Structural Features of Unicellular Desmids (Desmidiales) When Examined in a Scanning Electron Microscope © O

Total Page:16

File Type:pdf, Size:1020Kb

Structural Features of Unicellular Desmids (Desmidiales) When Examined in a Scanning Electron Microscope © O BOTANICHESKII ZHURNAL, 2021, Vol. 106, N 6, pp. 523–528 COMMUNICATIONS Structural Features of Unicellular Desmids (Desmidiales) when Examined in a Scanning Electron Microscope © O. V. Anissimovaa,# and A. F. Luknitskayab,## a Zvenigorod Biological Station, M.V. Lomonosov Moscow State University Leninskiye Gory, 1/12, Moscow, 119234, Russia b Komarov Botanical Institute RAS Prof. Popov Str., 2, St. Petersburg, 197376, Russia #e-mail: [email protected] ##e-mail: [email protected] DOI: 10.31857/S0006813621060028 We have demonstrated the possibility of using scanning electron microscopy methods for studying the mor- phology and ornamentation of the cell wall of unicellular species of desmid algae (Charophyta, Zygnemato- phyceae). Scanning electron microscopy was used to confirm and refine the identification of taxa with 10 spe- cies as an example: Cosmarium sp., C. anceps, C. granatum, C. nymannianum, C. pokornyanum, Euastrum bidentatum, E. crassicolle, E. luetkemuelleri, E. oblongum, Pleurotaenium ehrenbergii. The use of electron microscope enables a more subtle and qualitative study of the cell wall surface. We con- sidered the difficulties arising when working with cells of desmids in scanning electron microscopy. Attention should be paid to the artifacts arising from the preparation of samples for the study of algae in scanning elec- tron microscopy: mucus plugs and abundant accumulation of mucus on the cell surface, “molting” process and asymmetry in the development of the semicells. Keywords: Сharophyta, Zygnematophyceae, cell wall, morphology, taxonomy, scanning electron microscope ACKNOWLEDGEMENTS Brook A.J. 1981. The biology of desmids. Oxford. 276 p. The studies were carried out within the framework of the Kosinskaya E.K. 1960. Flora sporovykh rasteniy SSSR. institutional research project no. АААА-А18-118030790036-0 Т. 5. Konjugati ili stseplyanki (2). Desmidievye of the Komarov Botanical Institute of the Russian Academy vodorosli. Vyp. 1. [Flora of spore plants of the USSR. Vol. 5. Conjugates (2). (Desmidiales) 1]. Moscow; of Sciences and as part of the Scientific Project of the State Leningrad. 706 p. (In Russ.). Order of the Government of Russian Federation to Lo- Lenzenweger R. 1999. Desmidiaceenflora von Osterreich. monosov Moscow State University No. 121032300103-6, Bibliotheca Phycologica. Stuttgart. 104 (3). 218 p. on the equipment of the Center for Collective Use of Mos- Luknitskaya A.F. 2001. Green algae (conjugates) of some cow State University with financial support of the Ministry water bodies in the southern part of the Yamal Peninsu- of Education and Science of the Russian Federation. Anissimova O.V. 2020. Species of Euastrum (Charophyta, Desmidiaceae) new for Karelia (Russia). – Bot. Zhurn. REFERENCES 105 (4): 360–367 (In Russ.). Anissimova O.V. 2016. Architecture of cell wall of Euastrum https://doi.org/10.31857/S000681362004002X Ralfs: new genus critheria. – Vestnik Moskovskogo Brook A.J. 1981. The biology of desmids. Oxford. 276 p. Universiteta. Ser. 16. Biologia. 