ISTS-2008-G-12.W O Page

Total Page:16

File Type:pdf, Size:1020Kb

ISTS-2008-G-12.W O Page Trans. JSASS Space Tech. Japan Vol. 7, No. ists26, pp. Tg_11-Tg_20, 2009 Non-U.S. Human Space Transportation Failures By I-Shih CHANG and E. Joe TOMEI The Aerospace Corporation, El Segundo, California, U.S.A. (Received April 17th, 2008) Non-U.S. human space transportation history from 1961 through 2007 is reviewed. Past and present non-U.S. human space programs and human space launch vehicles and spacecraft are briefly discussed. Category and chronological list of non-U.S. human space missions are presented. The emphasis of the study is on the investigation of mission failures and major anomalies encountered in non-U.S. human space transportation history. Failures and major anomalies by part, root cause, element, function, domain, and component are analyzed. Failure outcome, failure mode, time of failure, and mission reliability relevant to flight safety analysis are examined. Findings and failure mitigation strategy are summarized. Key Words: Space Launch, Human Space Flight, Failure and Anomaly 1. Introduction human space flights have ever been conducted outside the U.S. Therefore, only orbital human space launch systems To expand human presence, activity, and habitation (Vostok, Voskhod, and Soyuz in Russia/USSR, and beyond Earth orbit, new launch vehicles and crew CZ-2F in China) and their associated space flight systems exploration vehicles are being developed by several (Vostok, Voskhod, and Soyuz in Russia/USSR, and space-fairing nations for human space transportation. The Shenzhou in China) are considered in the study. new vehicles will incorporate modern space technologies Human space flight requires an expansion of space to meet stringent requirements for crew safety in space transportation systems. For purposes of this study human launch operation and space flight environment. space flight can be categorized into several transportation Anticipated expansion in space tourism to low Earth orbit phases. They are the launch phase, earth and lunar would also contribute to increased demand for reliable on-orbit phases, lunar transfer and return phases, surface human space transportation systems. Human space launch exploration phase, entry and landing phases, and lunar and flight are dangerous, expensive, and technically ascent phase. Human space flight also includes static, challenging. The success of this new endeavor relies upon in-situ habitation phases both on the lunar surface and on the application of knowledge and experience gained from board space stations. There are also a variety of related prior human space programs. topics worthy of investigation, including uncrewed flights The study is concerned with all non-U.S. human space in support of human space flights (developmental, missions and is a portion of a continuing effort 1)-14) to logistics, etc.), animal space flights, and human satellite investigate the failure causes and corrective actions of the deployment. All of these are to be addressed by the larger world space launch and flight systems and to provide project being undertaken. This paper will limit its lessons learned from the past in order to mitigate space discussion to the primary transportation phases. Several mission failures in the future. The prior work has been additional papers would be needed to contain all of the concentrated on launch vehicle failures. The current collected material. project is intended to examine the failure history of all The paper starts with a brief description of non-U.S. human space flights focusing on transportation and is a human space transportation history, followed by category subset of overall space missions. and chronological list of non-U.S. human space missions The focus of the study is on human space mission and identification of space mission failures and major failures and major anomalies in order to better understand anomalies. Analysis of mission failures and anomalies by the ramifications of the human space transportation record part, root cause, element, function, domain, and on the new human space programs. The objective of the component are presented. Failure outcome, failure mode, study is to apply knowledge and experience gained from time of failure, and mission reliability relevant to flight prior non-U.S. human space programs to the development safety analysis are examined. Findings and failure of reliable human space launch vehicles and spacecraft in mitigation strategy are summarized at end of the paper. the future. 3. Non-U.S. Human Space Transportation History 2. Overview Human space flight started when the USSR launched a This paper summarizes the history of non-U.S. human Vostok vehicle carrying Yuri Gagarin to a low-earth orbit space transportation failures since the inception of the on 1961-04-12. Shortly afterwards, the U.S. launched a first human space flight in 1961. Past and present non-U.S. Redstone vehicle carrying Alan Shepard in a Mercury human space launch systems and their associated space capsule for a suborbital flight on 1961-05-05 and an Atlas flight systems are considered. No suborbital or lunar LV-3B carrying John Glenn for an orbital flight on Copyright© 2009 by the Japan Society for Aeronautical and Space Sciences and ISTS. All rights reserved. Tg_11 Trans. JSASS Space Tech. Japan Vol. 7, No. ists26 (2009) 1962-02-20. Some 42 years after the first human space (1971-1982), Mir (1976-2001), and International Space flight, China launched a CZ-2F vehicle carrying Yang Station (1993-present) are part of the overall project, but Liwei for an orbital flight on 2003-10-15. Currently, will not be considered in this paper. Russia/USSR, the U.S., and China are the only three Fig. 1 shows non-U.S. human space launch vehicles