABTYPE 0.0589 usually in farm pond proximal to house or barn,

*44 519 Osclllatorla subbrevls MNTHCOL 0.0578 usually in fall. Table 6. Continued• 32

3T PA Taxonomic Equivalent PARAMETER Significance Interpretation

*47 626 Scenedesmus ecornis MNTHCOL 0.0075 usually is sum­ mer, but also in fall. sf GO 64-0 Scenedesmus auadricauda var.' ouadrispina

GLSTAT 0.0155 usually in Un- glaciated.

2go 597 Pleurotaenlum trabecula HABTYPE 0.0276 usually in small ponds.

*51 710 Staurastrum polvmorphum var. pusilium pH 0.0449 usually at pH higher than 7.0.

*54 785 Trachelomonas hispida var. punctata GLSTAT 0.0156 usually in Un­ glaciated.

*56 804- Trachelomonas volvocina var. punctata MNTHCOL 0.0283 usually in -win­ ter and spring. CLUSTERING: ?4 077-085 Chlamydomonas TEMP 0.0371 usually at temp­ era ture s lover than 6.7

*5 553* 316 Volvocaceae 374, 526 HABTYPE 0.0483 usually in ponds 592, 827-829 and marshes. Table 6. Continued

Y PA Taxonomic Equivalent PARAMETER Significance Interpretation

% 477-489 Oocystis MNTHCOL 0.0409 Usually In sum­ mer, but some in fall. 737-757 Tetraedron *9 MNTHCOL 0.0379 usually in sum­ mer.

*10 612-643 Scenedesmus MNTHCOL 0.0185 usually In sum­ mer and fall. DISCUSSION

The particular parameters affecting the growth of algae have been recently reported in a number of papers. Factors such as light, temperature, pH, and water hardness have been the basis of these studies. Although light was not measured in this study, it is obviously a significant factor both in quality and duration and intensity in the distribution of algae.

The effect of temperature has been demonstrated for some taxa and is probably significant for many taxa (Moss, 1973 b). Oligo- thermic or low temperature forms such as many Bacillariophyceae and

Chrysophyceae and eurythermal forms such as the , show somewhat restricted temperatures for maximum growth. The synergistic effect of light and temperature is not yet fully explained.

A discussion of water quality as a factor governing distribu­ tions could fill many volumes. Defining or characterizing water quality necessarily brings into question water color, turbidity, pH, mineral content, and dissolved gases. W. and G.S. West's relatively simplistic observation on the distribution of British desmids laid the foundation for our questioning, although their conclusions have been modified with additional studies. The effect of substrate is a complex of factors. Perhaps the easiest to measure is pH, which reflects both water hardness or softness and dissolved mineral content. 35

This study treats 137 site types which together were represented

"by 859 algal taxa. The sites, ponds, streams, ditches, swamps, lakes, marshes, reservoirs and seeps, were sarpled from both unglaci­ ated and glaciated areas (Fig. 1). The geology of Ohio is easily studied since the bedrock ranges from Ordovician and Silurian lime­ stones and dolomites to Devonian limestones and shales to Mississippian and Pennsylvanian sandstones. These bedrock types lie in broad relatively parallel north-south bands in Ohio (Fig. 3).

The movement of massive glaciers during the Pleistocene covered over half of the state and upon melting left behind winrowed deposits such as moraines (Fig. U). The earlier XHinoian glacier reached further than the later Wisconsin, although much of the Illinoian till is thin or totally eroded today. The pattern of glaciation and glacial deposition has produced Ohio’s present physiographic regions

(Fig. 5)a and the overlying soils (Fig. 6). To the east and south of the Illinoian glacial boundary the soils are derived from sand­ stones and shales and are typically acidic, except where modified by agricultural practices or by glacial alluvium in long river valleys.

Both acid or alkaline soils exist within the Illinoian age drift areas, which were not subsequently covered by Wisconsin glacial drift, depending on whether or not the till is eroded. Much of the glaciated plateau has soils of low lime glacial drift of

Wisconsin age. Soils of the till plains are high in lime glacial drift of Wisconsin age or Illinoian age. These various soil types 36

rt *ut * iJjiC

tftcrft t jTLJfiMijJsp- -*1 m ^"■^1—f J*H***IVOn! U

*oi*r> irNtiL'M

GEc:OGIC $Y5tEh m Pi/n.an □ p Ff.nftj ii K^nnjn o n Mr&ii=9fr:>ian t 0 i . * 3 4 # r □ o D A tO n iu n CE3 S ilu ria n m O'dDVIC’tm

Figure Geologic wap and cross section of Ohio

(Ohio Division of Geological Survey). 37

LEGEND WISCONSIN F 51 KtM l Mhl !*« • m Uk« dfpotlia ED Ctwad ho(*Ibi

□ E«d a e d lii

ILIJNOIAN ITT! UbdiUirutlawd

KANSAN m Crawl i»e(&tat

Figure k . Glacial deposits of Ohio

(U.S. Geological Survey) 38

Erie

* 0

GLACIATED PLATEAU

TILL PLAINS

Figure 5. Physiographic sections of Ohio. EEHSeili In HijH lime Cluiil l i l t Sediment* G B Ssili In Is* lime Cliciil U le Sediment* QX01 S«il* in High Lime Cliciil Diift si Witcnniin * t t *123 Sails in Ion lime Cliciil Drill si Witcontin dje ISfiJSnl* in Ciecijl Drill el Illineiin Alt I ) Sails ia Sinditone end Shile ^ = 3 Sells ia limeiltRr end Shite

Figure 6. Ohio's soil regions (Ohio Department of Natural

Resources, Columbus). ko influence the nature of the surficial waters, affecting pH, hardness or softness, particular minerals present, and ultimately the type of flora which developes.

Hughes (19^2) noted as did W. and 6.S. West (1909) that the richest desmid flora was to he found in the oldest geologic forma­ tion. Habitats in these areas were low in pH, poor in calcium, and were characterized by a Caledonian flora: Anabaena, Chroococcus,

Coelosphaerium, Microcystis, and Dinobryon. The ponds he studied on Prince Edward Island were of the Baltic type, dominated by colonial and filamentous blue-greens, and colonial genera of the

Chlorococcales. Waumann's (1 9 17) original use of the terms referred to high (Caledonian) and low (Baltic) floras, but is not now generally recognized.

Tryon and Hartman (1959) observed that some species are more stenoecious in habitat requirements than are others. They will multiply and become abundant only within a narrow range of habitat conditions. These are the so-called rare species which may at times be very abundant when found. An example in my own collections is

Gloeotaenium loitelsbergianum, typically reported as rare, but when found, occurring in sizable numbers. This suggests that such species may really be widespread and survive during unfavorable seasons or conditions, becomming abundant only when the habitat is exactly favorable. Stenoecious species may survive unfavorable periods or Ul places as resting cells or as vegetative cells in small unnoticeable numbers. Evans (1958) discusses algal survival during dry periods.

Other taxa are referred to as euryoecious (wide tolerance ranges)

or cosmopolitan. These are the ubiquitous algae. They may survive

in the same manner as stenoecious forms, but in numbers great enough to be more often collected. The range of physical conditions limit­

ing growth and/or reproduction may not be as restrictive for euryoecious as for stenoecious species, but all species could become

abundant only under precisely suitable conditions. This might

explain phenomena as sudden plankton blooms or seasonal pulses of

some species as well as the sparse or cosmopolitan distribution of others. According to Strom (192^), "They all have in common that they do not posses any sharp geographical distribution. They occur where their claims upon the habitat are fulfilled."

Transeau (1913) developed a concept of algal periodicity. His

five-year study was the basis for a classification scheme: winter annuals, present during the winter and peaking in April; spring

annuals, appearing in spring and peaking in May; summer annuals, peaking in August; autumn annuals, peaking in October; perennials, present all year, but gradually peaking in September; ephemerals with short vegetative cycles, most pronounced in May, June, and

October; irregulars, with unpredictable periods of maximum develop­ ment. These groupings probably illustrate Strom's statement.

Distribution and periodicity of some algae in a bog pond were studied by Duthie (1 9 6 5 ). k2

The difficulty of making classifications of algal communities that will separate one community from another or that has ecological significance is compounded "by uncertainties on the specific level.

Wilhm (1969) related succession in algal mat communities at three different food and mineral ion levels. Some disjunct distributions may he esqplained by bird or other dispersal mechanisms and much has been written on the subject (e.g. Proctor, 1959> 1966, Schlicting, i960, 1966, Schlicting and Sides, 1 9 6 9 )-

Ponds produced by calcareous springs are characterized by an abundance of dissolved calcium carbonate (Moss, 1972) and. by high levels of free carbon dioxide (Hynes, 1972j Ruttner, 1 9 6 3 ). Moss

(1 9 7 3 a, 1 9 7 3c) suggested that availability of free carbon dioxide would favor desmid development. The availability of free carbon dioxide decreases, at constant bicarbonate level, with increasing pH and increases, at constant pH, with increasing bicarbonate.

The combined effect is usually an overall decrease in availability of free carbon dioxide with increasing hardness in natural waters.

Availability of free carbon dioxide prevents growth of oligo- trophic species in hard waters.

In his series of papers Moss (19725 1973a-) reports that oligotrophic algal species (e.g. spp. Pleurotaenium trabecula, Gonat zygon sp., Pediastrum tetras, Pandorina morum,

Cryptomonas sp., and Cosmarium impre s sulum) would not grow at pH values above 8.6-8.5j while eutrophic forms grew at pH values above 9*0, and at considerably higher bicarbonate levels (e.g. Euglena gracilis, Scenedesmus quadricauda, Hydrodictyon, Volvox aureus,

Synura sp.). He also noted that the maximum growth rate for oligotrophic species was lower than for eutrophic species.

Low calcium levels were noted in lakes with overflow and were usually accompanied by low levels of virtually all other major and minor ions (Bodhe, 19*+9 ) and of some organic compounds such as vitamin B (Daisley, 1 9 6 9 ). However, Lund (1 9 6 5 ) claimed it is most unlikely that calcium levels in natural waters would be low enough to limit algal growth.

The correlation of algal distributions with patterns of glacia­ tion necessarily reflects the soil types and indirectly the geologic substrates. The correlations in table 1 were based on three group­ ings: Unglaciated, Illinoian glaciated, and Wisconsin glaciated.

There were ^8 taxa recurring on Unglaciated sites with greater than expected frequency, 2k- taxa recurring on Illinoian glaciated sites with greater than expected frequency, and only 1 taxon Ulothrix variabilis recurring with greater than expected frequency on Wisconsin glaciated sites. Wot included in table 1 are 18 taxa whose signifi­ cance levels were O.O6 1 9 , slightly greater than the cutoff O.OJpOO for statistical significance. These are borderline, but all were

Illinoian glaciated sites and of these, 12 were confined to a pond

(study site 60) in Union township, Muskingum county. This pond is in kh a pasture which occupies a portion on an Illinoian esker. The taxa are:

Anabaena oscillarioide s

Bulbochaete intermedia

Chlorobotrys limnetica

Chroococcus giganteus

Closterium acerosum var. angolense

Closterium didymotocum

Closterium neracerosum

Closterium regulare

Cosmarium tetragonum var. davidsonii

Gonatozygon obesum

Nostoc commune

Oedogonium megasporum

Oedogonium orientale

Oedogonium pseudo-boscii

Oedogonium spirostriatum

Tetrastrum glabrum

Stigeoclonium incrassata

Table 2 contains 72 positive correlations between GLSTAT and each of the 859 taxa. Of the taxa significantly more common in the unglaciated sites, 23 were desmids including Closterium, Cosmarium,

Penium and Staurastrum. Gough and Woekerling (197^) reported that Staurastrum was the only planktonic desmid genus in hoth hard water lakes and calcareous spring ponds. Although Staurastrum spp. did oocur in hard water

■bodies, in this study there were only a few species, although many individuals might he present. Both Staurastrum and Pleurotaenium spp. were more numerous in number of taxa in unglaciated sites, although the number of individuals was not of bloom proportions as in some hard water bodies in glaciated sites.

Blue- were more abundant in the unglaciated sites, but usually with lower significance levels. Almost all the desmids had very high significance levels, and could be described as more restricted to the unglaciated areas. Of the other 6 Chlorophyceans only Dictyosphaerium and Crucigenia have high statistical signifi­ cance values.

The 6 Euglenoids are unexpected, since according to Provasoli

(1958) a number of Euglenophyta tested in culture appeared to use only ammonium and were unable to use nitrate. The ammonium might have been derived from decaying organic matter or agricultural runoff if the taxa in this study used it as well. Trachelcmonas which appears to use iron and manganese for thecae formation could have been favored by the presence of iron oxides in some of the unglaciated ponds and ditches. ke

The 16 taxa with a high correlation (greater than 7 0 . 0 7 -

3.50) for glaciated sites sire predominantly members of the ,

Euglenophyta, a single Myxophycean and Dinophycean, and the desmid

Cosmarium formosulum.

Correlation of pH with each of the 859 taxa generated 93 positive correlations with high significance levels (table 3). Of these, 62 occurred typically at pH values greater than 6 .5 . These were distrib­ uted in the following manner: Chlorophyta-39 or 6l%, of which 10 or 26$ were desmids; Euglenophyta-9; Pyrrhophyta-1; Cyanophyta-12.

Of the 31 taxa typically occurring in the unglaciated sites 20 or

65$ were of the Chlorophyta, 1^- or JOfo of which were desmids; Eugleno- phyta-5; Pyrrhophyta-2; Cyanophyta-lj-.

In general, sites characterized by calcareous or lame till showed higher totals for Cyanophyta and Euglenophyta. Although not shown to be statistically significant, Chara and members of the

Zygnemataceae (Mougeotia, Spirogyra and Zygnema) were usually more predominant. In soft water lakes and ponds - those with lower pH values - the Desmidiaceae, in particular were much more abundant composing 7°$ °f ^he Chlorophyta present and U9% of the total taxa present. Statistically, there was little significance in the number of Pyrrhophyta although others (Moss, 1973a) have suggested that the

Pyrrhophyta, particularly the Dinophyceae are more abundant in soft water lakes. The clustering of taxa into Y-groups "based on taxonomic group­

ings (table 5) facilitated correlations with the variables GLSTAT,

GLFEAT, MNTHCOL, pH, TEMP, HABTYPE, and LDUSGE using Analysis of

Variance techniques (Appendix 1). Table 6 is a breakdown of the

Analysis of Variance generated for Y22 (Fig. 7)* OF ^he seven

variables, only MNTHCOL is statistically significant, but the

statistical results correlate closely with field observations.

Figure 8 is a breakdown of Analysis of Variance for Y ^

Lepocinclis ovum. The only variable here that is significant is

GLSTAT, and the highest value shows this taxon occurs with greatest

frequency in unglaciated areas, but occasionally in Illinoian drift

as well.

