Botanica 2020, 26(1): 15–27
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structural Features of Unicellular Desmids (Desmidiales) When Examined in a Scanning Electron Microscope © O
BOTANICHESKII ZHURNAL, 2021, Vol. 106, N 6, pp. 523–528 COMMUNICATIONS Structural Features of Unicellular Desmids (Desmidiales) when Examined in a Scanning Electron Microscope © O. V. Anissimovaa,# and A. F. Luknitskayab,## a Zvenigorod Biological Station, M.V. Lomonosov Moscow State University Leninskiye Gory, 1/12, Moscow, 119234, Russia b Komarov Botanical Institute RAS Prof. Popov Str., 2, St. Petersburg, 197376, Russia #e-mail: [email protected] ##e-mail: [email protected] DOI: 10.31857/S0006813621060028 We have demonstrated the possibility of using scanning electron microscopy methods for studying the mor- phology and ornamentation of the cell wall of unicellular species of desmid algae (Charophyta, Zygnemato- phyceae). Scanning electron microscopy was used to confirm and refine the identification of taxa with 10 spe- cies as an example: Cosmarium sp., C. anceps, C. granatum, C. nymannianum, C. pokornyanum, Euastrum bidentatum, E. crassicolle, E. luetkemuelleri, E. oblongum, Pleurotaenium ehrenbergii. The use of electron microscope enables a more subtle and qualitative study of the cell wall surface. We con- sidered the difficulties arising when working with cells of desmids in scanning electron microscopy. Attention should be paid to the artifacts arising from the preparation of samples for the study of algae in scanning elec- tron microscopy: mucus plugs and abundant accumulation of mucus on the cell surface, “molting” process and asymmetry in the development of the semicells. Keywords: Сharophyta, Zygnematophyceae, cell wall, morphology, taxonomy, scanning electron microscope ACKNOWLEDGEMENTS Brook A.J. 1981. The biology of desmids. Oxford. 276 p. The studies were carried out within the framework of the Kosinskaya E.K. 1960. Flora sporovykh rasteniy SSSR. -
The Desmids of the West End of Lake Erie1-2
THE DESMIDS OF THE WEST END OF LAKE ERIE1-2 CLARENCE E. TAFT INTRODUCTION For several years the writer has had the opportunity to study the desmids of the Island Region of the west end of Lake Erie. First in 1933, and later while a member of the staff of the Franz Theodore Stone Laboratory on Gibraltar Island in Put-in-Bay Harbor during the summers of 1938, 1940, and 1941. Collections made from the open lake, shore margins, and from ponds and beach pools on the Islands were augmented during; the interim from 1933 to 1938 by collections made by Tiffany during his work on "The plankton algae of the west end of Lake Erie" (1934) and "The filamentous algae of the west end of Lake Erie" (1937). The writer gratefully acknowledges these collections, as well as many collections placed at his disposal by members of the fresh-water algae classes at the StoneLaboratory. The writer hopes that this report, the latest in a series on the algae of the region will be not only of taxonomic interest, but helpful to the student of aquatic biology. For the benefit of; the, latter the'paper; has been prepared in somewhat greater detail than would otherwise be necessary,; .: ••••.-.-> .-•"•-. Two groups remain toK be reported!. They are the Dinophyceae (which has been; only superficially worked) and the Bacillariophyeeaei Of the two classes, the representatives of the latter are,far more numerous, and at times constitute air important bulk; of the plankton. 11: is hoped that in the near future: this group may receive the attention that its importance deserves. -
The Genus Euastrum Ehrenberg Ex Ralfs (Desmidiaceae) in a Subtropical Stream Adjacent to the Parque Nacional Do Iguaçu, Paraná State, Brazil
