Enrico Fermi and the Discovery of Neutron-Induced Radioactivity: a Project Being Crowned
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alfred Nobel
www.bibalex.org/bioalex2004conf The BioVisionAlexandria 2004 Conference Newsletter November 2003 Volume 1, Issue 2 BioVisionAlexandria ALFRED NOBEL 2004 aims to celebrate the The inventor, the industrialist outstanding scientists and scholars, in a he Nobel Prize is one of the highest distinctions recognized, granting its winner century dominated by instant fame. However, many do not know the interesting history and background technological and T that led to this award. scientific revolutions, through its It all began with a chemist, known as Alfred Nobel, born in Stockholm, Sweden in 1833. Nobel Day on 3 April Alfred Nobel moved to Russia when he was eight, where his father, Immanuel Nobel, 2004! started a successful mechanical workshop. He provided equipment for the Russian Army and designed naval mines, which effectively prevented the British Royal Navy from moving within firing range of St. Petersburg during the Crimean War. Immanuel Nobel was also a pioneer in the manufacture of arms, and in designing steam engines. INSIDE Scientific awards .........3 Immanuel’s success enabled him to Alfred met Ascanio Sobrero, the Italian Confirmed laureates ....4 Lady laureates ............7 provide his four sons with an excellent chemist who had invented Nitroglycerine education in natural sciences, languages three years earlier. Nitroglycerine, a and literature. Alfred, at an early age, highly explosive liquid, was produced by acquired extensive literary knowledge, mixing glycerine with sulfuric and nitric mastering many foreign languages. His acid. It was an invention that triggered a Nobel Day is interest in science, especially chemistry, fascination in the young scientist for many dedicated to many of was also apparent. -
James Chadwick: Ahead of His Time
July 15, 2020 James Chadwick: ahead of his time Gerhard Ecker University of Vienna, Faculty of Physics Boltzmanngasse 5, A-1090 Wien, Austria Abstract James Chadwick is known for his discovery of the neutron. Many of his earlier findings and ideas in the context of weak and strong nuclear forces are much less known. This biographical sketch attempts to highlight the achievements of a scientist who paved the way for contemporary subatomic physics. arXiv:2007.06926v1 [physics.hist-ph] 14 Jul 2020 1 Early years James Chadwick was born on Oct. 20, 1891 in Bollington, Cheshire in the northwest of England, as the eldest son of John Joseph Chadwick and his wife Anne Mary. His father was a cotton spinner while his mother worked as a domestic servant. In 1895 the parents left Bollington to seek a better life in Manchester. James was left behind in the care of his grandparents, a parallel with his famous predecessor Isaac Newton who also grew up with his grandmother. It might be an interesting topic for sociologists of science to find out whether there is a correlation between children educated by their grandmothers and future scientific geniuses. James attended Bollington Cross School. He was very attached to his grandmother, much less to his parents. Nevertheless, he joined his parents in Manchester around 1902 but found it difficult to adjust to the new environment. The family felt they could not afford to send James to Manchester Grammar School although he had been offered a scholarship. Instead, he attended the less prestigious Central Grammar School where the teaching was actually very good, as Chadwick later emphasised. -
Unerring in Her Scientific Enquiry and Not Afraid of Hard Work, Marie Curie Set a Shining Example for Generations of Scientists