and human space-faring countries in the world. spacecraft. The Russia/USSR launch vehicles usually bore Non-U.S. human orbital space programs include Vostok, the same names as their first spacecraft. The Vostok is the Voskhod, and Soyuz in Russia/USSR and Shenzhou in world first spacecraft carrying humankind to space. The China. In Russia/USSR, the Vostok program started in Voskhod spacecraft completed the missions with the first late 1956. The first human orbital mission with a Vostok human spacewalk and the first multi-person crew in space. was carried out in 1961, and the last occurred in 1963. The Soyuz spacecraft is the workhorse for carrying The Voskhod program started in the early 1960s, humans to space stations including Almaz OPS, Salyut, following the cancellation of the Vostok program. The Mir, and International Space Station. The Chinese first Voskhod human orbital mission was carried out in Shenzhou spacecraft resembles a larger version of the 1964; and the last occurred in 1965. The Soyuz program Soyuz, but contains a powered orbital module for started in 1963 and was originally a part of the continuous flight in space for earth observations after unsuccessful USSR Moon landing project. The first crewed-capsule reentry. human orbital mission with a Soyuz was carried out in 1967. The Soyuz spacecraft has gone through several 4. Non-U.S. Human Space Missions revisions and enhancements in the last four decades and is still in use today. In China, the human space program As of 2007-12-31, Russia/USSR human space started in 1992 and the first human orbital mission was exploration mission count is 105, which includes 6 Vostok, carried out with the Shenzhou-5 spacecraft in 2003. 2 Voskhod, and 97 Soyuz orbital missions; China human Other than the successful programs mentioned in the space exploration mission count is 2, both performed by previous paragraph, there were also cancelled human CZ-2F/Shenzhou missions. Table 1 lists all non-U.S. space programs: L1 circumlunar (1960-1970), L3 lunar human space missions. The human-cost of access to space lander (1964-1974), TKS ferry (1965-1978), Spiral for Russia/USSR includes one Soyuz crewmember during spaceplane (1965-1976), LKS spaceplane (1975-1983), reentry in 1967 and two Soyuz crewmembers during and Buran spaceplane (1976-1993) in USSR; Shuquang reentry in 1971. One (1968-1872) and Piloted FSW (1978-1980) in China. A comprehensive database has been developed at The Other cancelled human space flight programs include Aerospace Corporation to log the entire space launch and Japan’s HOPE (1980s-2003), Europe’s Hopper/Phoenix flight history. Data is collected from multiple sources and Hermes (1987-1993). Currently, there are new human including journal papers, public access sites, publications space transportation systems being developed: Crew and an assortment of other historical data references Space Transportation System (CSTS) started in 2006 published by The Aerospace Corporation and other jointly by Russia, Europe, and Japan; Space Jet (started in organizations 15)-24). A significant part of the database 2007) by Europe; Human Spaceflight System (started in compilation process consists of reviewing and comparing 2006) by India; and Virgin Galactic (U.K.) sponsored the various sources, identifying conflicts and resolving SpaceShipTwo project. The space habitation programs inconsistencies. The data entries have been populated for involving Almaz orbital piloted stations (OPS), Salyut the small launch vehicles 9)-10), heavy launch vehicles 13), Fig. 1. Russia/U SSR human space launch vehicles, spacecraft, lunar module, and rover (drawings reprinted courtesy of NASA) Tg_12 I-S. CHANG and E. J. TOMEIT: Non-U.S. Human Space Transportation Failures Table 1. Non-U.S. human space launch log No. Launch Date LV SC No. Launch Date LV SC No. Launch Date
Recommended publications
  • NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4
    A publication of The Orbital Debris Program Office NASA Johnson Space Center Houston, Texas 77058 October 1999 Volume 4, Issue 4. NEWS Marshall Researchers Developing Patch Kit to Mitigate ISS Impact Damage Stephen B. Hall, FD23A procedure and developmental status. external patching for several reasons: time KERMIt Lead Engineer constraints, accessibility, work envelope, Marshall Space Flight Center External Repair Rationale collateral damage and EVA suit compatibility. KERMIt, a Kit for External Repair of The decision was made to develop a kit for A primary risk factor in repairing Module Impacts, is now punctured modules is the being developed at the time constraint involved. Marshall Space Flight Even given the relatively Center in Huntsville, Ala. large volume of air within Its purpose: to seal the Space Station upon punctures in the assembly completion, International Space Station analyses have shown that a caused by collisions with 1-inch-diameter hole can meteoroids or space cause pressure to drop to debris. The kit will enable unacceptable levels in just crewmembers to seal one hour. In that timeframe, punctures from outside the crew must conclude a damaged modules that module has been punctured, have lost atmospheric determine its location, pressure. Delivery of the remove obstructions kit for operational use is restricting access, obtain a scheduled for next year. repair kit and seal the leak. This article -- which This action would be a expands on material challenge even if the crew appearing in the July 1999 was not injured and no issue of “Orbital Debris significant subsystem Quarterly” -- discusses the damage had occurred. rationale for an externally applied patch, Astronaut installing toggle bolt in simulated puncture sample plate on Laboratory requirements influencing Module in Neutral Buoyancy Laboratory.