71 (3): 155–159. Kosinskaya E.K. 1960. Flora sporovykh rasteniy SSSR. https://doi.org/10.3103/S0096392516030019 Т. 5. Konjugati ili stseplyanki (2). Desmidievye Anissimova O.V. 2018. K flore desmidievyhk vodorosley vodorosli. Vyp. 1. [Flora of spore plants of the USSR. (Streptophyta, Desmidiales) vodnyhk ob’ektov Gor- Vol. 5. Conjugates (2). (Desmidiales) 1]. Moscow; nogo Altaya [To the flora of desmids (Streptophyta, Leningrad. 706 p. (In Russ.). Desmidiales) of the water bodies of Gorny Altai]. – Lenzenweger R. 1999. Desmidiaceenflora von Osterreich. In: Problemy botaniki Yuzhnoy Sibiri i Mongolii. Bibliotheca Phycologica. Stuttgart. 104 (3). 218 p. Materialy XVII mezhdunarodnoi nauchno-prakti- Luknitskaya A.F. 2001. Green algae (conjugates) of some cheskoi konferentsii. – Barnaul. P. 8–11 (In water bodies in the southern part of the Yamal Peninsu- Russ.). la. – Novosti Sistematiki Nizshikh Rastenii. 34: 30–34 Anissimova O.V. 2020. Species of Euastrum (Charophyta, (In Russ.). Desmidiaceae) new for Karelia (Russia). – Bot. Zhurn. 105 (4): 360–367 (In Russ.). Palamar-Mordvintseva G.М. 1982. Opredelitel’ presno- https://doi.org/10.31857/S000681362004002X vodnykh vodorosley SSSR. [Key to freshwater algae of the USSR]. Leningrad. 11 (2). 577 p. (In Russ.). Pickett-Heaps J.D. 1974. Scanning electron microscopy of Vidyavati 1982. Cell division in Staurastrum gracile Ralfs some cultured desmids. – Transactions of the Ameri- under the scanning electron microscope. – Proc. Indi- can Microscopical Society J. 93: 1–23. an Acad. Sci. (Plant. Sci.). 91 (5): 443–447. Tavera R., Calderón E. 2013. Use of CTAB as a cost-effec- tive solution to an old problem: the interference of the mucilage of desmids for scanning electron microscopy. – Phycologia. 52 (5): 422–425. https://doi.org/10.2216/13-133.1.
Recommended publications
  • Copyrighted Material
    1 Symmetry of Shapes in Biology: from D’Arcy Thompson to Morphometrics 1.1. Introduction Any attentive observer of the morphological diversity of the living world quickly becomes convinced of the omnipresence of its multiple symmetries. From unicellular to multicellular organisms, most organic forms present an anatomical or morphological organization that often reflects, with remarkable precision, the expression of geometric principles of symmetry. The bilateral symmetry of lepidopteran wings, the rotational symmetry of starfish and flower corollas, the spiral symmetry of nautilus shells and goat horns, and the translational symmetry of myriapod segments are all eloquent examples (Figure 1.1). Although the harmony that emanates from the symmetry of organic forms has inspired many artists, it has also fascinated generations of biologists wondering about the regulatory principles governing the development of these forms. This is the case for D’Arcy Thompson (1860–1948), for whom the organic expression of symmetries supported his vision of the role of physical forces and mathematical principles in the processes of morphogenesisCOPYRIGHTED and growth. D’Arcy Thompson’s MATERIAL work also foreshadowed the emergence of a science of forms (Gould 1971), one facet of which is a new branch of biometrics, morphometrics, which focuses on the quantitative description of shapes and the statistical analysis of their variations. Over the past two decades, morphometrics has developed a methodological Chapter written by Sylvain GERBER and Yoland SAVRIAMA. 2 Systematics and the Exploration of Life framework for the analysis of symmetry. The study of symmetry is today at the heart of several research programs as an object of study in its own right, or as a property allowing developmental or evolutionary inferences.