A summary of Analysis of Variance tests for several Y taxa and

Y clusterings shows that for particular taxa or groups of taxa one

or more variables may be significant in determining the organism(S)

distribution, but not always the same variable or set of variables

for all taxa.

The study area allows an observer to pass from glaciated area

with deep till through transition area, into unglaciated area in the

course of 15 to 25 miles. Since the macroclimate is very similar,

the greatest variable is the change of substrate. There are few

distributions which are very sharply defined by the glacial boundary.

Taxa strictly limited by substrate include Cosmarium vexatum, Cosmarium . ______S J J .T 1 S T I C.A.l ..A.NJ1JL-Y S .l_S 5_Y_S_T_E.H ______.. AXALYS1S.0F V H 1 W W W H ! • REGRESSION COEFFICIENTS . AND STATISTICS OF F IT FOP DEPENDENT VARI ABIE YZ2

SOtffC? * OF SUM OF SQUARES MFAN SQUARE F VALUE PROS > F R-SQUARE c.v. UCF.E5.SICM______VI. 6,81335356.. .0,*0076530.- ..J^CFAIA . 0,0003. 0,3058*189.. .—176,38037.31 1_ EftSC* ’’ 11" 15,*6*01670 0.1291*97* STD OEV V22 MEAN CORUCTEP TOTAL 136 ??.,?7.7T722/i. 0.360*85*2 0,20*38

SOURCE OF SEQUFNT1AL SS F VALUF PROS > F PARTIAL SS F VALUE PROS > F -0,0189 _0.3657238fi_ a . 60717. (U2676- -- -k?CT?69- -SrfBSft- 0 .0 * 3 < ^ 0.19^10926 1.51680 0.2205 TEMP 2.1 ice 5213 16.2*360 0.0001 0.056939*6 0 .6 3 7 * 0 0.5097 01 C.96*06**7 2.AR57* 0 .0 6 7 8 0.96*35237 1 .9 6 0 6 * KAB 1,66067(103 .66363 0,0176- 1,60*96782 .2.6701*. LAUD— ‘0.771*9*51 S.*1800“ 0 .8 3 6 5 0.27159*51 0 .4 1 8 0 0 0.8365 - ‘

SOURCE ? VALUES T FOR HCiBd O PROS > IT I STD ERR 8 STD B VALUES

"l*;TftCEPT - 0." ii*te**8 ■ -0.656P1 0 . 6*P6 0 .7 1 0 * * 1 0 3 0.0 cii“Mveoi j (icl>77*21 1•6775B 0 .P 0 6 1 0 .0 5 * 1 1 0 3 7 0 .1 9 9 * 6 1 9 3 D'jm«Y002 CtSTAT -o.0706*3P8 -1 .0*2** O.2003 0 . 0 677 60 *8 -0.12937*12 Du 079*0*75 „1 .73159 . 0 .2 7 0 5 n . 0 ’ 1 9 9 5 0 * 0.10967652. Tpoo-- : 8:ff.ijporp- 0.66136 0 .5 0 9 ? 0 .0 ( 6 * 7 1 7 9 0 . 0 6 8 6 * 6 * * PUMMYP03 fiUTUtOl 0 . 00252766 0.0222* 0 .9 P 2 3 0.1 136*027 0.003*6159 CL'u MYOO* *0t* *?•0*396152 -0.6*296 0 .5 7 1 5 0 .0 6 P 3 7 2 1 9 -0.07986960 t“j “ i-v£i05 J u.]5*C5153 _ 1.61771 0 . 1 0 8 * ___ 0.no*27JOi! __ . _ _ 0.29*9903*, [H.IUUVCC6 *1 0.0361*556 0.3*075 0 . 7 3 * 3 0.1 1213903 0 .C 2 9 9 9 * J * rL,,-“ Y007 167*039* 1.E0779 0 .0 7 3 2 P . 0 07 9 2 2 5 0 0 .1 9 5 9 7 0 6 * ru *,i'YOP? HABTTPf-o: 13*76313 -l.**319 0.1516 0.09*07185 -0.16326975 PU— Y009 ------“0.in**l*2* _^1,12700 0 . 7 6 ’ P 0.0O 3D P573 -0.11767910 _Ej«“y(7i(r 12T**7i 6 - 0.7000b 0 .9 8 5 3 0.1 6205176 0 .0 5 9 9 P 0 6 7 0U“VY011J 0.1>2B5E*P2 0.18777 0 .8 5 5 3 0 .1 5 6 3 9 * 6 5 0 . 0 2 * 7 0 6 * 6 D U M -Y O l? 0*6077)2 -0.677*2 0 . 5 6 * 7 0 .0 P 3 7 4 2 3 * -0.05719P9S CU^MYO13 01**7762 0 .8 1 6 6 LQUSClIo' - 9-732*2 ... 0.0P3?6*61 . 0.02*673*6. PU*'*'vnli 0. l*6l709r~ 1.007*2 0.3158 0.13517590 0 .1 2 1 5 1 2 5 0 DUMMY015 . -0.02*69907 -0.3*02 5 0 . 7 3 * 3 0 .0 7 3 1 7 9 2 7 -0.03997733

Figure 7- Breakdown of analysis of variance for y22.

■p* CD . S..T.A. T I S T I C._* L A.fLA..LV_S_L.S SYS TP H ______.. . ANALYSIS PF VARIANCE TASLE • REGRESSION COEFFICIENTS . AND STATISTICS OF F IT FOR DEPENDENT VARIABLE Y31

JfTRCS CF SUN CF SQUARES MEAN SQUARE F VALUE PR (10 > F R-SQUARE c*v# .FEGRESS.ICN______17. 2.A5RBI39S. _0.15(>*5.9$4_ 1*23130 . 0*2507. .0,1495872*.. .232.5525L.X.

TRROR 1IF 15.121207*5 0.12706897 STD DEV V31 FEAN CORRECTED TOTAL _12£_ ""07356AS 735” 0 .1 5 3 2 8

SOURCE DF SEQUENTIAL SS F VALUF PROR > F PARTIAL SS F VALUE PRQB > F

CL 0.77605(193 ,0 6 9 * .0*90059764 .3 .5 8 0 3 1 ____ . 0 * 0 3 0 0 . PH “t.55815502” -h m & - ■fc.IdsBP 0.3B57M2*^ 3 .0 3 6 0 0 0 . 0 6 * 0 (RHP 0 .2 * 0 4 7 4 2 7 1 .8 9 2 4 7 0 .1 7 1 5 0.02***356 0 .2 0 0 5 5 0 .6 5 5 1 OT 0 ,0 5 6 6 6 * 1 6 0.1*86* 0 .9 7 9 7 0,02256387 0 . 0 5 * 1 9 0 .9 9 0 3 Mt? 0 .5 8 7 8 7 0 0 8 0 .* 2 5 2 E _ 0 .5 3 1 4 0.69605626 1 .0 9 5 5 6 0 .3 6 6 5 ' LAVD' 0 .4 4 0 5 9 9 * 8 "0 .6 9 3 *6 ” ' 0 .6 3 1 6 0 .4 * 0599*6 0 .6 9 3 * 8 . 0 .6 3 1 8

SOURCE 0 VALUES T FOR HOtB-0 PROB > IT I SIO eRR B STD B VALUES

INTERCEPT- -0.3646PGC3' -1 .*7 2 *7 0 .1 * 3 5 0.2*76*955 0.0 nur'Frcoi 1 0 .1 1 0 1 5 7 0 7 2 .2 2 6 * 3 0 .0 2 7 0 0.0*35077* 0 . 2 * 2 0 6 9 7 3 PU::myooz 1 -0.015*6*63 - 0 . 7 3 6 6 7 O .o l3* 0.06708*20 -0,022*9995 PU 0 , 0 5 * 1 7 * 7 0 ______li_ 7 * ? A l 0 .0 “ *0 . 0.0?16?U3L_ -JCi/B------0 • 171T*5 5 2 _ —F.rr766594" 0 . * * 7 P 5 0 .4 5 5 1 o .o r * ? * * * * 0.06*5*8*6 CL"'ttY003 -0.03*16512 - 0 . 3 1 0 2 6 0 .7 5 6 9 0.11737260 -0.0534***1 DUYHY004 0.01*7*2 LB 0 . 2 * 0 5 3 0 .P IO 3 0.06761108 0.03307052 OUVPY005 0.GP7P7160 0 . 0 7 * 9 6 0 .9 7 6 1 0.09*1*652 .. 0 . 0 0 6 0 * 5 8 1 . r.UYMYO&i ' ' o.i*69ipje 1.269*0 " 0 .2 0 6 6 O.IlOxngjo 0 . 17 3 *0 5 6 8 ou^HYom 0.09197*99 1 . 0 0 0 * 7 0 .3 1 9 1 0 .0 nlPp676 0.12C0471* M'MMYPOB 0 , 1 * 0 * 6 * 9 6 1 .5 1 0 0 0 0 .1 3 2 7 O.OR-jnj’in 0.15907994 DHY»‘Vfin9 r 0 « 3 7.*5.6_ _ 0 .7 Q 5 Z _ J>.P?2ej925_ _^0 ..04158651- ■fU'— vClD - 3 t f £ K $ 7 * - -0 7 7 6 6 9 5 0 . 4 4 * 6 0 . 1 fo n ? 7 5 6 -0.07273223 n^MYOll -0.1619*6*6 - 1 . 0 * 6 6 5 0 .2 9 7 3 0.1 5*651*3 -0.15662682 PUWHYOl? -0.055P716Q - 0 . 6 7 7 0 9 0 .4 * 9 1 0 . 0 8 2 3 3 * 2 7 -0.07*33709 ruvPYOii 0 .0 H 3 4 H 9 4 6 1 . 0 1 0 3 6 . . 0 , 3 1 * * ' . 0 .0 8 2 8 3 0 * 5 0 .1 1 8 6 9 4 3 B .. OUYHYOl* -0.06521765 - 0 . 6 3 7 5 3 0 .5 2 5 0 0 .1 3 2 6 4 9 1 9 -0.0951176* 0UMHY015 0 .Q P 76 7 B 2 3 1 .2 1 * 4 0 0 .2 2 7 0 0 .0 7 2 3 6 3 5 9 0 .1 5 T 7 3 2 B *

Figure 8. Breakdown of analysis of variance for 50

undulatum, Staurastrum dispar, Staurastrum neglectum. The only taxa

which appear to "be limited to glaciated terrain, are members of the

genera Cladophora and Rhizoclonium.

One important observation was made from the results of the Y

clusterings and individual taxa may be noted in Appendix 3- Taxonomic

groupings such as Volvocales, , , Chaeto-

phorales, Heterococcales, and Peridiniales were consistently repre­

sented by many genera if any member was present. The same was true

for the families Volvocaceae, , Oocystaceae, Scenedes- maceae, Desmidiaceae, Oscillatoriaceae, Nostocaceae, and Rivulariaceae.

One major problem which arose because of the method of calculating

levels of significance was the exclusion of a number of taxa with

less than 15 presences among the 137 sites. This eliminated some taxa

which occurred in only one or a few sites, although they might be

quite specific in substrate or habitat limits for best growth. This

group of algae is thus excluded from evaluation and conclusions,

although their habitat specificity has been recognized from previous

field experience. CONCLUSIONS

The correlation of algal distribution with patterns of glacia­ tion reflects the soil types and indirectly the geologic sub­ strates for a number of algal species.

The availibility of free carbon dioxide appears to prevent growth of oligotrophic species, such hs many of the desmids, in hard waters.

Correlations of temperature, habitat type, land usage, were of different significance to particular taxa, or groups of taxa, although pH, seasonal periodicity, and glaciation status were usually the more statistically significant parameters.

The desmid genera, Closterium, Cosmarium, Mircasterias,

Pleurotaenium, Sphaerozosma, and Staurastrum were significantly more numerous in unglaciated sites.

Staurastrum and Pleurotaenium, while occurring in both hard water lakes and calcareous ponds, were more numerous in terms of taxa present in glaciated sites.

The Euglenophyta which were found in the unglaciated sites were favored by decaying plant and animal remains and agricultural runoff.

The abundance of Trachelomonas in unglaciated sites was most likely due to the presence of iron oxides in a number of ponds and ditches. Specimens in these sites were typically reder with heavier depositions in the lorica. 51 52

8. The Chlorophyta, Euglenophyta, and Cyanophyta -were more

abundant in sites having a pH greater than 6.5.

9. The desmids were generally more diverse and abundant in sites with a pH less than 6.5*

1 0 . The genera Chara, Mougeotia, Spirogyra, and Zygnema were usually

more predominant in calcareous sites. n. The genera Cladophora and Rhizoclonium were restricted to calcareous sites.

12. The Pyrrhophyta were equally abundant in unglaciated and glaciated

sites, although in the latter, abundant vascular vegetation was

always present.

13. The difficulty of making classifications of algal communities

that will separate one community from another or that has

ecological significance is compounded by the uncertainty on the

specific level.

Ik. The presence of a single species in many instances was indicative

of the presence of varieties of that same species.

15. The families Hydrodictyaceae, Oocystaceae, Scenedesmaceae,

Desmidiacese, Oscillatoriaceae, Nostocaceae, and Rivulariaceae

were represented by a statistically significant number of con­

current taxa in any one site.

1 6 . The Euglenales, Volvocales, Tetrasporales, Ulotrichales,

Chaetophorales, Heterococcales, Peridiniales, Chroococcales,

and Oedogoniales were represented by a significant number of

genera of their respective orders in any single sample. 53

1 7 . Taxa other than those whose significance levels were calculated

(those occurring in fewer than 1 7 sites) were likely indicative

of either unglaciated or glaciated sites, hut did not appear

in enough sites or samples to he considered in valid statistical

testing hy the methods here used.

The concurrence of the same species of a genus or more particularly

of varieties of the same species may point to a weakness in our

reflecting a tendency to split organisms on what may he

morphological variation rather than actual physiological differences.

This needs to he confirmed hy culture as well as field work.

Site 60 was a pond in Union Township, Muskingum County, Ohio.

The pond is in a pasture which occupies a portion of an Illinoian

esker, and presents a very diverse flora of 275 taxa. A followup

study of the physical, chemical, and biological factors responsible

for this diversity is warrented. LITERATURE CITED

Part A: References utilized in ecological studies.

Brown, H.B. 1 9 0 8 . Algal periodicity in certain ponds and streams. Bull. Torr. Bot. Club 35:223-248.

Budd, Judith H. 1971- A comparison of* the algae from an acid and an alkaline pond in southcentral Ohio. Master's Thesis, The Ohio State Univ. 54 P»

Butcher, R.W. 1946. Studies in the ecology of rivers VI. The algal growth in certain highly calcareous streams. J. Ecol. 33:268-283.