Historical profile Elements of inspiration Unerring in her scientific enquiry and not afraid of hard work, Marie Curie set a shining example for generations of scientists. Bill Griffiths explores the life of a chemical heroine SCIENCE SOURCE / SCIENCE PHOTO LIBRARY LIBRARY PHOTO SCIENCE / SOURCE SCIENCE 42 | Chemistry World | January 2011 www.chemistryworld.org On 10 December 1911, Marie Curie only elements then known to or ammonia, having a water- In short was awarded the Nobel prize exhibit radioactivity. Her samples insoluble carbonate akin to BaCO3 in chemistry for ‘services to the were placed on a condenser plate It is 100 years since and a chloride slightly less soluble advancement of chemistry by the charged to 100 Volts and attached Marie Curie became the than BaCl2 which acted as a carrier discovery of the elements radium to one of Pierre’s electrometers, and first person ever to win for it. This they named radium, and polonium’. She was the first thereby she measured quantitatively two Nobel prizes publishing their results on Boxing female recipient of any Nobel prize their radioactivity. She found the Marie and her husband day 1898;2 French spectroscopist and the first person ever to be minerals pitchblende (UO2) and Pierre pioneered the Eugène-Anatole Demarçay found awarded two (she, Pierre Curie and chalcolite (Cu(UO2)2(PO4)2.12H2O) study of radiactivity a new atomic spectral line from Henri Becquerel had shared the to be more radioactive than pure and discovered two new the element, helping to confirm 1903 physics prize for their work on uranium, so reasoned that they must elements, radium and its status. -
2018 Real-Time Conference June 11Th-15Th, 2018, Williamsburg, Virginia, USA
NPSS News ISSUEISSUE 1: MARCH1 : MAY 22O13O18 A PUBLICATION OF THE INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS The Colonial Williamsburg Foundation Colonial The 2018 Real-Time Conference June 11th-15th, 2018, Williamsburg, Virginia, USA CONFERENCES and trigger systems to control and monitoring, real- Located in southeastern Virginia (on the mid-Atlantic Real-Time 1 time safety/security, processing, networks, upgrades, coast of the U.S.), the town of Williamsburg is part NSREC 2 new standards and emerging technologies. of what is known as the Historical Triangle (including IPAC 2 Jamestown and Yorktown). It is an area of significant The Real-Time Conference has historically been importance to early English colonial history and the SOCIETY GENERAL BUSINESS a relatively small conference (typically 200-250 birth of the United States. The conference venue, President’s Report 3 participants). We are able to create a scientific Woodlands Hotel and Conference Center, is part Secretary’s Report 4 program that consists only of plenary oral sessions of Colonial Williamsburg, a living-history recreation New AdCom Officers and Members 5 and dedicated poster sessions for all attendees. In of the first capitol of the Virginia Colony (circa mid- David Abbott, addition, poster presenters are given the opportunity 1700s). The area is a popular vacation destination TECHNICAL COMMITTEES General Chair; Williamsburg to give a short (two-minute) overview of their paper with many historical landmarks and museums as CANPS 6 so that participants will have a better understanding well as beaches and large amusement parks. The Radiation Effects 6 The 21st edition of the IEEE-NPSS Real-Time of which posters they may wish to investigate further. -
Franco Rasetti
Franco Rasetti Castiglione del Lago, Italy, 10 August 1901 – Waremme, Belgium, 5 December 2001 Title Professor of Physics, Johns Hopkins University, Baltimore, MD, USA Field Entomology, Physics, Paleontology, Botany Nomination 28 Oct. 1936 Download 1937 biography in Italian Most important awards, prizes and academies Honorary Doctor, Laval University, Quebec (Canada); Honorary Doctor of Law, University of Glasgow; Honorary Research Associate in Paleobiology, Smithsonian Institution (Washington); Socio Nazionale dell’Accademia Nazionale dei Lincei (since 1937); Socio dell’Accademia Nazionale delle Scienze, detta dei XL (since 1937); Medaglia Matteucci dell’Accademia Nazionale delle Scienze (1931); Premio Righi dell’Accademia delle Scienze di Bologna (1932); Premio Mussolini della Reale Accademia d’Italia (1938); Medaglia d’Oro dell’Associazione Laureati Ateneo Pisano (1972); Charles D. Walcott Medal and Award, National Academy of Sciences, Washington (1952); Medaglia dell’Accademia Nazionale delle Scienze (1984); Cavaliere di Gran Croce (1995). Summary of scientific research Professional Career: Doctor’s Degree in Physics, University of Pisa (1921); Assistant in the Physics