    [Show full text]
  • The Desmids of the West End of Lake Erie1-2
    THE DESMIDS OF THE WEST END OF LAKE ERIE1-2 CLARENCE E. TAFT INTRODUCTION For several years the writer has had the opportunity to study the desmids of the Island Region of the west end of Lake Erie. First in 1933, and later while a member of the staff of the Franz Theodore Stone Laboratory on Gibraltar Island in Put-in-Bay Harbor during the summers of 1938, 1940, and 1941. Collections made from the open lake, shore margins, and from ponds and beach pools on the Islands were augmented during; the interim from 1933 to 1938 by collections made by Tiffany during his work on "The plankton algae of the west end of Lake Erie" (1934) and "The filamentous algae of the west end of Lake Erie" (1937). The writer gratefully acknowledges these collections, as well as many collections placed at his disposal by members of the fresh-water algae classes at the StoneLaboratory. The writer hopes that this report, the latest in a series on the algae of the region will be not only of taxonomic interest, but helpful to the student of aquatic biology. For the benefit of; the, latter the'paper; has been prepared in somewhat greater detail than would otherwise be necessary,; .: ••••.-.-> .-•"•-. Two groups remain toK be reported!. They are the Dinophyceae (which has been; only superficially worked) and the Bacillariophyeeaei Of the two classes, the representatives of the latter are,far more numerous, and at times constitute air important bulk; of the plankton. 11: is hoped that in the near future: this group may receive the attention that its importance deserves.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Gênero Closterium (Closteriaceae) Na Comunidade Perifítica Do Reservatório De Salto Do Vau, Sul Do Brasil
    Gênero Closterium (Closteriaceae) ... 45 Gênero Closterium (Closteriaceae) na comunidade perifítica do Reservatório de Salto do Vau, sul do Brasil Sirlene Aparecida Felisberto & Liliana Rodrigues Universidade Estadual de Maringá, PEA/Nupélia. Av. Colombo, 3790, Maringá, Paraná, Brasil. [email protected] RESUMO – Este trabalho objetivou descrever, ilustrar e registrar a ocorrência de Closterium na comunidade perifítica do reservatório de Salto do Vau. As coletas do perifíton foram realizadas no período de verão e inverno, em 2002, nas regiões superior, intermediária e lacustre do reservatório. Os substratos coletados na região litorânea foram de vegetação aquática, sempre no estádio adulto. Foram registradas 23 espécies pertencentes ao gênero Closterium, com maior número para o período de verão (22) do que para o inverno (11). A maior riqueza de táxons foi registrada na região lacustre do reservatório no verão e na intermediária no inverno. As espécies melhor representadas foram: Closterium ehrenbergii Meneghini ex Ralfs var. immane Wolle, C. incurvum Brébisson var. incurvum e C. moniliferum (Bory) Ehrenberg ex Ralfs var. concavum Klebs. Palavras-chave: taxonomia, Closteriaceae, algas perifíticas, distribuição longitudinal. ABSTRACT – Genus Closterium (Closteriaceae) in periphytic community in Salto do Vau Reservoir, southern Brazil. The aim of this study was to describe, illustrate and to register the occurrence of Closterium in the periphytic community in Salto do Vau reservoir. The samples were collected in the summer and winter periods, during 2002. Samples were taken from natural substratum of the epiphyton type in the adult stadium. Substrata were collected in three regions from the littoral region (superior, intermediate, and lacustrine). In the results there were registered 23 species in the Closterium, with 22 registered in the summer and 11 in the winter period.