    [Show full text]
  • China's Space Industry and International Collaboration
    China’s Space Industry and International Collaboration Presenter: Ju Jin Title: Minister Counselor,the Embassy of P.R.China Date: Feb 27,2008 Brief History • 52 years since 1956, first space institute established • Learning from Soviet Union until 1960 • U.S.A.’s close door policy until now • China’s self-reliance Policy Major Achievements • 12 series of Long March Launching Rockets • >100 Launches • >80 satellites in remote sensing, telecommunication, GPS, scientific experiment • Manned space flights——Shenzhou 5 (2003) and Shenzhou 6 (2005) • Lunar Exploration Project——Chang’e 1 (2007) LM-2F Launch Vehicle • Stages 1 & 2 & 4 strap-on boosters • 58.3 meters long • Launch Mass: 480 tons • Total Thrust : 600 tons • Reliability & Safety Index: 0.97 & 0.997 • 10 Sub-Systems Manned Space Flight--Shenzhou 6 Manned Space Flight--Shenzhou 6 Lunar Probe Project--Change-1 First Lunar Surface Photos Lunar Probe Project—Change 1 • 3 Years • 17,000 Scientists and Engineers • Young Team averaged in the age of 30s • 100% China-Made • Technology Breakthroughs – All-direction Antenna – Ultra-violet Sensor International Exchange and Cooperation: Main Activities Over the recent years, China has signed cooperation agreements on the peaceful use of outer space and space project cooperation agreements with Argentina, Brazil, Canada, France, Malaysia, Pakistan, Russia, Ukraine, the ESA and the European Commission, and has established space cooperation subcommittee or joint commission mechanisms with Brazil, France, Russia and Ukraine. China and the ESA z Sino-ESA Double Star Satellite Exploration of the Earth's Space Plan. z "Dragon Program," involving cooperation in Earth observation satellites, having so far conducted 16 remote-sensing application projects in the fields of agriculture, forestry, water conservancy, meteorology, oceanography and disasters.
    [Show full text]
  • AN IMPROVED STATISTICAL METHOD for MEASURING RELIABILITY with SPECIAL REFERENCE to ROCKET ENGINES By• Robert B. Abernethy Subm
    AN IMPROVED STATISTICAL METHOD FOR MEASURING RELIABILITY WITH SPECIAL REFERENCE TO ROCKET ENGINES by• Robert B. Abernethy Submitted as a thesis for the Ph.D. Degree in the Faculty of Science.at the Imperial College of Science and Technology in the University of London. July 1965 - 2 ABSTRACT The current procedure employed in industry to estimate rocket engine reliability is based entirely on discrete, success-failure, variables. The precision of this method is inadequate at high levels of reliability; large changes in reliability cannot be detected. A new method is developed based on treating the performance parameters as continuous, measured variables and the mechanical • characteristics as discrete variables. The new method is more precise, more accurate, and has wider applica- tion to the complex problems of estimating vehicle and mission reliability. Procedures are provided for frequen- tist, likelihood and Bayesian reliability estimates. Estimates of the proportion of a normal distribution exceeding or satisfying a limit, or limits, are treated in detail and tables of these estimates are tabulated. Monte Carlo simulation is used to verify analytical results. Computer programs in Extended Mercury-Atlas Autocode and Fortran IV languages are included with typical com- puter output for the estimates developed. 3 ACKNOWLEDGEMENT The author is deeply indebted to Professor G. A. Barnard and Professor E. H. Lloyd, his advisors, for their guidance and counsel; to Dr. D. J. Farlie for his many constructive comments; to Mr. T. E. Roughley for his help with computer services; and to his wife for her encouragement and patience. INDEX Part I Introduction Chapter 1 OBJECTIVE 11 a.