Daisley, K.W. 1969- Monthly survey of vitamin B_p concentration in some waters of the English Lake District. Limnol. Oceanogr. lb: 2214-228.

Delf, E.M. 1915. The algal vegetation of some ponds on Hampstead Heath. New Fhytol. 14:63-80.

Duthie, H. 1965- A study of the distribution and periodicity of some algae in a bog pond. J. Ecol. 53:343-359-

Evans, J.H. 1958. The survival of freshwater algae during dry periods. Part I. An investigation of the algae of five small ponds. J. Ecol. 46:1^9 -1 6 7 .

Forsyth, Jane L. 1 9 6 5 . Geology's contribution to Ohio's landscapes. Am. Bio. Teacher 27(5):358-362.

Forsyth, Jane L. 1970- The use of vegetation as a tool in the mapping of glacial geology - a challenge to two disciplines. The Quarternary of Illinois, Univ. 111., Coll. of Agr., Spec. Publ. No. 14:56-60.

______197°• A geologist looks at the natural vegetation map of Ohio. Ohio J. Sci. 70(30) *.180-191.

______1973- Glacial map of Licking County. Ohio Division Geol. Surv., Rept. of Investigation No. 59* 55

Fritsch, F.E. 1907* The subaerial and freshwater algal flora of the tropics. Ann. Bot. 21:235-275*

______1922. The moisture relations of terrestrial algae. Ann. Bot. 36:1-20.

______1931* Some aspects on the ecology of freshwater algae. J. Ecol. 19:233-272.

Fritsch, F.E. and F. Rich 1 9 0 7 . Studies on the occurrence and reproduction of British freshwater algae in nature I. Pre­ liminary observations on Spirogyra. Ann. Bot. 21:U23-U-36.

Glock, W.S. 1923. Algae as limestone markers and climatic indicators. Am. J. Sci. 206:377-^08.

Gough, Stephen E. and William J. Woelkerling 1976- Wisconsin desmids. II. Aufuchs and plankton communities of selected soft water lakes, hard water lakes, and calcareous ponds. Hydrobiologia lf8(l):3-25.

Griffiths, B.M. 1912. The algae of Stanklin Pool, Worcestershire: an account of their distribution and periodicity. Proc. Birmingham Nat. Hist, and Phil. Soc. 12(5).

Hodgetts, William J. 1921. A study of some of the factors controlling the periodicity of freshwater algae in nature. New Phytol. 2 0 :1 5 0 -161*..

______1922. A study of some of the factors controlling the periodicity of freshwater algae in nature. XXI. Summary of the chief results. New Phytol. 21:15-33*

Hughes, Elwyn 0. 19^2. Freshwater algae of the Maritime Provinces. Ph.D. Dissertation, The Ohio State Univ. 53 P*

Hynes, H.B.N. 1972. The ecology of running waters. Univ. Toronto Press 555 p.

Irene^-Marie, Frere 1939* 1938 Flore desmidiale de la region de Montreal. Laprairie, Canada. 5^7 P*

Lund, J.W.G. 19 6 5 . The ecology of the freshwater phytoplankton. Bio. Rev. 1*0:231-293*

1971* The seasonal periodicity of three planktonic desmids in Winderner. Mitt. int. Verein. Theor. Angew. Limnol. 19:3-25. 56

Moss, B. 1972. The influence of environmental factors on the distribution of freshwater algae: An experimental study. I. Introduction and the influence of calcium concentration. J. Ecol. 60:917-932.

______1973a. The influence of environmental factors on the distribution of freshwater algae: An experimental study. II. The role of pH and the carbon dioxide-bicarbonate system. J. Ecol. 61:157-177.

______1973b. The influence of environmental factors on the distribution of freshwater algae: An experimental study. III. Effects of temperature, vitamin requirements and inorganic nitrogen compounds on growth. J. Ecol. 61:179-192.

______1973c. The influence of environmental factors on the distribution of freshwater algae: An experimental study. IV. Growth of test species in natural lake waters, and conclusion. J. Ecol. 61:193-211.

Naumann, E. 1917* Undersokningar ofuer fytoplarikton och under den pelagiska regionen forsiggaende gyttjeoch dybildningar inom visso syo-och mellasvenska ubergsvatten. K. svenska Vetensk Akad. Handl. 56(6):l-l65.

Nie, Norman H. 1975. Statistical Package for the Social Sciences. McGraw-Hill Book Co., New York. 675 p.

Pevalek, I. 1916. Zur kenntniss der Biologie und der geographischen Verbreitung der Algen in Nordkroatien. Bull, d. Travaux de la Classe d. Sci., Mat et. Nat. Zagreb 5-

Proctor, V.W. 1959* Dispersal of freshwater algae by migrating water birds. Science 130:623-62^.

______1962. Viability of Chara oospores taken ftom migratory water birds. Ecology *1-3:528-529.

1966. Dispersal of desmids by waterbirds. Phycologia 5(*0 :227-232.

Provasoli, L. 1958. Nutrition and ecology of protozoa and algae. Ann. Rev. Microbiol. 12:279-308.

Rabanus, A. 1915. Beitrage zur Kenntniss der Periodizitat und der geographischen Verbreitung der Algen badens. Ber. der. Naturforsch. Ges. der Freiburg i. Br. 21. 57

Rawson, D. 1956. Algal indicators of trophic lake types. Limnol. Oceanogr. 1:18-25.

Rodhe, W. 19^8. Environmental requirements of fresh-water plankton algae. Symb. Bot. Upsal. 10:1-1^9*

Root, Samuel I, Joaquin Rodriguez, arid Jane L. Forsyth 1961. Geology of Knox County. Bull. 59a Ohio Division Geol. Surv. 232 p. 6 pi.

Ruttner, F. 1 9 6 3 . Fundamentals of Limnology. Univ. Toronto Press, 295 P.

Schlichting, H.E. Jr. i9 6 0 . The role of waterfowl in the dispersal of algae. Trans. Am. Microsc. Soc. 79:l60-l66.

1969* The importance of airborne algae and protozoa. J. Air Poll. Contr. Ass. 19:9^6-951*

Service, Jolayne 1972- A User’s Guide to the Statistical Analysis System. North Carolina State Univ., Raleigh, N.C. 260 pp.

Str&m, K. Minister 192^. Studies in the ecology and geographical distribution of freshwater algae and plankton. Rev. Algol. 1(2):127-155.

Totten, Stanley M. 1973- Glacial geology of Richland County, Ohio. Ohio Division Geol. Surv. Rept. Investigation No. 88. 55 P» 2 pi.

Transeau, Edgar N. 1913. The periodicity of algae in Illinois. Trans. Am. Microsc. Soc. 32(1):31-^0.

Tryon, C.A. and R.R. Hartman (Eds.) 1959* The ecology of algae. Spec. Publ. No. 2, Pymatuning Lab. of Field Biol. The Univ. Pittsburgh. 96 p.

West, W. and G.S. West 1909a. On the periodicity of the phyto­ plankton of some British lakes. J. Linn. Soc. London, Bot. ^0:395-^32.

______1909b. The British freshwater phytoplankton, with special reference to the desmid-plankton and the distribution of British desmids. Proc. Roy. Soc. London, B 81:165-206. 58

White, George W. 1 9 6 7 . Glacial geology of Wayne County, Ohio. Ohio Division Geol. Surv. Rept. Investigation No. 62. 39 P* 1 pi.

Wilhm, J.L. and J. Long 1 9 6 9 . Succession in algal mat communities at three different nutrient levels. Ecology 50:645-652.

Woelkerling, W. J. and S.B. Gough 1976 . Wisconsin desmids. III. Desmid caramunity composition and distribution in relation to lake type and water chemistry. Hydrobiologia (in Press).

______1978. Wisconsin desmids. I. Aufwuchs and plankton communities of selected acid bogs, alkaline bogs, and closed bogs. Hydr.obiologia 48(3):209-232.

Part B. References utilized in taxonomic identification.

Desidachary, T.V. 1959- Cyanophyta. Indian Council of Agricultural Res., New Delhi. 686 p.

Eddy, Samuel 1930. The fresh-water armored thecate dinoflagellates. Trans. Am. Microsc. Soc. 49(4):277“321.

Irene£-Marie, Frere 1939* Flore dismidiale de la region de Montreal. Lapairie, Quebec. 3 8 8 p., 69 pi.

Javomicky, Pauel and Jiri Popovsky 1971* Pyrrhophyta common in Czechoslovakia. Hydrobiological Laboratory of the Czechoslovak Academy of Sciences, Prague. 54 p. 21 pi. English Reprint.

Kling, H.J. and S.K. Holmgren 1972. Species composition and seasonal distribution In the experimental lake area, Northwestern Ontario. Fisheries Research Board of Canada, Tech. Rept. No. 337:1”51. 5 fig. Komarkova-Legnerova, Jaroslava 1 9 6 9 . The systematics and ontogenesis of the genera Anki strode sums Corda and Monoraphidium gen, nov. Studies in Phycology, Praha 122 p. 22 pi.

Marie-Victorin, Piere 1938. Phytogeographical problems of eastern Canada. Am. Mid. Nat. 19:489-558.

Nichols, G.E. and Alnea B. Ackley 1932. The desmids of Michigan with particular reference to the Douglas Lake Region. Pap. Mich.,Acad. Sci., Arts, and Letters. 15(1931):113~l4o. 59

Prescott, G.W. 1935 Notes on Michigan desmids. Pap, Mich. Acad. Sci., Arts, and Letters. 20(193*0 :157“17Q*

______1962. Algae of* the Western Great Lakes Area. Win. C. Brown Co., Publishers. 977 P»

Prescott, G.W., Hannah T. Croasdale, and W.C. Vinyard 1972. North American Flora. Part 6. , Part I. Saccodermae, Mesotaeniacoae. New York Bot. Gard., New York. 8U p.

1975. A synopsis o±' North American Desmids, Part II. Desmidiaceae: Placodermae Section 1. Univ. Nebraska press, Lincoln. 275 p.

Smith, G.W. 1920, The phytoplankton of the inland lakes of Wisconsin. Part II Desmidiaceae. Bull. Wis. Geol. and Nat. Hist. Survey 57(12):1-227.

______1950. The fresh-water algae of the United States. Sec. Ed. McGraw-Hill Book Co., New York. 719 P»

Taft, Clarence E. and Celeste W. Taft 1971* The algae of Western Lake Erie. Bull, of the Ohio Biol. Surv., Vol. U, No. 1. Published by The Ohio State Univ., Columbus. 189 p.

Tiffany, Lewis H. and Max E. Britton 1951* The algae of Illinois. The Univ. Chicago Press, Chicago. ^07 p.

Tilden, Josephine 1910. Minnesota algae. Vol I. Eept. of the Survey Botanical Ser., Univ. Minnesota. 328 p., 20 pi.

Uherkovich, Gabor 1 9 6 6 . Die Scenedesmus-Arten ungarns Akademeai Kiado, Budapest. 175 P«

Wailes, G.H. 193^. Fresh-water dinoflagellates of North America. Vancouver Mus. and Art Notes 7* Suppl. 11.

Walton, L.B. IO.1 5 . Euglenoidina Block. Bull. Ohio Bio. Surv. l:3^1-^59.

West, W. and G.S. West 190^. A monograph of the British Desmidiaceae. Vol. 1. Ray Soc., London. 22^ p. 32 pi.

I9 0 5 . A monograph of the British Desmidiaceae. Vol. II. liiiy Soc., London. 20^ p. 32 pi. 6o

West, W. and G.S. West 1908. A monograph of the British Desmidiaceae. Vol. III. Ray Soc., London. p. 31 pl«

______1912. A monograph of the British Desmidiaceae. Vol. iv. Ray Soc., London. 19*+ p. 33 pi.

West, W., G.S. West, and Nellie Carter 1923. A monograph of the British Desmidiaceae. Vol. V. Ray Soc., London. 300 p. 39 APPENDIX I

Utilization of the IBM 360 computer at the Ohio State University required Incorporation of several programs. Raw data were punched on IBM cards in the format shown in table 8. These data were stored on tape via program 1 and a tape check was run via program 2.

Clustering of the 859 taxa by accepted taxonomic or phylogenetic groupings was achieved by testing for greater than expected statistical probability of concurrence among the study sites (program 3)« Correlation of glacial status (G-U3TAT), glacial feature (G-LFEAT), month collected (MNTHCOL), habitat type (HABTYPE), and land usage (LDUSG-E) with the 8 5 9 taxa (PA001 to PA860) was generated by SPSS CROSSTAES (NIe, 1975) In program 4, since discrete values for the parameters were involved. CROSSTABS generates a test of statistical significance by which the probability that the observed relationship could have happened by chance Is given. A statistically signifi­ cant relationship Is evidenced by a probability of occurring by chance only 5% of the time or less. The continuous nature of the pH and temperature (TEMP) parameters required the use of an additional program (A) for correlation with the 859 taxa. This was the SPSS PEARSON

61 Table 7. Format of data as punched on IBM cards (standard 80 column width).

Space Code Datum

1,2,3..-Site Site number 4,5 Card Card number 6 ...... GLSTAT 1. Unglaclated 2. Illinoian glaciated 3. Yfisconsin glaciated 7.8.9...pH 2.5 - 9.5 10.11...Temp 1 - 35*C

1 2 .13...MNTHCOL 1. Dec.- Feb. 2. March - May 3. June -Aug. 4. Sept.- Nov. 14, ,GLFEAT 0. Unglaciated 1. Ground moraine 2. End moraine YML scons in 3. Karnes and eskers 4 • Ou tv/ash 5. Alluvium 6. Outwash Illinoian 7. Kames and eskers 8. Ground moraine 9• End moraine Table 8. Continued

Space Code Datum

15 , HA3TYPE 1. Large lake (greater than 4 hectares) 2. Pond (less than 4 hectares) 3. Stream 4. Ditch - seep 5• Marsh 6. Swamp 16 LDUSG-E 1. Cultivated 2. Pasture 3. Wood Lot 4. Roadside 5. Farm pond proximal to house or b a m 17,16,19.TWP 1 - 334

21-80....P— A 0. Absent 2. Present (6 - 80 On successive cards Is also 0. Absent, 2. Present) COER (Nie,1975) which computes Pearson product-moment correlations for pair3 of variables* The Pearson correlation coefficient r is used to measure the strength of relation­ ship between two interval-level variables. The value r is defined mathematically as the ratio of covariation to the square root of the product of the variation in X and the variation in Y, where X and Y symbolize the two variables:

where Xj = ith observation of variable X Yj = /'th observation of variable Y N = number of observations