Department, University of Florence (1921-25); Assistant in the Physics Department, University of Rome (1926-1930); Tenured Professor of Physics, University of Rome (1931-1939); Professor of Physics and Chairman of Physics Department at Laval University, Quebec, Canada (1939-1945); Full Professor of Physics, Johns Hopkins University, Baltimore, Maryland, USA (1946-1966). Summer Lecturer in Physics at Cornell University, Ithaca, N.Y. (1936); Washington University St. Louis, Missouri (1946); University of Washington, Seattle (1955); Instituto Venezolano de Investigaciones Científicas, Caracas (1957), University of Miami, Florida, (1958; 1961). Main publications A) Physics: Rasetti F., Il nucleo Atomico. Zanichelli, Bologna; Rasetti F., Elements of Nuclear Physics. -
Ion Trap Nobel
The Nobel Prize in Physics 2012 Serge Haroche, David J. Wineland The Nobel Prize in Physics 2012 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems" David J. Wineland, U.S. citizen. Born 1944 in Milwaukee, WI, USA. Ph.D. 1970 Serge Haroche, French citizen. Born 1944 in Casablanca, Morocco. Ph.D. from Harvard University, Cambridge, MA, USA. Group Leader and NIST Fellow at 1971 from Université Pierre et Marie Curie, Paris, France. Professor at National Institute of Standards and Technology (NIST) and University of Colorado Collège de France and Ecole Normale Supérieure, Paris, France. Boulder, CO, USA www.college-de-france.fr/site/en-serge-haroche/biography.htm www.nist.gov/pml/div688/grp10/index.cfm A laser is used to suppress the ion’s thermal motion in the trap, and to electrode control and measure the trapped ion. lasers ions Electrodes keep the beryllium ions inside a trap. electrode electrode Figure 2. In David Wineland’s laboratory in Boulder, Colorado, electrically charged atoms or ions are kept inside a trap by surrounding electric fields. One of the secrets behind Wineland’s breakthrough is mastery of the art of using laser beams and creating laser pulses. A laser is used to put the ion in its lowest energy state and thus enabling the study of quantum phenomena with the trapped ion. Controlling single photons in a trap Serge Haroche and his research group employ a diferent method to reveal the mysteries of the quantum world. -
Accelerator Disaster Scenarios, the Unabomber, and Scientific Risks
Accelerator Disaster Scenarios, the Unabomber, and Scientific Risks Joseph I. Kapusta∗ Abstract The possibility that experiments at high-energy accelerators could create new forms of matter that would ultimately destroy the Earth has been considered several times in the past quarter century. One consequence of the earliest of these disaster scenarios was that the authors of a 1993 article in Physics Today who reviewed the experi- ments that had been carried out at the Bevalac at Lawrence Berkeley Laboratory were placed on the FBI's Unabomber watch list. Later, concerns that experiments at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory might create mini black holes or nuggets of stable strange quark matter resulted in a flurry of articles in the popular press. I discuss this history, as well as Richard A. Pos- ner's provocative analysis and recommendations on how to deal with such scientific risks. I conclude that better communication between scientists and nonscientists would serve to assuage unreasonable fears and focus attention on truly serious potential threats to humankind. Key words: Wladek Swiatecki; Subal Das Gupta; Gary D. Westfall; Theodore J. Kaczynski; Frank Wilczek; John Marburger III; Richard A. Posner; Be- valac; Relativistic Heavy Ion Collider (RHIC); Large Hadron Collider (LHC); Lawrence Berkeley National Laboratory; Brookhaven National Laboratory; CERN; Unabomber; Federal Bureau of Investigation; nuclear physics; accel- erators; abnormal nuclear matter; density isomer; black hole; strange quark matter; scientific risks. arXiv:0804.4806v1 [physics.hist-ph] 30 Apr 2008 ∗Joseph I. Kapusta received his Ph.D. degree at the University of California at Berkeley in 1978 and has been on the faculty of the School of Physics and Astronomy at the University of Minnesota since 1982. -