Hoehnea 44(1): 1-9, 26 fig., 2017 http://dx.doi.org/10.1590/2236-8906-55/2016 The genus Euastrum Ehrenberg ex Ralfs (Desmidiaceae) in a subtropical stream adjacent to the Parque Nacional do Iguaçu, Paraná State, Brazil Camila Akemy Nabeshima Aquino1,2,3, Norma Catarina Bueno1,2, Liliane Caroline Servat1,2 and Jascieli Carla Bortolini2 Received: 7.07.2016; accepted: 8.11.2016 ABSTRACT - (The genus Euastrum Ehrenberg ex Ralfs (Desmidiaceae) in a subtropical stream adjacent to the Parque Nacional do Iguaçu, Paraná State, Brazil). This study aimed to document the species of Euastrum (Desmidiaceae) in a subtropical stream adjacent to an important environmental protection area, the Parque Nacional do Iguaçu, in the extreme west of Paraná State, Brazil. For this purpose, monthly samplings of periphytic material associated to Eleocharis minima Kunth were performed in the period between August 2012 and July 2013. This taxonomic inventory allowed the identification of 12 taxa at specific and infraespecific level. Eight new occurrences were recorded for Paraná State:Euastrum attenuatum var. splendens, E. bidentatum var. bidentatum, E. cornubiense var. cornubiense, E. croasdaleae var. croasdaleae, E. denticulatum var. quadrifarium, E. didelta var. quadriceps, E. elegans var. elegans and E. evolutum var. incudiforme. Keywords: biodiversity, desmids, Freshwater, taxonomy, Zygnematophyceae RESUMO - (O gênero Euastrum Ehrenberg ex Ralfs (Desmidiaceae) em um riacho subtropical, área adjacente ao Parque Nacional do Iguaçu, PR, Brasil). Este estudo objetivou documentar as espécies do gênero Euastrum (Desmidiaceae) em um riacho subtropical adjacente a uma importante área de proteção ambiental, o Parque Nacional do Iguaçu, no extremo oeste do Estado do Paraná, Brasil. -
Genus Micrasterias
Triquetrous forms in the genus Micrasterias by J. Heimans (Amsterdam). In the winter and early spring of 1916 Mrs. Anna Weber-van Bosse at her hospitable residence near Eerbeek initiated me in the study of Freshwater Algae. For several years after that date in numerous trips all over this country I collected and studied some thousands of samples from all kinds The Desmids drew of freshwater ponds and lakes, canals and streams. soon when rich and varied Desmid flora my special attention, an unexpectedly was found in certain fens and ponds in the diluvial and moor districts of our country. considerable of Still more surprising was the presence of a number those Desmid species which in the publications of W. and G. S. West, whose Monograph at that time was the only handbook for the study of Desmids, are held to be confined to the Western rocky districts of the British Isles in the drainage area of precarboniferous rocks. One of the most beautiful and most characteristic species of this "Caledonian type" of Desmid vegetation, Staurastrum Ophiura Lund, had been found by Mrs Weber herself some years before in a sample from the province of North Brabant. did the Not until several years afterwards we learn from publications of R. Gronblad, A. Donat, H. Homfeld and others that this "Atlantic Element of the Desmid flora" is the N.W. of spread over parts Europe from Finland to Portugal. Besides Staurastrum Ophiura a considerable number of species be- longing to this Western element was found in the Netherlands, although of them of Staurastrum brasiliense most are rare occurrence, e.g. -
DNA Content Variation and Its Significance in the Evolution of the Genus Micrasterias (Desmidiales, Streptophyta)
DNA Content Variation and Its Significance in the Evolution of the Genus Micrasterias (Desmidiales, Streptophyta) Aloisie Poulı´e`kova´ 1*, Petra Mazalova´ 1,3, Radim J. Vasˇut1, Petra Sˇ arhanova´ 1, Jiøı´ Neustupa2, Pavel Sˇ kaloud2 1 Department of Botany, Faculty of Science, Palacky´ University in Olomouc, Olomouc, Czech Republic, 2 Department of Botany, Charles University in Prague, Prague, Czech Republic, 3 Department of Biology, Faculty of Science, University of Hradec Kra´love´, Hradec Kra´love´, Czech Republic Abstract It is now clear that whole genome duplications have occurred in all eukaryotic evolutionary lineages, and that the vast majority of flowering plants have experienced polyploidisation in their evolutionary history. However, study of genome size variation in microalgae lags behind that of higher plants and seaweeds. In