    [Show full text]
  • The Genus Euastrum Ehrenberg Ex Ralfs (Desmidiaceae) in a Subtropical Stream Adjacent to the Parque Nacional Do Iguaçu, Paraná State, Brazil
    Hoehnea 44(1): 1-9, 26 fig., 2017 http://dx.doi.org/10.1590/2236-8906-55/2016 The genus Euastrum Ehrenberg ex Ralfs (Desmidiaceae) in a subtropical stream adjacent to the Parque Nacional do Iguaçu, Paraná State, Brazil Camila Akemy Nabeshima Aquino1,2,3, Norma Catarina Bueno1,2, Liliane Caroline Servat1,2 and Jascieli Carla Bortolini2 Received: 7.07.2016; accepted: 8.11.2016 ABSTRACT - (The genus Euastrum Ehrenberg ex Ralfs (Desmidiaceae) in a subtropical stream adjacent to the Parque Nacional do Iguaçu, Paraná State, Brazil). This study aimed to document the species of Euastrum (Desmidiaceae) in a subtropical stream adjacent to an important environmental protection area, the Parque Nacional do Iguaçu, in the extreme west of Paraná State, Brazil. For this purpose, monthly samplings of periphytic material associated to Eleocharis minima Kunth were performed in the period between August 2012 and July 2013. This taxonomic inventory allowed the identification of 12 taxa at specific and infraespecific level. Eight new occurrences were recorded for Paraná State:Euastrum attenuatum var. splendens, E. bidentatum var. bidentatum, E. cornubiense var. cornubiense, E. croasdaleae var. croasdaleae, E. denticulatum var. quadrifarium, E. didelta var. quadriceps, E. elegans var. elegans and E. evolutum var. incudiforme. Keywords: biodiversity, desmids, Freshwater, taxonomy, Zygnematophyceae RESUMO - (O gênero Euastrum Ehrenberg ex Ralfs (Desmidiaceae) em um riacho subtropical, área adjacente ao Parque Nacional do Iguaçu, PR, Brasil). Este estudo objetivou documentar as espécies do gênero Euastrum (Desmidiaceae) em um riacho subtropical adjacente a uma importante área de proteção ambiental, o Parque Nacional do Iguaçu, no extremo oeste do Estado do Paraná, Brasil.
    [Show full text]
  • New Desmid Records from High Mountain Lakes in Artabel Lakes Nature Park, Gümüşhane, Turkey
    Turkish Journal of Botany Turk J Bot (2019) 43: 570-583 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1810-71 New desmid records from high mountain lakes in Artabel Lakes Nature Park, Gümüşhane, Turkey 1, 2 Bülent ŞAHİN *, Bülent AKAR 1 Department of Biology Education, Fatih Education Faculty, Trabzon University, Trabzon, Turkey 2 Department of Food Engineering, Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane, Turkey Received: 30.10.2018 Accepted/Published Online: 15.04.2019 Final Version: 08.07.2019 Abstract: The algal flora of 17 lakes and 1 pond in the Artabel Lakes Nature Park were investigated during two summer seasons (2013 and 2016). In total, 26 desmid taxa were found and identified as new records for the desmid flora of Turkey based on their morphotaxonomic characteristics and ecological preferences. The taxa identified belong to the genera Actinotaenium (1), Closterium (1), Cosmarium (15), Micrasterias (1), Spondylosium (1), Staurastrum (5), Teilingia (1), and Tetmemorus (1). Morphotaxonomy, ecology, and distribution of each species were discussed in detail. Key words: Desmids, new records, high mountain lakes, Artabel Lakes Nature Park, Turkey 1. Introduction Desmids are an integral part of benthic habitats of Desmid habitats are exclusively freshwater (Coesel and high mountain lakes; in particular, those of the Northern Meesters, 2007; Kouwets, 2008). Desmids usually prefer Hemisphere (Medvedeva, 2001; Sterlyagova, 2008). In acidic or pH-circumneutral, nutrient-poor, and clear the period from 1998 to 2014, 43 new records of desmid waters (Lenzenweger, 1996; Coesel and Meesters, 2007). species from high mountain lakes in the eastern Black It is well known that members of order Desmidiales Sea Region were identified and published (Şahin, 1998, exhibit great diversity in their external morphology and 2000, 2002, 2007, 2008, 2009; Şahin and Akar, 2007; Akar also have remarkably complex cell symmetry (Lee, 2015).