X = t XjfN = mean of variable X

Y = 2 3 ^ . j Yf/N ~ mean of variable Y The actual formula used by SPSS for computing Pearson cor relation coefficients is

r =

Since only two variables are correlated at once the significance test reported for each coefficient and derived from the use of Student's t with N-2 degrees of freedom for the computed quantity ~N- 2"I,/2 r

The correlation of Y groupings was achieved by the Analysis of Variance generated by SAS (Statistical Analysis 65

//AO?lM JPP PHFVIX, JOB 21 // *XXXXXXXXXXXXXXXX*,»HOOREt 0. *f // class** • • • S------E T U P UNITaTAPE<>.ID=ICCII50,XXXXtWRITEI ~ t t FX F C PGK» JFRf.FNFR //SYSPRINT no sysput =a / / S Y S IN no dup^y / / S V S UIU T 2 DD UNIT*1APF*>,LABFL*I1»'LT • // DCn*(RECFN=F9.LRECL=PO'BLKSIZE*0OO)t ' nSN=*LGOIST,VDL*ItRETA IN.SER*CC115B I• D ISP=INEM(*.EEP| / / S Y S U T l DO • ______~ T t I E F 2 3 6 I ALLOC. FCP A0?P1 I F F 2 3 7 1 IRS ALLOCATED TO SYSPRINT 1 F F 2 3 7 I 5 P 0 A L L P C A T F D TO S Y S IIT 2 I F F 2 ? 7 | 166 ALLOCATED TO SYSUTl I F F 1 6? I - STEP WAS E X E C U T E D - CONO CODE 0 0 0 0 I E F ? < m ALGO 1ST KEPT I E F 7 P 5 I VPL 5E» NOS* c c u s n . ___ "O F F 5 0 1 1 5UU“ARV FOR STEP ' C P U T I P * STORACF. .1/0. I—P o : o p : o o : s “ ttfq . i ? e k — — nron------ins?— p o u t TURCTT --ff ___ . I I U SEO _____ 3 A K ____ | | ____ DISK ______O _TAPE ___ -163,ri i f F p f f l c k 5P0,ecii5B,Ao?rri OFF so? I SUMMARY FOR JOe A02B1 l5S5«»t03 76/176 «u .-ogXHKff-i |-™n----- ,/0-om-----*-l_J-T"S-| |-J,0UN{?SJte f

COUNTABLE UNITS. i s k o S_ APE 1_ Program 1, Tape storage

/ / A 0661 JOb PHI 'J IX • J O B 0 0 3 // ILwti*>XXX>XXXXXXXXXXX ,Cla;S*a •,'hOlKE . 0. •» • ••SETUP UNIT=TAPFY, I £>•(Lt U SC tXXJfXt V3JTEJ______A 0 6 A 1 " / / I X t C PGM *1 F I GE.'.L n ------//SYS IN 1-0 LJf.“ Y //SVIFMIM DO 1YSC1UT*A //SY1UTJ DO UNIT=TAPFV,VOL=C.RETAIN,SEH=CC115B) tDSN=ALGDIST. ______/ / L AB E L -1 • D 1 S F * I (,'l G . K T E P 1 //SYSUTT DU S T SPUT t-A.tLBM ttEcFM 'FB.LRECL* 60.ELK SI IE =8 001

ILF23JI ALLOC. FOR AO ft. 1 I E F I S 7 I I I * . A L LfJilAT F 0 TP SYCPRTOT------IF F J 3 71 E>!>2 A L LUC AT IOTP S Y S U T l IFF237J 117 A l LGCATEI* TO SYSUT? IEF1*.?I - STEP »AS EXLCLTLD - CONG COCE 0000 I IFJrFSI ALGCIST ------— KEPT------IL P?lSI VUL SLR (JOS* CCllbB. Qbl-tLII SUMMARY FDK STEP c p u timf STPftAc.r i / n •• I—EG: i,C :C&.72— I - |” E3. 12Pt— T T"C* mB------C— PA TOT — — PUNCH------0—I 1. . ■ , , .______J _ U S t D ______3 A K ___ f I D IS K .______O______TAPE ______1 6 6 ____ I l E F t l t T A & F . *C C T l 5 B . A f'f A I . O l F S U / I IUMHAh Y F0H JGL AC661 16:56:23 76/176 GSU__, ,_CPU TI«_, , ____ I / O , , . ~~ IZSTEPS^, '“ MOUNTABLE UNITS '* ^ I I T T o i u u : l g . T T ^ I I uNTT^ TTTTK CTl I 1(1 DISK o I moT~ctURcjg^ irrlo 1------1 1------T

MOUNTAg^NITS

I T A P E ____ 1______I Program 2. Tape check. //AbPfiS JOB PHENIX, // 'XXXXXXXXXXXXXXXX*, 'LEE // 5000,CLASSES / / E X E C —S A S - ^SAS.SYSIN DD *

D A T A L E E * INPUT GL 12 PH 13-15 TEMP 14-17 MON lfl-l<> HAR 21 LAND 22 Y&l 29 YA2 27 Yf.3 29 Yfc4 31 Y&5 33 Yf>6 35 YA7 37 YAP 39 Y69 41 V70 43 V71oi*o; 45 Y72 *>7 Y73 49 Y74 5L. Y75 53. Y.76 .55 -Y77..57 Y78 .59 Y79 t l . m 13L- I F MON = 12 THFN O T*li F HOH *= 1 TUEN QT«1 P.MQN.= ? ..THEN. QT“ 1 F MON «= 3 THEN LT*2 F H O N = 4 THFN 0T«2 F MON c 5 THEN 0T»2 F M O N * A THFN 0T=3 F K U N = 7 THEN UT=3 I F M O N = 8 THFN UT*3 I F MON » 9 THEN 07=4 I F H O N = .10 THEN CT=4 F M O N * 11 THEN 0Ts4 i AROS

137 OBSERVATIONS IN DATA SET LEE 27 VARIABLES -PROC.-ERINT PRO C REG R S; CLASSES Gl Q T MAB LAND: M O D E L T A l G L PH TF M ° C T H A 9 LANQ/nUMMYB; M O D E L Y A 2 G L PH TEMP A T H A B LANO/nilMMYBS- M O D E L V 6 ? G L FH TEMP O T H A 3 land / dummyb : M C O F L Y b 4 G L PH TF f-'P OT HA 3 LANO/DUMMYB; M O D E L Y 6 5 G L PH TFMP f iT ha? l a n d / p u m m y b ; -MODEL. Y66 G L PH TEHP D T H A 4 LANO/DUMMYBi— MODEL Yt>7 G L Pw TEMP O T H A S l a n d / d u m m y b ; H O D S L Y 6 8 G L PH TEMP O T h a 9 LANO/nt!MMYB: MODEL Y(.o C L PH 1 * M P C T H A S LAND/PUHMYA; M O D E L Y 7 0 G L t'H TE H P O T HA a LAND/nUMMYB;-. M O D E L Y 7 1 GL P “ TFM P -JT H A ? LAN D /n iJ M M Y B I M O D E L Y 7 2 G L PH T= “ P 0 7 HA B L A N D / n u H M Y B $ HOOF L Y73 G L PH j e w i i OT HA F LAND/DUMMY3; M O D E L Y 7 4 G L PH TEM P O T H A S LAND/DUMMYB4— M O B F L Y 7 5 G L PH TEM P :?T has LANO/OUMMYBI M O n E L Y 7 A G L PH TEM P O T H A 3 LANP/nUMHYB; M O D E L Y 7 7 G L PH T! MP 01 14A P LA N D /r i) M M Y 3 t M O D E L Y 7 B G L PM TE M t’ OT HAP LAND/DUMPY8J_ H O O E L V 7 9 G L PH TEMP O T H A 8 LANO/nUMMYBf M O D E L Y 8 0 G L PH TEHP O T H A S LAND/nUMMYBt

Program 3. SAS regression used in testing for concurrence of taxa. 67

77--70000VCLAS5=H------/4SETUP____ UNI_r=TAPt9, r0=ICC115B*H?00,«EADJ n t/CC SpGS»vEK*M.keG=i'S.;<.T = ,tO»3Cll * ,iIi.t = BuOOO //GO.FTOUFOU1 D/ rAuL£5=PAA36 TO PASIO UY GLSTAT STATISTICS 1*3 READ INPUT DATA CROSSTABS VARIABLES=GLSTAT(1,31*PA5ll TO PAS8M 0.2I/ TAuLcS=Pa511 TO PA5B5 UY GLSTAT STATISTICS 1 *3 CROSS TABS VARIaBLES=CLSTATI1*31fPA5R6 TO PA660I0.2I/ T AbL E S = PA5d 6 TU PA660 BY GLSTAT STATISTICS 1 *3 CROSS TADS VARIA1LES=GLSTAT(1*31,PA661 TO PA735(Of21/ TAoLESsPA661 TU PAT35 BY GLSTAT STATISTICS I • 3 CROSS TABS VAKIABLES=GLSrAT(lt3)»PA736 TO PA310(0,2J/ IA3LES=PA736 TU PAUIQ BY GLSTAT STATISTICS 1*3 CROSS TABS VAKlABLES=GLSTATC1*31tPABIl TO PA860(0t21/ TABLES = PA811 TU PAB60 BY GLSTAT STATISTICS 1.3 FINISH /* //

Program 4. SPSS CROSSTABS 68

// 20000,CLASS=B TS'SEfOP UMI T=f APE9, 10= ( ______V/GU.SYSIN" 00 * V A R I A B L E L I S T GLSTAT,PH.TEMP,NNT h COL,GLFEAT,HABTYPE,LQU5GE»TWP,PA001 TO PAU60, PA061 T O" PAA 3 5 - - - - - INPUT FORriAT FlAED I L V ^ K n “ M j i r A T f j F 7 ------HABTYPE ( 1 ILARGELAKE I 2 ) P QN J I 3 ) S T R S A M | ) Q ; r CH SE AP ( 5 » H M S r l I &) Srt A*3P/L0 eTL1jc I l' I C U L T i V aTIIT iT f"PA STU k E I 3 ) W G Q J L U I I 4T;VDa US i O b I 5IFARM POND HU’JSE/PAOOl TU PA435IUJABSENT(2 JPRESENT 'P'A'OOT T 0 _ P A 0 6 0------STATISTICS t — r ^ a o “ i n p u t " j a t a ------PEAKSUN CORR PA061 TO PA 135 WITH PH S I A I I S I I L b I PEARSON CORR PA136 TO PA210 WITH PH STATISTICS ------1 ------PEARSON CORR PA211 TO PA2B5 WITH PH "STATISTICS' PEARSON CUP.R PA266 TO PA3GO WITH PH ~5TXT rST 1X3 ----- 1 ------PEARSUN CURR PA361 TO PAA35 WITH PH "STATISTICS ------~l------FINISH 7 « ------//

Program 5. SPSS PEARSON CORR. APPENDIX II

This species list contains PA001 to PA85 9 alphabeti­ cally by genus. The species are listed alphabetically under each genus. Columns S1 (Unglaciated) and S2 (Glaciated) refer to the number of sites in which each taxon occurred. Columns A (Unglaciated) and B (Glaciated) refer to the relative abundance of each taxon in those sites wherein it occurred: a = common, b = occasional, c = rare.

PA Taxon SI A S2 B

001 Actinastrum hantzschii Lagerheim 0 0 _ 04* b

002 hantzschii var. elongatum G.M. Smith 01 c 01 c

0 0 3 hantzschii var. fluviatile Schroeder 02 c 05 c 004 Anabaena affinis Lammerrnann 03 c 05 c 005 bortiana Collins 00 - 01 c

006 felisii (Meneghini) Bomet & Flahault 00 - 01 c 007 flos-aquae (Lyngb.) deBrebisson 01 c 00 - var. treleasei Bomet & Flahault

008 limnetica G.M. Smith 02 b 03 b 009 oscillarioides Eory 04 b 01 c 010 planctonica Brunnthaler 00 - 01 c 011 sceremetieve Elenkln 00 - 01 c 012 spiroides Klebahn 00 - 01 0 var. crassa Lemmermann 013 subcylindrica Borge 00 - 01 c 014 variabills Kuetzing ex Bomet & Flahault 01 c 01 b 69 PA TAXON

015 Anabaena "Wisconlnense Prescott 016 Anabaenopsls arnoldii 017 elenklnll Miller 018 Ankistrodesmps falcatps (Corda) Ralfs

019 falcatps mirabllls (Nest & Yfest) G.S. Yfest

020 falcatps var, stipitstps (Chodat) Lemmermann

021 falcatps var, tpmidps (Yfest & Yfest) G.S. Vfest 022 fractps (Yfest & Yfest) Brpnnthaler 023 spiralis (Tprner) Lemmermann 024 Aphanizomenon flos-aqpae (Linneaps) Ralfs 025 holsaticpm Richter 026 Aphanocapsa delicatissima Yfest & Yfest 027 elachista Yfest & Yfest 028 elachista var. planetonica G.M. Smith 029 grivellei (Hass.) Rabenhorst 030 rlvplaris (Carm.) Rabenhorst 032 Aphanochaete repens A. Brapn 033 gelatinosa (Henn.) Lemmermann 034 Aphanothecae microscopica Naegeli 035 nidplans P. Richter 036 stagnina (Spreng.) A. Brapn in Rabenhorst PA TAXON S1 A S2 5

037 Apiocystis brauniana Naegeli 00 — 01 c 038 Arthrospira jenneri (Kuetzing) Stizenberger 00 - 01 b 039 Asterococcus limneticus G.M. Smitli 02 c do - 040 superbus (Cienkov/ski) Scherffel 01 c 00 - 041 Kuetzing 17 a 17 b 042 protuberans 01 b 02 c var. minor G.M. Smith. 043 sudeticus Lemmermann 00 - 01 c 044 Bulbochaete angulosa Vfittrock & Lundell 01 b 01 b 045 intermedia deBary 00 - 01 c 046 intermedia var. depressa Wittrock 00 - 01 c 047 praereticulata Jao 00 - 01 c 048 Calothrix atrica Fremy 00 - 01 b 049 braunii Bornet & Flahault 00 - 01 c 050 epiphytlca West & West 00 - 01 b 051 fusca (Kuetzing) B o m e t & Flahault 01 c 01 c 052 stagnalis Gomont 01 c 04 b 053 Ceratium hirundinella (O.F. Miller) Dujardin 10 b 16 b 054 Chaetopeltis orbicularis Berthold 00 - 01 b 055 Chaetophora incrassata (Kuds.) Hazen 00 - 02 b 056 Chaetosphaeridium globosum (Rordstedt) 00 - 04 c Klebahn 057 Chaamaesiphon confervicola A. Braun 00 - 03 b 7 2