this study, we have addressed the question whether microalgal phylogeny is associated with DNA content variation in order to evaluate the evolutionary significance of polyploidy in the model genus Micrasterias. We applied flow-cytometric techniques of DNA quantification to microalgae and mapped the estimated DNA content along the phylogenetic tree. Correlations between DNA content and cell morphometric parameters were also tested using geometric morphometrics. In total, DNA content was successfully determined for 34 strains of the genus Micrasterias. The estimated absolute 2C nuclear DNA amount ranged from 2.1 to 64.7 pg; intraspecific variation being 17.4–30.7 pg in M. truncata and 32.0–64.7 pg in M. rotata. There were significant differences between DNA contents of related species. We found strong correlation between the absolute nuclear DNA content and chromosome numbers and significant positive correlation between the DNA content and both cell size and number of terminal lobes. -
Table of Contents
Table of Contents General Program………………………………………….. 2 – 5 Poster Presentation Summary……………………………. 6 – 8 Abstracts (in order of presentation)………………………. 9 – 41 Brief Biography, Dr. Dennis Hanisak …………………… 42 1 General Program: 46th Northeast Algal Symposium Friday, April 20, 2007 5:00 – 7:00pm Registration Saturday, April 21, 2007 7:00 – 8:30am Continental Breakfast & Registration 8:30 – 8:45am Welcome and Opening Remarks – Morgan Vis SESSION 1 Student Presentations Moderator: Don Cheney 8:45 – 9:00am Wilce Award Candidate FUSION, DUPLICATION, AND DELETION: EVOLUTION OF EUGLENA GRACILIS LHC POLYPROTEIN-CODING GENES. Adam G. Koziol and Dion G. Durnford. (Abstract p. 9) 9:00 – 9:15am Wilce Award Candidate UTILIZING AN INTEGRATIVE TAXONOMIC APPROACH OF MOLECULAR AND MORPHOLOGICAL CHARACTERS TO DELIMIT SPECIES IN THE RED ALGAL FAMILY KALLYMENIACEAE (RHODOPHYTA). Bridgette Clarkston and Gary W. Saunders. (Abstract p. 9) 9:15 – 9:30am Wilce Award Candidate AFFINITIES OF SOME ANOMALOUS MEMBERS OF THE ACROCHAETIALES. Susan Clayden and Gary W. Saunders. (Abstract p. 10) 9:30 – 9:45am Wilce Award Candidate BARCODING BROWN ALGAE: HOW DNA BARCODING IS CHANGING OUR VIEW OF THE PHAEOPHYCEAE IN CANADA. Daniel McDevit and Gary W. Saunders. (Abstract p. 10) 9:45 – 10:00am Wilce Award Candidate CCMP622 UNID. SP.—A CHLORARACHNIOPHTYE ALGA WITH A ‘LARGE’ NUCLEOMORPH GENOME. Tia D. Silver and John M. Archibald. (Abstract p. 11) 10:00 – 10:15am Wilce Award Candidate PRELIMINARY INVESTIGATION OF THE NUCLEOMORPH GENOME OF THE SECONDARILY NON-PHOTOSYNTHETIC CRYPTOMONAD CRYPTOMONAS PARAMECIUM CCAP977/2A. Natalie Donaher, Christopher Lane and John Archibald. (Abstract p. 11) 10:15 – 10:45am Break 2 SESSION 2 Student Presentations Moderator: Hilary McManus 10:45 – 11:00am Wilce Award Candidate IMPACTS OF HABITAT-MODIFYING INVASIVE MACROALGAE ON EPIPHYTIC ALGAL COMMUNTIES. -
Micrasterias As a Model System in Plant Cell Biology
fpls-07-00999 July 8, 2016 Time: 14:12 # 1 REVIEW published: 12 July 2016 doi: 10.3389/fpls.2016.00999 Micrasterias as a Model System in Plant Cell Biology Ursula Lütz-Meindl* Plant Physiology Division, Cell Biology Department, University of Salzburg, Salzburg, Austria The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 mm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such Edited by: David Domozych, as 3-D- and analytical electron microscopy as well as with biochemical, physiological Skidmore College, USA and molecular approaches. This review is intended to summarize and discuss the most Reviewed by: important results obtained in Micrasterias in the last 20 years and to compare the results Sven B. -
Identification of Algae in Water Supplies