    [Show full text]
  • Options for U.S.-China Cooperation
    Order Code RS22777 December 14, 2007 China’s Space Program: Options for U.S.-China Cooperation Jeffrey Logan Specialist in Energy Policy Resources, Science, and Industry Division Summary China has a determined, yet still modest, program of civilian space activities planned for the next decade. The potential for U.S.-China cooperation in space — an issue of interest to Congress — has become more controversial since the January 2007 Chinese anti-satellite test. The test reinforced concerns about Chinese intentions in outer space and jeopardized space assets of more than two dozen countries by creating a large cloud of orbital space debris. Some argue that Chinese capabilities now threaten U.S. space assets in low earth orbit. Others stress the need to expand dialogue with China. This report outlines recent activities and future plans in China’s civilian space sector. It also discusses benefits and trade-offs of possible U.S.-China collaboration in space, as well as several options to improve space relations, including information exchange, policy dialogue, and joint activities. For more information, see CRS Report RS21641, China’s Space Program: An Overview. This report will not be updated. Introduction China has made clear advances in space capabilities over the past decade. The country has launched over 100 orbital missions since 1970, including a string of 50 consecutive successful Long March rocket launches from 1996 to 2006, after overcoming technical problems with the help of U.S. companies in the mid-1990s.1 China sent humans into space in 2003 and 2005, and orbited a lunar explorer in October 2007 that is paving the way for additional moon exploration.
    [Show full text]
  • The First In-Flight Space Fatality
    Quiz #001 Difficulty: Medium The First In-Flight Space Fatality 1. Which mission had the first in-flight 8. Which pilot was the mission backup? space fatality? A) Vladimir Titov S A) Soyuz-1 B) Yuri Gagarin B) Space Shuttle Challenger C) Sergei Gonchar C) Apollo13 P 9. Where was Col. Komarov buried? A 2. How old was Colonel Vladimir A) On a hill overlooking Moscow Komarov at the time of this mission? B) In a wall at the Kremlin C A) 30 C) At an undisclosed location B) 35 E C) 40 Answers: 3. Why did the mission fail? 1. (A) The mission took place April 23-24, A) The oxygen tank exploded 1967, and killed the pilot and only crew H B) The parachute did not open member, Colonel Vladimir Komarov. C) The heat shield was damaged 2. (C) I 3. (B) The main parachute did not release 4. What was the pilot doing minutes and the manually-deployed reserve chute S tangled with the main’s drogue. The before the crash? Soyuz-1 descent module hit the ground at T A) Screaming at mission control around 40 meters per second (89mph). B) Saying good-bye to his wife 4. (C) C) Preparing for landing 5. (A) It was the first crewed flight of the O Soyuz launch 7K-OK spacecraft and Soyuz 5. What was the purpose of the flight? rocket. The Soyuz-2 mission was aborted R before launch, after the 13th orbit of A) Dock with another vehicle and Soyuz-1. Y exchange crew in flight 6.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • View / Download
    www.arianespace.com www.starsem.com www.avio Arianespace’s eighth launch of 2021 with the fifth Soyuz of the year will place its satellite passengers into low Earth orbit. The launcher will be carrying a total payload of approximately 5 518 kg. The launch will be performed from Baikonur, in Kazakhstan. MISSION DESCRIPTION 2 ONEWEB SATELLITES 3 Liftoff is planned on at exactly: SOYUZ LAUNCHER 4 06:23 p.m. Washington, D.C. time, 10:23 p.m. Universal time (UTC), LAUNCH CAMPAIGN 4 00:23 a.m. Paris time, FLIGHT SEQUENCES 5 01:23 a.m. Moscow time, 03:23 a.m. Baikonur Cosmodrome. STAKEHOLDERS OF A LAUNCH 6 The nominal duration of the mission (from liftoff to separation of the satellites) is: 3 hours and 45 minutes. Satellites: OneWeb satellite #255 to #288 Customer: OneWeb • Altitude at separation: 450 km Cyrielle BOUJU • Inclination: 84.7degrees [email protected] +33 (0)6 32 65 97 48 RUAG Space AB (Linköping, Sweden) is the prime contractor in charge of development and production of the dispenser system used on Flight ST34. It will carry the satellites during their flight to low Earth orbit and then release them into space. The dedicated dispenser is designed to Flight ST34, the 29th commercial mission from the Baikonur Cosmodrome in Kazakhstan performed by accommodate up to 36 spacecraft per launch, allowing Arianespace and its Starsem affiliate, will put 34 of OneWeb’s satellites bringing the total fleet to 288 satellites Arianespace to timely deliver the lion’s share of the initial into a near-polar orbit at an altitude of 450 kilometers.