PA TAXON SI A S2 B

05 8 Chamaesiphon Incrus tans G-runow 00 - 06 b

0 5 9 Chara excelsa Allen 00 - 03 a 060 Characlopsis acuta (A. Braun) Borzl 01 b 02 b 061 cylindrlca (Lambert) Lemmermann 00 - 01 c 062 lageniformls Eascher 01 c 01 c 063 longlpes (Rabenhorst) Borzl 03 b 03 b 064 pyriformis (A. Braun) Borzl 00 - 02 c 065 Characium amblguum Hermann 03 b 10 b 066 debaryanum (Relnsch) Detonl 00 - 02 b

0 6 7 falcatum Schroeder 01 c 00 -

068 graclllpes Lambert 05 a 05 a 069 hooker! (Relnsch) Hansgirg 00 - 01 b 070 llmneticum Lemmermann 00 - 01 b 071 obtusum A. Braun 01 b 02 b 072 ornlthoc e phalum A . Braun 02 c 03 b 073 prlngsheimil A. Braun 02 b 12 b 074 rabenhorstli Detonl 00 - 01 b 075 rostra turn Reinhard 02 b 03 b 076 stlpltatum (Bachm. ) V7111e 00 - 02 b 077 Chlamydomonas angulosa Dill 00 - 06 b 078 cienkowskll Schmidle 00 - 01 c 079 globosa Snow 06 b f 2 a 7 3

PA XAXON SI A S2 B

080 Chlamydpmonas klebsii 00-01 c

081 cruel cola Schmidle 00 - 02 c 082 paupercula Playfair 01 b 00 - 083 polypyrenoldeum Prescott 04 b 07 b 084 pseudopertyi Pascher 01 c 00 - 085 snowll Printz 05 b 13 b 086 Chlorella vulgaris Eeyerlnck 07 b 08 b

087 Chlorobotrys llmnetica G.M. Smith 00-01 c 088 Chlorochloster pyreniger Pascher 00-01 c 089 Chlorochromonas minuta Lev/is 02 b 02 b 090 Chlorosarclna consoclata (Klebs) G.M. Smith 00-01 c 091 Chroococcus dispersus (Keissl.) Lemmermann 01 b 03 b

092 giganteus VI, West 00 - 01 a 093 limneticus Lemmermann 06 b 10 a 094 limneticus var. carneus (Chodat) 00 - 01 b Lemmermann 095 limneticus var. distans G.M. Smith 00-01 b 096 limneticus var. elegans G.M. Smith 03 b 04 b 097 limneticus var. subsalsus Lemmermann 00-01 c 098 minor (Kuetzing) Naegeli 01 b 08 a 099 minutus (Kuetzing) Naegeli 06 b 10 b 100 pallidus Naegeli 02 c 01 c

101 prescottii Drouet & Daily 02 c 02 c ______74

PA TAXON SI A S2 B

102 Chroococcus turgidus (Kuetzing) Naegeli 10 a 19 b 103 varius A. Braun in Rabenhorst 00 - 04 b 104 Chroomonas nordstedtii Hansgirg 03 b 03 b 105 Cladophora fraeta (Dillo. ) Kuetzing 01 c 09 a 106 glomerata (Linnaeus) Kuetzing 03 c 12 a 107 insignis (C.A. Agardh) Kuetzing 00 - 01 b 108 Closteriopsis longissima Lemmermann 00 - 02 b 109 longissima var. tropica Yfest & Yfest 04 b 07 b 1 10 Closterium acerosum (Schrank) Ehrenberg 16 a 27 b 111 acerosum var. angolense Yfest & Yfest 00 - 01 c 112 acerosum var. elongatum deBrebisson 01 b 02 c 113 aciculare (Tuffen) West 00 - 02 c 114 acutum deBrebisson 02 b 01 c 115 attenuatum Ehrenberg 00 - 01 c 116 ceratium Perty 01 c 00 - 117 cornu Ehrenberg 01 b 00 - 118 cynthia deNotaria 00 - 01 b 119 dianae Ehrenberg 01 b 03 b 120 didymotocum Corda 00 - 01 c o CVI 121 eboranse (Ehrenberg) Tyrner c 07 c 122 ehrenbergii Meneghini 10 b 27 b 123 gracile deBrebisson 01 c 04 c PA TAXON

124 Closterium intermedium 125 kuetzingii deBrebisson 126 lanceolatum Kuetzing * 127 lanceolatum var. parvutn W. & G.S. West 128 leibleinii Kuetzing 129 lineaturn Ehrenberg 130 littorale Gay 131 lunula Ehrenberg

132 lunula var. intermedium Gutwinski

133 macilentum deBrebisson

134 moniliferum (Bory) Ehrenberg 135 parvulum Naegeli 136 parvulum var. angustum West & West 137 peracerosura Gay 138 porrectum Nordstedt / 139 praelongum deBrebisson 140 praelongum var. brevis Nordstedt

141 prichardianum Archer 142 pseudolunula Eorge 143 ralfsii deBre'blsson 144 ralfsii var. hybridum Rabenhorst 145 regulare deBrebisson PA TAXON

146 Closterium sigmoldeum Lagerheim & Nordstedt 147 striolaturn Ehrenberg 148 striolatum var. recta West 149 turgldum Ehrenberg

150 ulna Focke 151 venus Kuetzing

152 venus var. Incurvum (deBrebisson) Krleger 153 Coelastrum cambricum Archer 154 mlcroporum Naegeli 155 reticulatum (Dang.) Senn

156 sphaerlcum Naegeli 157 Coelosphaerlum dublum Grunow 158 kuetzlnglanum Naegeli 159 naegellanum Unger 160 pallidum Lemmermann

161 Colaclum veslculosum Ehrenberg

162 Coleochaete divergens Erlngshelm

163 orbicularis Pringsheim 164 soluta (deBrelDisson) Erlngshelm 165 Cosmarium abbreviatum Raciborski

166 angulare Johnson

167 angulare var, canadense Irenee-Marie PA TAXON

/ 168 Cosmarium angulosum deBrebisson 169 angulosum var. coccinuum (Rabenhorst) W. & G.S. West 170 aphanichondrum Nordstedt 171 bipunctatum Eorgesen 172 blpuncta*tum forma, subrectangularis W. & G.S. Nest 173 bireme Nordstedt 174 biretum deBrebisson var. minus Hansgirg 175 biretum var. trigibberum Nordstedt 176 byytii Wille var. novae-sylvae W. & G.S. West 177 boeckii Wille 178 botrytls Meneghini 179 botrytls var. gemmlferum (deBrebisson) Nordstedt

180 breblssonll Meneghini

181 crenulatum (Naegeli) Wittrock var. tumidulum Insam & Krieger

182 cucumls (Corda) Ralfs var. magnum Raciborski 183 decedens (Relnsch) Raciborski 184 dentatum Nolle 185 depressura (Naegeli) Lundell 186 depressum var. achondrum (Eoldt) W. & G.S. Nest ------78 PA TAXON 51 A 52 B

187 jmarlum didymochondrum Nordstedt 00 — 03 c 188 didymoprotupsum W. & G-.S. West 01 b 00 -

189 exlguum Archer 01 b 02 c

190 favum W. & G.S. West 00 - 01 c 191 formosulum Hoffmann 09 c 10 b 192 furcatospermum W. & G.S. West 01 b 00 - 193 geometrician W. & G.S. West 01 b 01 c

194 geometrician var. suecium Borge 07 b 05 b 195 globosum Buluh 00 - 03 c

196 granaturn deBrebisson 11 b 22 a

197 granatum var. subgranatum Nordstedt 03 b 06 c

198 hammer! Relnsch var. homalodermun 01 b 00 - (Nordstedt) W . & G.S. West 199 hammeri var. protuberans W. & G.S. Wets 03 b 03 c 200 hexangulare Nordstedt 01 b 01 c

201 holmiense Lundell 01 b 00 - < 202 humlle (Gay) Nordstedt 05 b 02 c 203 humlle var. danlcum (Borgas) Schmidle 01 c 00 - 204 humlle var. glabrum Gutwinskl 01 b 01 c 205 humlle var. striatum 01 b 02 c 206 humlle var. substriatum (Nordstedt) 01 c 01 c Schmidle

207 impressulura Elfing var. suborthogonum 05 c 03 b (W. & G.S. West) Taft ------79 PA TAXON SI A S2 B

208 Cosmarium jensijensi Eoldt 01 b 00 — 209 laeve Rabenhorst 06 b 04 b 210 laeve var. distentum G.S, West 04 b 05 c 211 laeve var. octangularis (Wille) W. & G.S. 06 b 03 c West

212 laeve var. septentrionale Wille 01 b 00 - 213 logiense Eissett 00 - 02 c

214 lundellii Delp var. corruptum (Turn.) 01 c 00 — W. & G.S. West 215 lundellii var. ellipticum West 01 b 03 c 216 margaritatum (Lundell) Roy & Bissett 01 b 07 b 217 meneghenii deBrebisson 02 b 08 c 218 moniliforrae (turp.) Ralfs 01 b 02 c

219 monlliforme var. subpyriforme W. & 01 c 00 - G.S. West 220 novae-semilae Wille var. sibericum Eoldt 03 c 01 c 221 ochtodes Nordstedt 02 b 01 c 222 orthosticum Lundell 01 b 00 - o o in 223 pachydermum Lundell var. aethiopicum cr\ b b W. & G.S. West 224 phaseolus deBrebisson forma minor Eoldt 11 a 11 b 225 phaseolus var. elevatum Nordstedt 01 c 00 - 226 pokomyanum (Grun.) W. & G.S, West 01 c 00 227 porrectum Nordstedt 03 b 01 C

228 portianum Archer 08 b 06 C PATAXON S1 A S2 B

2 2 9 Cosmarium portianum var. nephroideum Wittrock 02 b 00 -

2 3 0 pseudoamoenum Wille var. basilare 00 - 01 c Nordstedt

231 pseudarctoum Nordstedt 00 - 01 c 232 pseudoprotuberans Klrchner 02 b 00 — 2 3 3 pseudopyramidaturn Lundell 02 b 01 c /• 2 3 4 punc tula turn deBrebisson 02 i 0 ■fc- var. subpunctulaturn (Nordstedt) Eorgess 0

235 quadrum Lundell 02 b 01 c 2 3 6 quadrum var. minus Nordstedt 04 b 04 b

2 3 7 ralfsii deBrelDisson 02 b 00 -

2 3 8 rectangularis Grunow 00 - 04 b 2 3 9 rectangularis var. cambrense (Turn.) 01 b 00 - W. & G.S. West

240 regnellii Wille 08 b 06 b 241 regnellii var. minimum Eichler «L 03 b 05 c Gutwinski 242 regnesl Relnsch var. montanum Schmidle 00 M 02 b 243 reniforme (Ralfs) Archer 03 b 1 1 b 244 reniforme var. seminudum Taft 03 b 03 b 245 scotlanum W. & G.S. West 00 01 c 246 seelyanum Wolie 00 — 02 c

247 subalatum W. & G.S. West 00 — 02 c 248 subaversum Borge 00 - 01 c

249 subcostatum Nordstedt 03 b 02 c PA TAXON SI A S2 B

250 Cosmarium subcostatum Norstedt var. beckli 01 b 00 - (Gutwinski) Yf. & G.S. Yfest

251 eubcrenatum Hantzsch 11 b 17 b

252 subcrenatum forma ? Taft 03 c 03 c 253 subcuccumis Schmidle 02 b 00 t 254 subochthodes Scbmidle 04 b 01 c 255 subprotumidum Nordstedt 01 b 02 b 25 6 subprotumidum var. gregorii (Roy & Biss« i 02 b 00 - W. & G.S. West 257 subtumidum Nordstedt 01 b 00 - 2 5 8 subtumidum var. klebsii (Gutwinski) 04 c 03 c V/. & G.S. Yfest 259 subundulatum Yfille 01 b 00 - 260 sulcatum Nordstedt var. sumatranum 06 b 03 b Schmidle 261 tetragonum Naegeli var. davidsonil 00 ** 01 c (Roy & Bissett) Yf. & G.S. Yfest 262 thwaltesii Ralfs var. penioides Klebs 01 b 00 - 263 turpinii deBrebison 00 - 02 b 264 turpinii var. exlmium 01 b 03 b 265 turpinii var. podolicum Gutwinski 03 b 03 c 266 umbulicatum Lutkem. 01 b 00 - 267 undulatum Corda 04 b 00 - 268 undulatum var. crenulatum (Naegeli) 00 - 01 c W1ttrock 26 9 ungerlanum (Naegeli) deBary var. 00 01 c subtripllcatum W.& G.S. Yfest PA. TAXON 81 A S2 B

270 Cosmarium venustrum (deBrebisson) Archer 00 - 01 c var. hypohexagonum West 271 vexatum West 04 b 00 - 272 Cruclgenia fenestrata Schmidle 00 - 01 c 273 irregularis Wille 01 c 0 0 - 274 lauterbornei Schmidle 01 c 00 - 275 quadrata Morren 01 c 02 c 2 7 6 rectangularis (A. Eraun) Gay 09 b 06 c 277 (Kirchner) W. & G.S. West 02 c 01 c 2 7 8 truncata G.M. Smith 02 c 01c 279 Cryptomonas erosa Ehrenberg 01 c 03 b 280 nordstedtii Hansglrg 00 - 01 b 281 ovata Ehrenberg 00 - 06 b 282 Cylindrocapsa conferta V/. West 03 c 06 c 283 geminella Wolle 02 b 01 c 284 Cylindrospermum catenatum Ralfs 01 b 00 - 285 minutlssimum Collins 01 b 00 - 286 stagnale (Kuetzing) Bomet & Flahault 01 b 00 - 287 Cynarcus hamiformis Pascher 00 - 01 c 288 Dactylococcus infusionum Naegeli 00 - 01 b 289 Dactylococcopsis acicularis Lemmermann 01 c 01 c

290 smithil Chodat & Chodat 0 7 b 03 c 291 blpyramldatum (Chodat) 00 01 c Pascher

2 9 2 aptogonum deBrebisson 00 - 01 c PA TAXON

293 Desmidium swartzii Agardh

294 Dicothrix orsinana (kuetzing) Bornet & Flahault

295 Dictyosphaerium ehrenbergianum Naegeli 296 pulchellum Wood 297 linatus A. Braun 2 9 8 Dinobryon bavaricum Imhoff 299 divergens Imhoff 300 sertularia Ehrenberg 301 sociale Ehrenberg 302 tabellariae (Lemmermann) Pascher 303 Dlspora crucigenioides Printz 304 Draparnaldia glomerata Wille 305 Elakotothrix gelatinosa Wille