Assessing Potential Induced Radioactivity in Materials Processed with X-Ray Energy Above 5 Mev: Assessment Protocols and Practical Experience
FERMILAB-PUB-20-562-DI Assessing potential induced radioactivity in materials processed with X-ray energy above 5 MeV: Assessment protocols and practical experience Hervé Michel1; Thomas Kroc2; Brian J. McEvoy 3; Deepak Patil4 Pierre Reppert5; Mark A. Smith6 1Director, Radiation Technology EMEAA, STERIS, Hogenweidstrasse 6, 4658 Däniken, Switzerland, [email protected] 2Applications Physicist for Technology Development, Fermilab, Batavia, Illinois, USA, [email protected] 3Senior Director Global Technologies, STERIS, IDA Business & Technology Park, Tullamore, County Offaly, R35 X865, Ireland, [email protected] 4Senior Director, Radiation Technology, 1880 Industrial Drive, Libertyville, IL 60048 [email protected] 5Validation Manager, STERIS, Hogenweidstrasse 6, 4658 Däniken, Switzerland, [email protected] 6Managing Director, Ionaktis, LLC, PO Box 11599, Charlotte, NC 28220 USA [email protected] Abstract In accordance with ISO11137-1 section 5.1.2, ‘the potential for induced radioactivity in product shall be assessed’. This article describes how compliance to this requirement may be achieved using qualified test methods. Materials of consideration are conceptually discussed. Results of testing conducted on products processed with a 7.5 MeV X-ray irradiation process are provided. As X-ray becomes more widely used in healthcare sterilization, having standard assessment protocols for activation coupled with a shared database of material test results will benefit all healthcare product manufacturers seeking to avail of this innovative technology. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. 1. Introduction Radioactive material of natural origin is ubiquitous in nature, widely varying in type and amount. -
Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser
PHYSICAL REVIEW X 4, 031030 (2014) Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser † A. Picciotto,1,* D. Margarone,2, A. Velyhan,2 P. Bellutti,1 J. Krasa,2 A. Szydlowsky,3,4 G. Bertuccio,5 Y. Shi,5 A. Mangione,6 J. Prokupek,2,7 A. Malinowska,4 E. Krousky,8 J. Ullschmied,8 L. Laska,2 M. Kucharik,7 and G. Korn2 1Micro-Nano Facility, Fondazione Bruno Kessler, 38123 Trento, Italy 2Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic 3Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland 4National Centre for Nuclear Research, 05-400 Otwock, Poland 5Politecnico di Milano, Department of Electronics Information and Bioengineering, 22100 Como, Italy 6Institute of Advanced Technologies, 91100 Trapani, Italy 7Czech Technical University in Prague, FNSPE, 115 19 Prague, Czech Republic 8Institute of Plasma Physics of the ASCR, PALS Laboratory, 182 00 Prague, Czech Republic (Received 12 January 2014; revised manuscript received 1 April 2014; published 19 August 2014) We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 109 per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3 × 1016 Wcm−2. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated. -
Simulation of Induced Radioactivity for a Heavy Ion Medical Machine
Chinese Physics C Vol. 38, No. 11 (2014) 118201 Simulation of induced radioactivity for a heavy ion medical machine XU Jun-Kui(Md¿)1;2 SU You-Wu(kÉ)2;1) LI Wu-Yuan(oÉ)2 MAO Wang(f!)2 XIA Jia-Wen(gZ©)2 CHEN Xi-Meng(Ú)1 YAN Wei-Wei(î)2 XU Chong(MÇ)2 1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China 2 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China Abstract: The radioactivity induced by carbon ions of the Heavy Ion Medical Machine (HIMM) was studied to asses its radiation protection and environmental impact. Radionuclides in the accelerator component, and in the cooling water and air at the target area, which are induced from primary beam and secondary particles, are simulated by FLUKA Monte Carlo code. It is found that radioactivity in the cooling water and air is not very important at the required beam intensity and energy that is needed for treatment, while radionuclides in the accelerator component may cause some problems for maintenance work and, therefore, a suitable cooling time is needed after the machine is shut down. Key words: radioactivity, HIMM, heavy ion PACS: 07.89.+b, 28.41.Qb DOI: 10.1088/1674-1137/38/11/118201 1 Introduction back to the early period when Curie and Joliot found the activation reaction in 1934 [4]. In recent years, improve- Nowadays, radiation therapy is an important means ments of the accelerator have meant that more kinds of tumor treatment. More than 50% of all patients with of particles, of a higher energy can be accelerated and, localized malignant tumors are treated with radiation [1]. -