    [Show full text]
  • DNA Content Variation and Its Significance in the Evolution of the Genus Micrasterias (Desmidiales, Streptophyta)
    DNA Content Variation and Its Significance in the Evolution of the Genus Micrasterias (Desmidiales, Streptophyta) Aloisie Poulı´e`kova´ 1*, Petra Mazalova´ 1,3, Radim J. Vasˇut1, Petra Sˇ arhanova´ 1, Jiøı´ Neustupa2, Pavel Sˇ kaloud2 1 Department of Botany, Faculty of Science, Palacky´ University in Olomouc, Olomouc, Czech Republic, 2 Department of Botany, Charles University in Prague, Prague, Czech Republic, 3 Department of Biology, Faculty of Science, University of Hradec Kra´love´, Hradec Kra´love´, Czech Republic Abstract It is now clear that whole genome duplications have occurred in all eukaryotic evolutionary lineages, and that the vast majority of flowering plants have experienced polyploidisation in their evolutionary history. However, study of genome size variation in microalgae lags behind that of higher plants and seaweeds. In this study, we have addressed the question whether microalgal phylogeny is associated with DNA content variation in order to evaluate the evolutionary significance of polyploidy in the model genus Micrasterias. We applied flow-cytometric techniques of DNA quantification to microalgae and mapped the estimated DNA content along the phylogenetic tree. Correlations between DNA content and cell morphometric parameters were also tested using geometric morphometrics. In total, DNA content was successfully determined for 34 strains of the genus Micrasterias. The estimated absolute 2C nuclear DNA amount ranged from 2.1 to 64.7 pg; intraspecific variation being 17.4–30.7 pg in M. truncata and 32.0–64.7 pg in M. rotata. There were significant differences between DNA contents of related species. We found strong correlation between the absolute nuclear DNA content and chromosome numbers and significant positive correlation between the DNA content and both cell size and number of terminal lobes.
    [Show full text]
  • Identification of 13 Spirogyra Species (Zygnemataceae) by Traits of Sexual Reproduction Induced Under Laboratory Culture Conditions
    www.nature.com/scientificreports OPEN Identifcation of 13 Spirogyra species (Zygnemataceae) by traits of sexual reproduction induced Received: 16 November 2018 Accepted: 23 April 2019 under laboratory culture conditions Published: xx xx xxxx Tomoyuki Takano1,6, Sumio Higuchi2, Hisato Ikegaya3, Ryo Matsuzaki4, Masanobu Kawachi4, Fumio Takahashi5 & Hisayoshi Nozaki 1 The genus Spirogyra is abundant in freshwater habitats worldwide, and comprises approximately 380 species. Species assignment is often difcult because identifcation is based on the characteristics of sexual reproduction in wild-collected samples and spores produced in the feld or laboratory culture. We developed an identifcation procedure based on an improved methodology for inducing sexual conjugation in laboratory-cultivated flaments. We tested the modifed procedure on 52 newly established and genetically diferent strains collected from diverse localities in Japan. We induced conjugation or aplanospore formation under controlled laboratory conditions in 15 of the 52 strains, which allowed us to identify 13 species. Two of the thirteen species were assignable to a related but taxonomically uncertain genus, Temnogyra, based on the unique characteristics of sexual reproduction. Our phylogenetic analysis demonstrated that the two Temnogyra species are included in a large clade comprising many species of Spirogyra. Thus, separation of Temnogyra from Spirogyra may be untenable, much as the separation of Sirogonium from Spirogyra is not supported by molecular analyses. Spirogyra Link (Zygnemataceae, Zygnematales) is a genus in the Class Zygnematophyceae (Conjugatophyceae), which is a component member of the Infrakingdom Streptophyta1,2. Spirogyra has long been included in high school biology curricula. Te genus is widely distributed in freshwater habitats including fowing water, perma- nent ponds and temporary pools3.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Tesis: Desmidiales De Algunas Localidades Del Estado De México
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES IZTACALA DESMIDIALES DE ALGUNAS LOCALIDADES DEL ESTADO DE MÉXICO T E S I S QUE PARA OBTENER EL TITULO DE: B I Ó L O G O P R E S E N T A: Gabriela Jiménez Arreola DIRECTORA DE TESIS M. EN C. GLORIA GARDUÑO SOLÓRZANO HERBARIO IZTA SECCIÓN DE FICOLOGÍA Tlalnepantla, Edo. Méx. 2005 1 UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Para mis Padres y Hermanas, que son mi mundo, mi felicidad y mi conciencia. 2 AGRADECIMIENTOS A DIOS porque gracias a ÉL existo. A mis Padres Gilberto Jiménez y Antonia Arreola B. por todo el apoyo emocional y económico, gracias por permitirme tomar mis propias decisiones, por sus enseñanzas, por su fuerza, por sus esperanzas, por el cariño inagotable y sobre todo por su paciencia. A mis queridas hermanas; Eva, Bety, Titi y Angi, por ser mis mejores amigas, por su preocupación y lo mas importante por creer en mi.