306 viridis (Snow) Printz 307 Euastrum bidentaturn Naegeli 308 binale (Turpini) Ehrenberg 309 crassicolle Lundell 310 denticulatum (Kirchner) Gay 311 dubium Naegeli 312 gemmaturn deBrebisson 313 spinosum Ralfs 314 verrucosum Ehrenberg var. alatum Wolle

315 verrucosum var. reductum Norstedt PA TAXON SI A S2 B

316 Eudorlna elegans Ehrenberg 05 c 11 a 317 Euglena acus Ehrenberg 14 b 30 a 318 acus var. riglda Huebner 04 b 08 a 319 caudata Huebner 00 - 02 b 320 convoluta Korshikov 01 b 01 b 321 deses Ehrenberg 00 - 02 b 322 elastica Prescott 00 - 05 a 323 elongata Schewiakoff 02 c 03 b 324 gracilis Klebs 03 b 06 b 325 intermedia Klebs 01 b 00 - 326 minuta Prescott 00 - 03 b 327 oxyuris Schmarda 04 b 03 b 328 oxyuris var. minor Prescott 00 - 05 a 329 polymorpha Dangeard 02 b 15 a 330 proxima Dangeard 05 b 10 a 331 sanguines Ehrenberg 03 c 02 b 332 spirogyra Ehrenberg 07 b 09 a 333 tripteris (Dujardin) Klebs 04 b 09 b 334 truncata n.sjD. (Walton) 00 - 01 b 335 Franceia droscheri (Lemmermann) G.M. Smith 02 b 03 b 336 ovalis (France) Lemmermann 01 c 01 c 337 Geminella interrupts (Turpin) Lagerheim 02 b 00 - 338 minor (Naegeli) Heering 00 - 03 b PA SAXON 81 A 52 B

339 Geminella mutabilis (deBrebisson) Wille 01 c 01 c 340 ordinata (W. & G.S. West) Heering 00 - 02 c 341 Glaucocystis nostochinearum (Itz.) 00 - 01 a Rabenhorst 342 oocystiforrais Prescott 06 c 14 b 343 Glenodinium arraatum Levander 00 - 01 b 344 austrailcum Playfair 00 - 01 c 345 berolinense Lemmermann 01 c 01 b 346 gymnodinium Penard 01 b 00 - 347 kulczynskii (Wotoszynska) Schiller 00 - 01 c 348 penardlforme (Lindemann) Schiller 00 - 01 b 349 pulvisculus (Ehrenberg) Stein 00 - 02 c 350 quadridens (Stein) Schiller 01 c 04 b 351 Gloeocapsa calcarea Tilden 01 c 02 c 352 decorticans (A. Eraun) Richter 00 - 04 b 353 punctata Naegeli 00 - 01 b 354 ralfsiana (Harr.) Kuetzing 01 c 02 c 355 rupestris Kuetzing 01 b 00 - 356 Gloeocystis ampla (Kuetzing) Lagerheim 02 b 00 - 357 gigas (Kuetzing) Lagerheim 01 c 05 b 358 major Gerneck 00 - 01 b 359 planktonica ( W. & G.S. West) 00 - 01 b Lemmermann

360 vesiculosa Naegeli 02 b 00 - 361 Gloeotaenium loitelsbergianum Hansgirg 01 b 04 b 86 PA TAXON SI A S2 B

362 Gloeotheca linearis Naegeli var. composlta 05 b 06 b G.M. Smith 363 01 b 06 b Nordstedt

364 Gloeotrichia echlnulata (J.E. Smith) Richter 01b (0202 b 365 natans (Hedwig) Rabenhorst 00 - 04 b 366 plsura (C.A. Agardh) Thuret 00 - 01 c 367 Golenkinia paucispina W. & G.S. West 01 b 02 b 368 radlata (Chodat) Wille var. brevispina 02 b 01 c Tiffany & Ahlstrom 369 Gomphosphaeria aponina Kuetzing & Ahlstrom 01 b 01 a 370 aponina var. delicatula Virieux 01 a 01 b

371 lacustris Chodat 00 - 01 b 372 kinahani (Archer) Rabenhorst 01 b 03 c 373 monntaenium deEary 00 - 01 c 374 Gonium sociale (Dujardin) Warming 01 c 01 a 375 Hapalosiphon delicatulus W. & G.S. West 03 b 04 b 376 intricatus W. & G.S. West 01 b 00 - 377 Harpochytrium atklnsonianum Pascher 00 - 01 a 378 hyalothecae lagerheim 02 c 02 b 379 Hemidinium nasutum Stein 02 b 00 - 380 Hormidium klebs11 G.M. Smith 01 b 01 c 381 Hyalothece disslliens (Smith) deBrebisson 00 - 05 b 382 disslllens forma circularis Jacobs 00 - 03 b 383 disslliens var. hians Wolle 00 01 b PA TAXON SI A S2 B

384 Hydrodictyon reticulaturn (Linnaeus) Lagerheim 01 c 01 a 385 KIrchneriella contorta (Schmidle) Bohlin 01 b 02 b 386 elongata G.M. Smith 04 c 03 b 387 lunaris (Klrchner) Moeblus 02 b 02 b 388 lunaris var. dianae Eohlin 05 b 02 c 389 lunaris var. Irregulare G.M. Smith 00 - 01 b 390 obesa (V7. Yfest) Schmidle var. aperta 02 b 01 b (Tell) Brunnthaler

391 obesa var. major (Bernard) G.M. Smith 02 b 01 b 392 subsoiltarla G.S. Yfest 03 b 02 b 393 Lagerheimia cltrlformis (Snow) G.M. Smith 01 c 02 c var. paucispina Tiffany & Ahlstrom 394 genevensis Chodat var. subglobosa 01 b 00 - (Lemmermann) Chodat

395 longlseta (Lemmermann) Printz 00 - 01 c 396 quadrlseta (Lemmermann) G.M. Smith 01 c 00 - 397 wratlslawiensis Schroeder 00 - 02 c 398 Lagynion scherffelll Pascher 01 b 00 - 399 Lepocinclis acuta Prescott 01 b 00 - 400 buetschill Lemmermann 01 c 06 b 401 fusiformis (Carter) Lemmermann 00 - 01 b 402 marssonii Lemmermann 04 c 08 b 403 ovum (Ehrenberg) Lemmermann 00 - 01 b 4 j ,404 playfalrlana Deflandre 11 b 10 b 88 PA TAXON SI A S2 B

405 Lepocinclis sphagnophila Lemmermann 01 b 01 c

406 Lyngbya aeruginosa-caerulea (Kuetzing) 02 b 01 b Gomont w

407 aestuarii (Mert.) Leitmann 03 b 00 - 408 diguetii Gomont in Harlot 02 b 05 b 409 eplphytica Hieronymus in Engler & Prantl 03 a 04 b 410 hieronymusil Lemmermann 03 b 02 b 411 infixa Fremy 02 b 04 b 412 lagerheirala (Moebius) Gomont 01 c 02 c

413 latissima Prescott 01 c 00 -

414 limnetica Lemmermann 01 b 00 - 415 major Meneghini 01 b 10 b 416 mertensiana Meneghini 06 b 09 b

417 rlvularianum Gomont 00 - 01 b 418 taylorii Drouet & Strickland 01 c 01 c

419 versicolor (Wartraann) Gomont 00 - 01 c

420 Mallamonas acaroides Perty 01 c 00 -

421 acaroides var. moskocensis (Vfermel) 00 ■ 01 c Krieger 00 - 01 b 422 apochromatica Conrad 423 caudata Iv/anoff 02 c 01 b 424 Marsonlella elegans Lemmermann 01 b 02 b 425 Merismopedia convoluta deBrebisson 02 b 01 b 426 elegans A. Braun 02 b 06 b ------89 PA SAXON 81 A S2 6

427 Merismopedia elegans var. major G.M. Smith 05 b 05 b 428 glauca (Ehrenberg) Naegeli 04 b 04 b 429 punctata Meyen 03 b 11 b 430 tenuissima Lemmermann 01 b 04 b 431 Micractinium pusillum Fresenius 10 b 18 b 432 quadrisetum (Lemmermann) G.M. Smith 00-01 b 433 Mlcrasterias americana (Ehrenberg) Ralfs oi b 00 - 434 americana var. boldtii Gutwinski 02 c 02 c 435 americana var. recta 01 b 00 - 436 pachyderms (Wille) Lagerheim 00-01 c 437 radiata Hassail 02 a 00 - 438 truncata (Corda) deBrebisson 03 a 00 c 439 truncata var. semiradiata Cleve 02 a 00 b 440 Kicrocoleus lacustris (Rabenhorst) Farlow 00 b 08 b 441 Microcystis aeruginosa Kuetzing emend. oi b 02 b Elenkin 442 Microspora crassior (Kansglrg) Hazen 12 b 15 b 443 elegans Hansglrg 00-01 b 444 stagnorum (Kuetzing) Lagerheim 00-01 b 445 tumidula Hazen 01 c 02 c 446 Microthamnion kuetzingianum Naegeli Jji 02 b 01 c Kuetzing 447 s.trictissimum Rabenhorst 07 b 07 b 448 Konoraphidium braunii (Naegeli) comb, nov. 02 b 00 - Komarkova-Legnerova PA TAXON SI A S2 B

449 Monoraphidium contortum (Thur.) Komarkova- 04 b 04 b Legnerova

450 grlffithii (Berkel.) Komarkova-Legnerova 04 b 06 b 451 irregulare (G.M. Smith) Komarkova- 02 b 05 b Legnerova

452 setiforme (Nyg.) Komarkova-Legnerova 01 c 01 c 453 tortile (W. & G.S. West) Komarkova- 01 c 01 c Legnerova

454 Mougeotia gracllima (Hassall) Wittrock 00 - 01 b

455 Nephrocytium agardhianum Naegeli 00 - 01 b

456 limneticum (G.M. Smith) G.M. Smith 00 - 03 b 457 lunatum W. V.Test 01 c 00 -

458 ohesum W. & G.S. V,Test 00 - 01 b

459 Nodularia spumigena Mertens 08 b 05 c 460 Nostoe commune Vaucher 00 - 01 b 461 linckia (Roth) Eornet & Thuret 00 - 01 b 462 paludosum Kuetzing 01 b o1 b 463 punctiforme (Kuetzing) Hriot 00 - 01 b 464 Oedogonium capillare (Linnaeus) Kuetzing 00 - 01 b 465 capi111forme Kuetzing 00 - 01 b 466 cyathiferum Wittrock 01 b 00 - 467 irregulare V/ittrock 00 - 01 c 468 megasporum Wittrock 00 - 01 b 469 orlentale Jao 00 - 01 b 470 porrectum Nordstedt & H i m 01 c 00 - 471 princeps (Hassall) Wittrock 01 b 00 91 PA TAXON S1 A S2 B

472 Oedogonium pseudo-boscii Hirn 00 — 01 b

473 punctatostriatum deBary 01 b 01 a 474 richterianum Lemmermann 01 c 00 -

475 sphaeroideum Prescott 03 b 05 b 47 6 spirostriatum Tiffany 00 - 01 b 477 Oocystls borgei Snow 01 b 00 - 478 crassa Wittrock 02 b 00 - 479 elliptica W. West 01 b 02 b 480 eremosphaeria G.M. Smith 00 - 01 b 481 gigas Archer 05 b 06 b 482 gloeocystiformis Borge 06 b 05 b 483 lacustris Chodat 02 b 02 b 484 nodulosa W. & G.S. West 00 - 01 b 485 pandurlformis Prescott var. monor 02 c 02 b G.M. Smith 486 parva W. & G.S. West 00 01 b 487 pusilla Hansgirg 01 c 00 - 488 pyriformis Prescott 08 b 12 b 489 solitaria Wittrock 01 b 04 b

490 Ophiocytlum bicuspidatum (Borge) 01 b 00 - Lemmermann 491 capitatum Wolle 00 - 01 b

492 capitatum var. longispinum (Moebius) 03 b 06 b Lemmermann

493 cochleare (Eichw.) A. Braun 00 - 01 b EA. TAXON

494 Ophiocytium elongatum var. major Prescott 495 gracilipes (A. Eraun) Rabenhorst 496 parvulum (Perty) A. Braun 497 Oscillatorla acutlsslma Kufferath 498 agardhii G-omont 4 99 amoena (Kuetzing) Gomont 500 amphibia Agardh

501 angusta Koppe 502 angustissima W. & G.S. West 503 articulata Gardner 504 bornetii Zukal 505 chalybea Mertens in Jurgens 506 curviceps Agardh 507 formosa Bory 508 granulata Gardner 509 hamelii Fremy 510 lacustris (Klebahn) Geitler 511 limnetica Lemmermann

512 limosa (Roth) Agardh

515 minima Gicklhorn 514 nigra Vaucher 515 nova so. Moore

516 princeps Voucher PA TAXON 51 A S2 B

517 Oscillatoria prolifica (Greville) Gomont 03 b 05 b 518 splendida Grevllle 06 b 06 b 519 subbrevis Schmidle 15 1 b 44 a 520 tenuis Agardh 03 1 b 06 b 521 tenuis var. natans Gomont 00 • - 01 b 522 tenuis var. tergestina (Kuetzing) 00 • - 03 c Rabenhorst

523 Pachycladon umbrlnus G.M. Smith 01 c » 00 - 524 Palme11a mucosa Kuetzing 01 c > 02 c

525 Palmellococcus protothecoides (Kruger) 01 c i 0 0 - Chodat 526 Pandorina morum (Muell.) 3ory 05 b ■ 12 a 527 Pediastrum biradiatum Meyen 00 - 04 a 528 boryanum (Turpin) Keneghini 01 b * 08 a 529 boryanum V&r. longicorne Raciborski 02 b > 04 b 530 duplex Meyen 01 b 11 b 531 duplex var. clathratum (A. Braun) Lagerheim 02 b 07 b 532 duplex var. coharens Bohlin 00 - 02 b 533 duplex var. gracllinum W. & G.S. West 03 b 06 b 534 duplex var. recticulatum Lagerheim 02 b 02 b 535 duplex var. rotundatum Lucks 00 - 01 c 536 glandullferum Bennett 00 - 01 b 537 Integrum Naegeli 00 - ■ 01 b 538 sculptatupi G.S. Smith 00 - ■ 02 b 9k PA XAXON S1 A S2 B