Identification of Algae in Water Supplies Table of Contents Section I Introduction to the Algae by George Izaguirre Section II Review of Methods for Collection, Quantification and Identification of Algae by Miriam Steinitz-Kannan Section III Bibliography Section IV Key for the identification of the most common freshwater algae in water supplies Section V Photographs and descriptions of the most common genera of algae found in water supplies. Appendix A Figures A-1–A-6 Algae — AWWA Manual 7, Chapter 10 Continue Credits Copyright © 2002 American Water Works Association, all rights reserved. No copying of this informa- tion in any form is allowed without expressed written consent of the American Water Works Association. Disclaimer While AWWA makes every effort to ensure the accuracy of its products, it cannot guarantee 100% accuracy. In no event will AWWA be liable for direct, indirect, special, incidental, or consequential damages arising out of the use of information presented on this CD. In particular AWWA will not be responsible for any costs, including, but not limited to, those incurred as a result of lost revenue. In no event shall AWWA's liability exceed the amount paid for the purchase of this CD Identification of Algae in Water Supplies Section I Back to Table of Contents George Izaguirre The algae are a large and very diverse group of organisms that rangefrom minute single-celled forms to the giant marine kelps. They occupy a wide variety of habitats, including fresh water (lakes, reservoirs, and rivers), oceans, estuaries, moist soils, coastal spray zones, hot springs, snow fields and stone or concrete surfaces. -
Asymmetry and Integration of Cellular Morphology in Micrasterias Compereana Jiří Neustupa
Neustupa BMC Evolutionary Biology (2017) 17:1 DOI 10.1186/s12862-016-0855-1 RESEARCHARTICLE Open Access Asymmetry and integration of cellular morphology in Micrasterias compereana Jiří Neustupa Abstract Background: Unicellular green algae of the genus Micrasterias (Desmidiales) have complex cells with multiple lobes and indentations, and therefore, they are considered model organisms for research on plant cell morphogenesis and variation. Micrasterias cells have a typical biradial symmetric arrangement and multiple terminal lobules. They are composed of two semicells that can be further differentiated into three structural components: the polar lobe and two lateral lobes. Experimental studies suggested that these cellular parts have specific evolutionary patterns and develop independently. In this study, different geometric morphometric methods were used to address whether the semicells of Micrasterias compereana are truly not integrated with regard to the covariation of their shape data. In addition, morphological integration within the semicells was studied to ascertain whether individual lobes constitute distinct units that may be considered as separate modules. In parallel, I sought to determine whether the main components of morphological asymmetry could highlight underlying cytomorphogenetic processes that could indicate preferred directions of variation, canalizing evolutionary changes in cellular morphology. Results: Differentiation between opposite semicells constituted the most prominent subset of cellular asymmetry. The second important asymmetric pattern, recovered by the Procrustes ANOVA models, described differentiation between the adjacent lobules within the quadrants. Other asymmetric components proved to be relatively unimportant. Opposite semicells were shown to be completely independent of each other on the basis of the partial least squares analysis analyses. In addition, polar lobes were weakly integrated with adjacent lateral lobes. -
No. 188 (21 April 2021) ISSN 2009-8987 Taxonomic And
No. 188 (21 April 2021) ISSN 2009-8987 Taxonomic and nomenclatural notes on desmids I. Euastrum circulare Hassall ex Ralfs and Euastrum sinuosum Lenormand ex W.Archer (Zygnematophyceae, Desmidiaceae) Olga V. Anissimova, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, building 12, Moscow, 119991, Russia (correspondence: [email protected]) Michael D. Guiry, AlgaeBase, Ryan Institute, NUI Galway, Galway H91 TK33, Ireland. The taxonomy and nomenclature of desmids is complex and difficult, particularly as the limitation of the Principle of Priority as applied to the “Desmidiaceae s.l. [in the broad