    [Show full text]
  • Identification of Algae in Water Supplies
    Identification of Algae in Water Supplies Table of Contents Section I Introduction to the Algae by George Izaguirre Section II Review of Methods for Collection, Quantification and Identification of Algae by Miriam Steinitz-Kannan Section III Bibliography Section IV Key for the identification of the most common freshwater algae in water supplies Section V Photographs and descriptions of the most common genera of algae found in water supplies. Appendix A Figures A-1–A-6 Algae — AWWA Manual 7, Chapter 10 Continue Credits Copyright © 2002 American Water Works Association, all rights reserved. No copying of this informa- tion in any form is allowed without expressed written consent of the American Water Works Association. Disclaimer While AWWA makes every effort to ensure the accuracy of its products, it cannot guarantee 100% accuracy. In no event will AWWA be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of information presented on this CD. In particular AWWA will not be responsible for any costs, including, but not limited to, those incurred as a result of lost revenue. In no event shall AWWA's liability exceed the amount paid for the purchase of this CD Identification of Algae in Water Supplies Section I Back to Table of Contents George Izaguirre The algae are a large and very diverse group of organisms that rangefrom minute single-celled forms to the giant marine kelps. They occupy a wide variety of habitats, including fresh water (lakes, reservoirs, and rivers), oceans, estuaries, moist soils, coastal spray zones, hot springs, snow fields and stone or concrete surfaces.
    [Show full text]
  • Asymmetry and Integration of Cellular Morphology in Micrasterias Compereana Jiří Neustupa
    Neustupa BMC Evolutionary Biology (2017) 17:1 DOI 10.1186/s12862-016-0855-1 RESEARCHARTICLE Open Access Asymmetry and integration of cellular morphology in Micrasterias compereana Jiří Neustupa Abstract Background: Unicellular green algae of the genus Micrasterias (Desmidiales) have complex cells with multiple lobes and indentations, and therefore, they are considered model organisms for research on plant cell morphogenesis and variation. Micrasterias cells have a typical biradial symmetric arrangement and multiple terminal lobules. They are composed of two semicells that can be further differentiated into three structural components: the polar lobe and two lateral lobes. Experimental studies suggested that these cellular parts have specific evolutionary patterns and develop independently. In this study, different geometric morphometric methods were used to address whether the semicells of Micrasterias compereana are truly not integrated with regard to the covariation of their shape data. In addition, morphological integration within the semicells was studied to ascertain whether individual lobes constitute distinct units that may be considered as separate modules. In parallel, I sought to determine whether the main components of morphological asymmetry could highlight underlying cytomorphogenetic processes that could indicate preferred directions of variation, canalizing evolutionary changes in cellular morphology. Results: Differentiation between opposite semicells constituted the most prominent subset of cellular asymmetry. The second important asymmetric pattern, recovered by the Procrustes ANOVA models, described differentiation between the adjacent lobules within the quadrants. Other asymmetric components proved to be relatively unimportant. Opposite semicells were shown to be completely independent of each other on the basis of the partial least squares analysis analyses. In addition, polar lobes were weakly integrated with adjacent lateral lobes.
    [Show full text]