539 Pediastrum simplex (Meyen) Lemmermann 00 - 01 b

540 simplex var. duodenarum (Ealley) 00 - 01 b Rabenhorst

541 tetras (Ehrenberg) Rail’s 00 - 03 b

542 tetras var. tetradon (Corda) Rabenhorst 00 - 03 b 543 Penium cucurbitinum Eissell 01 b 01 c 544 margarltaceum (Ehrenberg) deBreblsson 02 b 01 c 545 Peridinlum borgel (Lemmermann) Schiller 15 b 18 b 546 cinctum (Muell.) Ehrenberg 09 b 09 b 547 gatunense Nygaard 01 b 01 b 548 lncons plenum Lemmermann 06 b 05 b 549 puslllum (Penard) 03 b 02 b 550 volzi Lemmermann 05 b 06 b 551 v/illei Huitfeld-Kaas 01 b 01 b 552 Peroniella plane ton! ca G-.M. Smith 03 c 06 c 553 lentlcularis (Ehrenberg) Stein 02 c 01 b 554 Phacus acuminatus Stokes 02 b 04 b 555 acuminatus var. drezelpolskii 05 b 04 b Skvortzov

556 anacoelus Stokes 01 b 03 b 557 anacoelus var. undulata Skvortzov/ 03 c 11 b 558 anacoelus var. undulata forma major 03 c 02 b Prescott

559 asymmetrica Prescott 00 - 02 c 560 blrgei Prescott 05 b 04 b PA TAXON SI A S2 B

561 Fhacus caudatus Huebner var. ovalis 02 c 06 b Drezepolski

562 chloroplastes Prescott forma inclsa 00 - 01 b Prescott

563 crenulata Prescott 01 c 01 b 564 curvlcauda Svirenko 09 b 18 C 565 dangeardii Lemmermann 00 - 01 b 566 helikoides Fochmann 05 b 07 b 567 lemmermannii (Svirenko) Skvprtzov 00 - 02 b

568 longicauda (Ehrenberg) Dujardin 05 b 10 b 569 morii 01 c 01 b var. Insecta (Koczvara) Skvortzov

570 nordstedtli Lemmermann 01 b 03 b 571 orbicularis Huebner 08 b 08 b 572 orbicularis var. caudatus Skvortzov 01 c 01b 573 orbicularis var. zmudae Namyslovski 01 c 04 b 574 pleuronectes (Muell.) Dujardin 03 b 03 b 575 pseudosvirenkoi Prescott 07 b 04 b 576 segretii 00 - 01 b var. ovum Prescott

577 spirogyra 00 - 01 b var. maxima Prescott

578 suecius Lemmermann 02 b 00 - 579 tortus (Lemmermann) Skvortzov 02 b 06 b 580 triqueter (Ehrenberg) Dujardln 06 b 00 - 581 Fhormldium Inundatum Kuetzing 00 - 02 b 96 PA TAXON SI A S2 B

582 Phormidlum minnesotense (Tilden) Drouet 00 01 b

583 mucicola Nauman & Huebner In Pestalozzi 01 00 - 584 tenue (Meneghini) Gomont 01 09 b 585 Pithophora oedogonia (mont.) Wittrock 00 01 b 586 varla Wille 00 01 b 587 Planktosphaerla gelatinosa G.M. Smith. 00 03 b 588 Plectonema cameum (Kuetzing) Lemmermann ex 01 02 b Geitler

589 dangeardii Fremy 00 01 b 590 nostocorum Eornet 02 02 b 591 notaturn Schmidle 02 09 b 592 Pleodorina californica Shaw 01 01 b

593 Pleurotaenium coronatum (deBreblsson) 01 00 - Rabenhorst 594 coronatum var. nodulosum (deBreblsson) 04 04 c West 595 ehrenbergii (deBre'bisson) deBary 03 01 b

596 hutchinsonii (Turn.) W. & G.S. West 01 00 - 597 trabecula (Ehrenberg) Naegeli 15 20 b

598 trabecula forma granulata G.S. West 01 00 - 599 truncatum (deBreblsson) Naegeli 02 02 c

600 Protococcus vlrldus Agardh 07 19 b 601 Protoderma viride Kuetzing 03 04 b

602 Pseudulvella americana (Snov;) V.Tille 02 00 -

603 Pyramimonas tetrarhynchus Schmarda 01 00 - PA TAXON 81 A 82 B

604 Quadrlgula chodatii (Tanner-Fullman) 01 b 03 b G.M. Smith. 605 Radiofillum conjunctivum Schmidle 02 b 04 b 606 flavescens G.S. West 00 02 b 607 irregulare (Wille) Brunnthaler 00 - .01 b

608 Raphldiopsis curvata Fritsch & Rich 01 c 03 b 609 Rhizochrlsis limnetica G.M. Smith 02 b 01 c 610 RhizocIonium hookeri Kuetzing 00 - 01 b

611 Rlvularia haematites (DeCandolle) Agardh 00 - 01 b

612 Scenedesmus abundans (Kirchner) Chodat 01 b 00 - 613 abundans var. asymmetrica (Schroder) 01 b 02 b G.M. Smith 614 acuminatus (lagerheim) Chodat 08 b 14 a 6l5 acutus Meyen forma alterans Hartob. 08 b 08 b 616 acutus forma costulatus (Chodat) Uherkov 00 - 01 b

617 acutus forma tetradesmiformis (Wolosz.) 01 c 00 - Uherkov. 618 arcuatus Lemmermann var. platydisca 02 c 01 b G.M. Smith = S. acuminatus 619 bicaudatus (Hansgirg) Chodat 02 b 02 b 620 bijuga (Turpin) Lagerheim 07 b 11 a 621 bijuga var. alterans (Reinsch) Hansgirg 00 - 01 b 622 brasiliensis Eohlin 02 b 06 a 623 brevlspina (G.M. Smith) Chodat 01 b 01 b 624 denticulata Lagerheim var. linearis 01 c 02 b Hansgirg 625 dimorphus (Turpini) Kuetzing 02 c 03 c PA TAXON SI A S2 B98

626 Scenedesmus ecornis (Ralfs) Chodat 09 b 09 b 627 ecomls var. disclformls Chodat 03 b 03 b 628 granulatus W. & G.S. West 01 b 00 - 629 lncrassatulus Eohlin var. mononae 02 b 03 b G.M . Sm ith

630 lntermedius Chodat 00 - 02 b

631 Intermedins var. hicaudatus Hortob. 01 b 00 - 632 longus Meyen var. 00 - 01 b

633 obtusiusculus Chodat 01 c 01 b

634 opollensIs P. Richter var. contraeta 01 0 00 - P re s c o tt

635 ovaltemus Chodat var. graevenltzli 00 - 01 c (Bernard) Chodat

636 pannonlcus Hortob. 00 - 01 b

637 quadrlcauda (Turpin) deBre'blsson 00 - 02 b 638 quadricauda var. longissima (Chodat) 03 b 11 b G.M. S m ith

639 quadrlcauda var. quadrlspina (Chodat) 00 - 02 b G .M . S m ith

640 quadrlcauda var. westll G.M. Smith 16 b 15 b 641 quadrlcauda forma parva G.M. Smith 01 c 02 c 642 r a c lb o r s k i 00 - 01 c forma granulatus Hortob.

643 spinosus Chodat 04 b 07 b 644 Judayl G.M. Smith 01 c 00 -

645 s e tig e r a (S c h ro e d e r) Lemmermann 02 b 03 b 646 Scytonema ar change H i Borne t & Flahault 00 - 01 b 59 FATAXON SI A S2 B

64? Selanastrum bibrianum Relnsch 01 b 03 b 648 gracile Reinsch = Ankistrodesmus gracilis 07 b 08 b

649 westii G.M. Smith = Ankistrodesmus 01 b 03 b g r a c i l i s

650 Sorastrum americanum (Bohlin) Schmidle 01 c 04 b

651 amerlcanum var. undulatum G.M. Smith 03 b 03 b

652 splnulosum Naegeli 08 b 13 b 653 schroeteri Chodat 02 b 00 654 Sphaeroplea annulina (Roth) Agardh 01 b 00 -

655 Sphaerozosma excavatum Ralfs 03 b 00 -

6 5 6 granulatum Roy & B is s e ll 01 b 00 -

657 Spirogyra aequinoctialls G.S. West 00 - 01 b 6 5 8 Jugalis (FI. Dan.) Kuetzing 00 - 01 b

659 laxa Kuetzing 00 - 01 b 6 6 0 nitida (Dillw.) Link 00 - 01 b 661 novae-angliae Transeau 00 - 02 b 662 protecta Wood 00 - 01 b

663 weberi Kuetzing 06 b 0 7 b 664 Spirulina laxa G.M. Smith 01 b 01 b

665 laxissima G.S. West 05 b 11 b 666 major Kuetzing 00 - 01 b 667 n o r d s t e d t li Gomont 01 b 01 b

668 princeps (W. & G.S. West) G.S. West 00 - 01 b

6 6 9 ellipticum W. & G.S. West 01 b 00 -

670 planum (Wolle) W. & G.S. West 03 b 01 c Too FA TAXON S I A S2 B

671 Staurastrum aculeatum (Ehrenberg) MeneghinI 00 - 02 b

67 2 arctlsoon (Ehrenberg) Lundell 04 b 02 c

673 avicula deBre'blsson var. subarcuatum 00 - 01 b (W o lie )

674 biarcuus Taft 03 b 02 b

675 bieneanum Rabenhorst 01 b 00 -

6 7 6 bieneanum var. elllpticum W ille 01 b 00 -

677 boreale W. & G.S. West 0 3 - 01 c

678 capitulum deBreblsson var. tumidusculim 00 - 01 b N o rd sted t

679 chaetocerus (Schroeder) G.M. Smith 01 b 01 c 680 coarctaturn deBreblsson 02 b 00 -

681 coarctlcum deBreblsson 05 b 08 b 682 crenulatum (Naegeli) Belponte 04 b 01 b

683 cuspidatum deBre'blsson 00 - 01 c 684 cyrtocerum 00 - 02 b var. compactum West

685 dejectum deBreblsson 03 b 00 - 686 dentlculatum (Naegeli) Archer 01 b 00 -

6 8 7 dispar deBre'blsson 06 b 05 b 688 floriferum W. & G-.S. West 01 b 00 -

689 glabrum (Ehrenberg) Ralfs 02 b 02 b

6 9 0 gracile Ralfs 00 - 02 b

691 gracile var. cyathiforme VI, & G-.S. West 01 b 00 «*» 692 gracile var. cornulatum Eoldt 04 b 01 c 101 PA TAXON SI A S2 B

693 Staurastrum gracile var. nanum W ille 01 b 0 0 -

694 grande Eulnh. var. parvum West 0 0 - 02 b

695 granulosum (Ehrenberg) Ralfs 01 b 02 b

6 9 6 hexacerum (Ehrenberg) W lttrock 0 0 - 01 b

697 h lrs u tu m 01 b 01 c forma minor / 6 9 8 inflexum deBreblsson 0 0 - 02 b

699 longiradlatum W. & G-.S. West 01 b 0 0 -

7 0 0 margarltaceum 04 b 0 0 - var. robustum W. & G-.S. West

701 mutlcum deBreblsson 04 b 02 b

702 neglectum G.S. West 01 b 02 b

703 orblculare Ralfs 01 b 00 - 704 orbiculare var. depressum Roy & B is s e ll 01 b 02 b

705 orblculare var. hibemlcum W. & G .S . West 00 - 04 b

706 ornatum 00 - 01 b var. asperum

707 pachyrhynchum 01 b 00 -

7 0 8 paradoxum Meyen 10 b 11 b

709 polyraorphum deBreblsson 05 b 01 b

7 1 0 polymorphism var. pusillum West 00 - 01 c

711 pseudopachyrhynchum Wolle 01 b 01 c

7 1 2 pseudosebaldi 01 b 01 c var. simpllclus West-

713 pseudotetracerum (Nordstedt) W. & G.S. West 06: b • 13 I b 714 punctulatum deBreblsson 01 b 02 b ------102 PA SAXON 81 A S2 B

715 Staurastrum punctulaturn var. kjellermanii 05 b 07 b Wille 716 sebaldi Reinsch var. ornatum Nordstedt 01 b 02 b 717 sebaldi var. productum West 02 b 05 b 718 striolaturn (Naegeli) Archer 00 - 03 b 719 tetracerum Ralfs 02 b 01 b 720 turgescens Denot 01 b 00 - 721 Stichococcus bacillaris Naegeli 00 - 02 b 722 scopullnua Hazen 02 b 02 b 723 subtilis (Kuetzing) Klercker 02 b 10 b 724 Stigeoclonium nanum Kuetzing 04 b 04 b 725 pachydermum Prescott 00 - 03 b 726 polymorphura (Franke) Heering 00 - 01 b 727 Stigonema hormoides (Kuetzing) Eornet et 00 - 01 b Flahault 728 mamillosum (Lyngbye) Agardh ex Bornet & 01 b 01 b Flahault 729 mesentericum Geitler 00 - 01 b 730 turfaceum (Berkeley) Cooke 00 - 02 b 731 Stipitococcus apiculatus Prescott 01 b 00 - 732 capense Prescott 00 - 01 b 733 urceolata W. & G.S. West 00 - 02 b

734 Synura uvella Ehrenberg 00 - 07 b 735 Tetradesraus wisconsinense G.M. Smith 03 b 01 b 736 Tetradinium simplex Imhof 00 - 01 b 103 TAXON S1 A E2 B

737 Tetraedron bifurcatura (Wille) lagerheim 00 - 01 b 738 duospinum Ackley 00 - 03 b 739 gracile (Relnsch) Hansgirg 01 b 01 b 740 hastatum (Reinsch) Hansgirg 00 - 01 b var. palatinum (Schmidle) Lemmermann 741 limnetlcum Borge 01 b 01 b 742 lobulatum (Naegeli) Hansgirg 01 b 04 b 743 lobulatum var. erassum Prescott 00 - 01 b 744 lunula (Reinsch) Wille 02 b 05 b 745 minimum (A. Braun) Hansgirg 12 b 14 b 746 muticum (A.Braun) Hansgirg 04 b 06 b 747 muticum forma punctulaturn (Reinsch) 03 b 04 b Detoni 748 pentaedricum W. & G-,5. West 00 - 01 b 749 planetonicum G.M. Smith 00 - 01 b 750 regulare Kuetzing 01 b 01 b 751 regulare var. bifurcatum Y/ille 00 - 01 b 752 regulare var. granuleta Prescott 00 - 04 b 753 regulare var. Incus Telling 01 b 04 b forma major Prescott 754 regulare var. torsum (Turner) Erunnthaler 01 b 00 - 755 trigonum (Naegeli) Hansgirg 00 - 01 b 756 trigonum var. gracile (Reinsch) Detoni 02 b 04 b 757 tumidulum (Reinsch) Hansgirg 02 b 03 b ------io4 PA TAXON SI A S2 B

758 Tetrallantos lagerheimli Telling 00 - 01 b 759 gelatlnosa (Vaucher) Desvaux 00 - 02 b 760 heteracanthura (Nordstedt) Chodat 00 - 01 b 761 lacus tri a Lemmermann 00 - 01 b 762 lubrica (Roth) Agardh 01 b 01 b