sense]” resulted in the setting of the starting point for all desmids as 1 January 1848 and Ralfs (1848) was also set with this notional date of publication (ICN Art. 13.1, Turland & al. 2018). Designations applied to desmids prior to 1 January 1848 are thus devalidated and have no nomenclatural status other than providing taxonomic information. The name Euastrum sinuosum Kützing [Kützing 1849: 174, ‘Euastrum (?) sinuosum’] is an illegitimate name as it included in synonymy “Cosmarium crenatum Ralfs” (Ralfs 1844: 394; Ralfs 1848: 96, pl. XV: fig. 7). Whilst “Cosmarium crenatum Ralfs”, 1844 is a devalidated name, it was validated as Cosmarium crenatum Ralfs ex Ralfs (Ralfs 1848: 96, pl. XV: fig. 7). Euastrum sinuosum Kützing is thus an illegitimate name as it included in synonymy a valid and legitimate name. The valid name Euastrum sinuosum Lenormand ex W.Archer (in Pritchard 1861: 729) was subsequently introduced by William Archer (1830–1897) who included “E. circulare b (Rfs.) and “E. circulare, var. Falaisensis (Bréb.)”. Archer (in Pritchard 1861) was referring to Ralfs (1848: 85-86) in which Euastrum circulare Hassall ex Ralfs included “Euastrum circulare Hass.” (Hassall 1845: 383, pl. -
A Method to Produce High-Quality Protoplasts from Alga Micrasterias Denticulate, an Emerging Model in Plant Biology
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450603; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Structural studies on cell wall biogenesis-I: A method to produce high-quality protoplasts from alga Micrasterias denticulate, an emerging model in plant biology M. Selvaraj Institute of Biotechnology, University of Helsinki, Viikki Campus, Finland 00790. Correspondence: [email protected] Abstract: Micrasterias denticulate is a freshwater unicellular green alga emerging as a model system in plant cell biology. This is an algae that has been examined in the context of cell wall research from early 1970’s. Protoplast production from such a model system is important for many downstream physiological and cell biological studies. The algae produce intact protoplast in a straight two-step protocol involving 5% mannitol, 2% cellulysin, 4mM calcium chloride under a ‘temperature ramping’ strategy. The process of protoplast induction and behavior of protoplast was examined by light microscopy and reported in this study. Introduction followed by Kiermayer, and by Meindl. In the Micrasterias denticulate is a flat disc-shaped laboratories of Kiermayer, Meindl and others, this freshwater unicellular green algae of size near to algae was used to study critical plant development 200m diameter. Taxonomically, this alga belongs processes like cell morphogenesis, cell wall to order Desmidales (family: Desmidiaceae), under biosynthesis, cellulose arrangement, tip growth, Streptophyta that are close to land plants in terms of metal toxicity, abiotic stress responses etc., evolution. -
Cattle Access Affects Periphyton Community Structure in Tennessee Farm Ponds
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2010 Cattle access affects periphyton community structure in Tennessee farm ponds. Robert Gerald Middleton University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Middleton, Robert Gerald, "Cattle access affects periphyton community structure in Tennessee farm ponds.. " Master's Thesis, University of Tennessee, 2010. https://trace.tennessee.edu/utk_gradthes/732 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Robert Gerald Middleton entitled "Cattle access affects periphyton community structure in Tennessee farm ponds.." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Wildlife and Fisheries Science. Matthew J. Gray, Major Professor We have read this thesis and recommend its acceptance: S. Marshall Adams, Richard J. Strange Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Robert Gerald Middleton entitled “Cattle access affects periphyton community structure in Tennessee farm ponds.” I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Wildlife and Fisheries Science.