Sidney D. Drell Professional Biography
Sidney D. Drell Professional Biography Present Position Professor Emeritus, SLAC National Accelerator Laboratory, Stanford University (Deputy Director before retiring in 1998) Senior Fellow at the Hoover Institution since 1998 Present Activities Member, JASON, The MITRE Corporation Member, Board of Governors, Weizmann Institute of Science, Rehovot, Israel Professional and Honorary Societies American Physical Society (Fellow) - President, 1986 National Academy of Sciences American Academy of Arts and Sciences American Philosophical Society Academia Europaea Awards and Honors Prize Fellowship of the John D. and Catherine T. MacArthur Foundation, November (1984-1989) Ernest Orlando Lawrence Memorial Award (1972) for research in Theoretical Physics (Atomic Energy Commission) University of Illinois Alumni Award for Distinguished Service in Engineering (1973); Alumni Achievement Award (1988) Guggenheim Fellowship, (1961-1962) and (1971-1972) Richtmyer Memorial Lecturer to the American Association of Physics Teachers, San Francisco, California (1978) Leo Szilard Award for Physics in the Public Interest (1980) presented by the American Physical Society Honorary Doctors Degrees: University of Illinois (1981); Tel Aviv University (2001), Weizmann Institute of Science (2001) 1983 Honoree of the Natural Resources Defense Council for work in arms control Lewis M. Terman Professor and Fellow, Stanford University (1979-1984) 1993 Hilliard Roderick Prize of the American Association for the Advancement of Science in Science, Arms Control, and International Security 1994 Woodrow Wilson Award, Princeton University, for “Distinguished Achievement in the Nation's Service” 1994 Co-recipient of the 1989 “Ettore Majorana - Erice - Science for Peace Prize” 1995 John P. McGovern Science and Society Medalist of Sigma Xi 1996 Gian Carlo Wick Commemorative Medal Award, ICSC–World Laboratory 1997 Distinguished Associate Award of U.S. -
Enrico Fermi: Genius
ANNIVERSARY Enrico Fermi: genius This year marks the centenary of the birth of Enrico Fermi, one of the giants of 20th- • century science, and one of the last physicists to be both an accomplished experimentalist and an influential theorist. Here, Gianni Battimelli of the University of Rome "La Sapienza" traces the life of a genius. Enrico Fermi was born on 29 September 1901 in Rome to a family with no scientific traditions. His passion for natural sciences, and in particular for physics, was stimulated and guided in his school years by an engineer and family friend, Adolph Amidei, who recognized Fermi's exceptional intellectual abilities and suggested admission to Pisa's Scuola Normale Superiore. After finishing high-school studies in Rome, in 1918 Fermi progressed to the prestigious Pisa Institute, after producing for the admission exam an essay on the characteristics of the propagation of sound, the authenticity of which the commissioners initially refused to believe. Studies at Pisa did not pose any particular difficulties for the young Fermi, despite his having to be largely self-taught using mate rial in foreign languages because nothing existed at the time in Fermi's group discovered the Italian on the new physics emerging around relativity and quantum radioactivity induced by theory. In those years in Italy, these new theories were absent from university teaching, and only mathematicians likeTullio Levi-Civita neutrons, instead of the had the knowledge and insight to see their implications. alpha particles used in the Working alone, between 1919 and 1922, Fermi built up a solid competence in relativity, statistical mechanics and the applications Paris experiments.