763 Tetrastrum glabrum (Roll.) Ahlstrora & 05 b 06 b Tiffany

764 heteracanthum (Nordstedt) Chodat 02 b 01 b 7 65 staurogeniaeforme (Schroeder) Lemermann 00 - 02 b 766 Tolypothrix tenuis Keitz emend. J. Schmidt 01 b 01 c

Trachelomonas abrupta (Sv/irenko) Deflandre 0 767 VO b 04 b 768 acanthostoma (Stokes) Deflandre. 05 b 05 b 769 acuminatus (Lagerheim) Chodat 00 - 01 b 770 armata (Ehrenberg) Stein 03 b 02 b 771 armata var. stelnii Lemmermann 01 b 02 b 772 crebea (Kellicott) Deflandre 01 b 02 c var. brevicollaris Prescott

773 caudata (Ehrenberg) Stein 00 - 02 b 774 charkov/iensis Sv/irenko 01 b 01 c 775 cylindrica Ehrenberg 03 b 04 b 776 dubia (Swirenko) Deflandre 02 b 04 b 777 dybov/skii Drezepolski 03 b 04 c 778 ere eta Skvortzov/ 03 b 03 c 779 euchlora (Ehrenberg) 01 b 01 b ------105 TAXON SI A S2 B

780 Trachelomonas girardiana (Playfair) Deflandre 01 b 02 b 781 hexangulata Sv/irenko 01 b 02 c 782 hispida (Ferty) Stein 09 b 05 c 783 hisplda var. coronata Lemmermann 02 a 04 b 784 hispida var. crenulatocollarls 01 b 02 b forma recta Deflandre

785 hisplda var. punctata Lemmermann 11 b 09 b 786 horrida Palmer 03 b 01 b 787 lacustrls Drezepolski 08 b 10 b 788 playfairlana Deflandre 00 - 01 b 789 pulcherrlma Playfair 00 - 01 b 790 pulcherrima var. minor Playfair. 03 b 00 - 791 robusta Sv/irenko 01 b 00 -

792 rotunda Sv/irenko 03 b 05 b 793 scabra 02 b 00 — var. longlcollis Playfair 794 schaunislandii Lemmermann 00 - 01 b 795 superba (Sv/irenko) Deflandre 00 - 02 b

796 superba var. duplex Deflandre 01 b 01 0 797 superba var. spinosa Prescott 01 b 02 c 798 superba var. sv/irenkiana Deflandre 06 b 05 b 799 sydneyensis Playfair 02 b 01 b 800 tambowika Swirenko 01 b 00 - 801 urceolata Stokes 00 01 b ------±06 PA TAXON SI A S2 B

802 Irachelomonas volgensls Lemmermann 00 - 01 b 803 vovlocina Ehrenberg 17 b 36 b 804 volvocina var. punctata Playfair 05 b 06 b 805 volzii Lemmermann 01 b 00 - 806 Trentopholla aurea (Linnaeus) Martlus 00 - 01 b 807 Treubaria crassisplna G.M. Smith, 00 - 03 b 808 setigerum (Archer) G.M. Smith 00 - 02 b 809 varla Tiffany & Ahlstrom 03 b 02 b 810 Trlbonema affine G.S. West 03 b 00 - 811 bombyclnum (Agardh) Derbes & Solier 03 b 04 b 812 bombyclnum var. tenue Hazen 01 b 01 b 813 minus (Wille) Kazen 01 b 02 b 814 utriculosum (Kuetzing) Hazen 03 b 09 b 815 Trochisia reticularis (Reinsch) Hansgirg 03 b 04 b 816 Kuetzing 00 - 04 b 817 cylindricum Prescott 01 b 02 b 818 subtilissima Rabenhorst 02 c 17 b 819 tenerrima Kuetzing 00 - 02 b 820 variabllis Kuetzing 01 b 03 b 821 zonata (Weber & Mohr) Kuetzing 00 - 01 b 822 Uroglenopsis americana (Calkins) Lemmermann 00 » 01 b 823 Uronema elongatum Hodgetts 01 b 02 b

824 Vaucheria geminata (Vaucher) DeCandolle 00 w 02 b 825 longipes Collins 01 b 00 - 826 sessilis (Vaucher) DeCandolle 00 01 b I07 FA TAXON 61 A S2 B

827 Volvox aureua Ehrenberg 02 b 02 b 828 globator Linnaeus 01 b 00 - 829 tertlus A. Meyer 01 b 06 b

850 botryoides (W. West) deWildemann 01 c 01 c 831 linearis G.M. Smith 01 c 00 -

832 aculeatum Ehrenberg 01 b 00 - 833 antilopaeum (Bred.) Kuetzing 00 - 01 b var. polymazum Nordstedt 834 Zoochlorella parasitica 01 b 01 b (in Ophrydium) 835 Zygnema insigne (Hass.) Kuetzing 00 - 03 b 836 leiosperraum deBary 00 - 01 b

837 Mougeotia sp. 07 b 18 b

838 Spirogyra sp. 19 b 43 b 839 Vaucherla sp. 03 b 06 b 840 Oedogonlum sp. 22 b 42 b 841 Spirogyra fallax (Hansgirg) Wille 00-01 b 842 Stigeoclonium sp. 05 b 07 b 843 Ceratium hirundinella (O.F. Muell.) Dujardin 00-01 b forma piburgense

844 Zygnema sp. . 06 b 09 b 845 Zygnema insigne (Hass.) Kuetzing 00-01 b 846 Bulbochaete sp. 00 - 01 b 847 Vaucheria terrestris 00-01 b 848 Closterium tumidens Johnson 00-01 b 849 rostratura Ehrenberg 00 - 01 b 108 PA TAXON S1 A S2 B

8 5 0 Stigeoclonlum Incrassata (Hudso.) Hayes 01 b 00 -

851 Phacus swlrenkol 01 b 00 -

852 Euaatrum abruptum 01 b 00 - 853 Chrysidlastrum catenatum 00 - 01 c 854 Ankistrodesmus densus Korsikov 00 - 01 b 855 Cosmarlum sexangulare Lund 01 b 00 - forma minima Nordstedt

856 Staurastrum cerastes Lundell 01 b 00 - 857 Ophlocytium arbuscuius (A. Braun) Rabenhorst 00 - 01 b 858 Cosmarlum minimum 01 b 00 -

859 Pediastrum sculptatum G.M. Smith 00 — 02 b APPENDIX III The taxonomy followed throughout this work Is based primarily on Prescott (1962). The outline of generic and higher level groupings follows below. Each genus is followed by a number in parentheses which Indicates the number of taxa In that genus. Brackets indicate the actual Y group­ ings with the calculated value of concurrence. A value greater than 2.00 Is considered significant, Indicating a relatively high concurrence of taxa.

Division Class Order Y Groupings and Significance Subord er Family Genus

Chlorophyta Chlorophyceae Volvocales Polyblepharldaceae

Pyramimonas(1 ) Chlamyd omonadaceae

Chlamydomonas (9 ) ] Y4 2.91 Phacotaceae

Ihacotus(1 ) Volvocaceae

Eudorina(1 )

109 Division n o Class Order Y Groupings and Significance Suborder Family Genus

Volvocaceae (cont.)]y,_ 5.58 Gonium (1)

Pandorlna (1 )

Pleodorlna (1 ) Volvox (3) Tetrasporales Asterococcus (2)

Gloeocystis (5 ) ] 4.61

Palmella (1 ) ] 6,93 Palraellococcus (1)

Sphaerocystis (1 ) Aplocystis (1) Tetraspora (4) Chlorosarcina (1) (1 )

Elakotothrix (2 ) i n Division Class Order Y Groupings and Significance Suborder Family Genus

Chaetophoraceae (cont.) Microthamnion (2) Frotoderma (1) Fseudulvella (1) Stlgeoclonlum (5)]Yg 3.24 Frotococcaceae Frotococcus (1) Coleochaetaceae Coleochaete (3) Chaetospheridlum (t) Trentopholiaceae Trentopholia (1) Cladophorales Cladophoraceae Cladophora (3) Fithophora (2) ] 9.90 Rhlzoclonium (1) Oedogoniales Oedogoniaceae Bulbochaete (5) ] 2.48. Oedogonium (14) DlvlBion 112 Class Order Y Groupings and Significance Suborder Family Genus

Ulotrichales I 6.12 Ulotrlchaceae Geminella (4) J 14.58 Hormidlum (1) Radlofilum (3) Stichococcus (3) Ulothrlx (6) 3 2.38 Uronema (1) Microsporales Mlcrosporaceae Mlcrospora (4) Cyllndrocapsales Cylindrocapsaceae Cyllndrocapsa (2) Sphaeroplea (1) Chaetophorales | 3«36 Chaetophoraceae Aphanochaete (2) Chaetopeltls Cl) Chaetophora (1 ) Draparnaldla (1 ) Division ^ Class Order Y Groupings and Significance Suborder Family Genus

Chlorococcales Desmatractum (2) Golenkinia (2) Characlaceae Characium (12) j 5.20 Hydrodictyaceae 4.51 Hydrodlctyon (1) Ped ias trum (16) ] 16.07 Sorastrum (3) ] 3.48 Coelas traceae Coelastrum (4) ] 3.43 Botryococcaceae Botryococcus (3) Oocystaceae 24.23 Ankistrodesmus (7) ] 7.93 Chlorella (1) Closterlopsls (2) Dactylococcus (2) Dictyosphaerium (2) Dimorphococcus (1) Franceia (2) Division HU Class Order Y Groupings and Significance Suborder Family Genus

Gloeotaenium (1) Kirchnerlella (8) ] 8.81 Lagerheimla (5) 3 2.85 Monoraphidium (6) ] 7.04 Nephrocytium (4) ] 2.12

Oocystis (13) J Yq 16.76 Pachycladon (1) Pamellococcus (1) Planktosphaeria (1) Quadrigula (1) Schroederia (2) ] 4.80 Selenastrum (3) Tetraedron (21 )] Y9 23.52 Treubaria (13) Trochisla (1) Westella (2) Zoochlorella (1) Scenedesmaceae 23,88 Actinastrum (3) Crucigenla (7) J 2.62 Mlcrac tinium (2)

Scenedesmus (32)]yjq 1 6.58 Division 115 Class Order Y Groupings and Significance Suborder Family Genus

Scenedesmaceae (cont.)

Tetradesmus (1 )

Tetralantos (1 ) Tetrastrum (2) 3 5.54 Zygnemataceae Mougeotia (2)

Spirogyra (9) ] 1 2.89 Zygnema (3) Mesotaenlaceae Gonatozygon (2) Desmidiaceae 19.04 Closterlum (45)]y12 17.48

Cosmarlum (1 0 9 ) ^ 3 7 6 .1 7 Desmidlum (2) J 3.48 Euastrum (10) ]l1.91 (3) ] 3.25

MIcrasterias (7 )

Penium (2 )

Pleurotaenium (7) J 5.8 1 Sphaerozosma (2) Division Class Order Y Groupings and Significance Suborder Family Genus

Desmidiaceae (cont.) Spondylosium (2) ] 6.93 Staurastrum (51) ] 38.63

Xanthidium (2 ) Charophyceae Charales Characeae

Chara (1 ) Euglenophyta Euglenophyceae Euglenales Euglenaceae Colacium (1) Euglena (18) ] 8.04

Lepocinclis (7 )

Fhacus (2 8) ] 1 5 .9 3

Trachelomonas (39)] 2 6 .9 6 Chrysophyta Xanthophyceae Heterochloridales Chloromoe baceae Chlorochromonas (1) Division 117 Class Order X Groupings and Significance Suborder Family Genus

Rhizochloridales Stipitococcaceae Stlpitococcus (3) Heterococcales □ 5.86 Fleurochloridaceae Chlorochloster (1) Gloeobotrydaceae Chlorobotrys (1) Characiopsidaceae Characiops is (5) Harpochytrium (2) Feroniella (1) Chlorotheciaceae Ophiocytium (8) ] 3.53 Heterotrichales Tribonemataceae Tribonema (5) ] 5.46 Heteros iphonales Vaucheriaceae

Vaucheria (5) ] 2 .6 5 Division 118 Class Order Y Groupings and Significance Suborder Family Genus

Chrysophyceae Chrysomonadales Chromulineae Mallomonadaceae Mallomonas (4) Is ochrysId ineae Bynuraceae Synura (1) Ochromonadineae Ochromonadaceae Dinobryon (5) ] 3.27 Uroglenopsis (1) Rhizochrys idales Rhizochrysidaceae Chrysidiastrum (1) Lagynlon (1) Rhizochrysis (1) Pyrrhophyta Dinophyceae Peridlnales 6.47 Glenodiniaceae

Glenodinlum (8) J 8 .7 6 Division Class Order Y Groupings and Significance Suborder Family Genus

Glenodiniaceae (cont.) Hemldinlum (1) Peridiniaceae Feridinium (7) ] 5.10 Ceratiaceae Ceratium (2) Dinococcales Dinococcaceae Te trad inium (1) (Uncertain) Cryptomonadales Cryptophyceae Chroomonas (1) Cryptomonas (3) Cyanophyta Myxophyceae Chroococcales Chroococcaceae

Aphanothece (3) 1 7.62 Chroococcus (13) 9.30 Coelosphaerium (4) ] 2.93

Cynarcus (1) 120 Division Class Order Y Groupings and Significance Suborder Family Genus

Chroococcaceae(cont.) Dactylococcopsis (2)]] 2.36 Glaucocystis (2) J 2.43 Gloeocapsa (5) Gloeotheca (2) 3 2*27 Gomphosphaeria (3) 3 2*81 Marssonlella (1) Merismopedia (6) ] 3.21 Microcystis (1) Chamaes iphonales Chama e s i phona ceae Chamaes iphon (2) Oscillatoriales Homocyst ineae Oscillatoriaceae 4.71 Arthrospira (1) Lyngbya (14) 3 5.38 Microcoleus (1) Oscillatoria (26) 3 11-°9 Phormidium (4)

Spirulina (5) 3 2*92 D i v i s i o n 151 Class Order Y Groupings and Significance Suborder Family Genus

Heterocystineae Nostocaceae 4.70 Anabaena (12) Anabaenopsis (1) Aphanizomenon (2) ] 10.04 Cylindrospermum (3) ] 6.93 Nodularia (1) Nostoe (4) Scytonemataceae Plectonema (4) Scytonema (1) Tolypothrix (1) Stigonemataceae Hapaloslphon (2) Stigonema (4) Rivulariaceae 8.12 Calothrix (5) ] 4.91 Dlcothrix (1) Gloeotrichla (3) ] 2.39 Raphidiopsis (1) Rivularia (1 )