    [Show full text]
  • North American Air Defense Command (NORAD), Weekly Intelligence Review (WIR), April 28, 1967
    . ' DECLASSIFIED UNDER AUTHORITY OF THE INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL, E.O. l3526, SECTION 5.3(b)(3) ISCAP APPEAL NO. 2009-068, document no. 174 DECLASSIFICATION DATE: February 25,2015 ~ ,li, _ Ul (') • > ~ ~AND UBRARY · -- ~ ~ a. j ·_ REC'D. MAY 1 1561 fJd J I . ~ > n Q 3 4 '· . FOR OFFtCillt USE ONtV I · APR 2 9 \SG1 NOR AD a~· "-.} Issue No. 17/67, 28 April 1967 .I The WIR ·in Brigf ~----------------------~ r---~----~~L-----~------~---. f . !I + Portion identified as non­ ' 'I responsive to the appeal 5 Portion identified as non­ responsive to the appeal • 5 6 HECC£ C OSMOS l '>5 D E-OR LllTF.D J\lr.nost ~ . ncrly 8 <J\·qr~ a fte r launch. -D .Ff'lCULTlES WI TH SOY U7. 1 CAtS£ ABO RT OF S~HEDULEDSPECTAC~LAR M~irl Oll:iSloo prob;l.hly wa~ t{? tt·:t t~t~ f t::r COiirnonae.t. s . l.A1JJ'lCH WiNDOW F OC{ V ENUS OPENS IN MAY : So·.,.. let ru ,~ kct :. ( ~ u r breaking thl"'ough SOV l2T L:\IJ .'ICH( f~S i DE OJ\'I A B L ~; 3 <: lal,td cove:· (Sovit!t 1>r <t,.;r ) (OFFICJ.A L fv\ a.t ., Winci )•,y h i'l>;a.H.:J(l d ~a.rl!& r tb hi ye4r , for U'SF; ONfJY I (i r Ht time >in~.:~> !960, NOTE: P11g c!< l tl , 2'0 1 ZI , 2·• and Z5 9f rhio int~ u~ :1 :: c b,lAl'ik. _....... - - . - . - ... ~ ' .. ~ ' . ! •..,,'. ~ I .WIR to be Smaller Tempprarily -, ..... ~ _ "'J ~ Budgetary res\rictions on printing forces thew IR to pare doWh its size for the rest Qf the fiscal I year, which ends 3d June 1961.
    [Show full text]
  • Territorial Satellite Technologies the NEREUS Network’S Italian Partners’ Experiences
    Territorial satellite technologies The NEREUS Network’s Italian partners’ experiences December 2011 1 Contents 1. FOREWORD .............................................................................................................. 5 1.1. Reasons behind and object of this document ........................................................... 5 1.2. Activities conducted for the monitoring procedure .................................................. 6 PART I – THE SATELLITE APPLICATIONS CHART ........................................................... 9 2. SUPPLY AND DEMAND RELATING TO SATELLITE SERVICES IN THE CONTEXT OF THE NEREUS NETWORK’S ITALIAN PARTNERS .................................................................................. 10 2.1. Criteria adopted for the survey on the supply of and demand for satellite services 10 2.2. The chart of the Italian NEREUS partners’ satellite applications ............................. 12 PART III – ANALYSES AND PROPOSALS ...................................................................... 70 3. ELEMENTS EMERGING FROM THE SUPPLY AND DEMAND CHART ........................................ 71 3.1. Quantitative outline of the supply and demand chart ............................................ 71 3.2. Schemes identified as a demand needing to be met ............................................... 72 3.3. Projects in the “pre‐operational” stage and close to “end‐user needs” .................. 76 4. CONCLUSIONS ...................................................................................................
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Limitations of Spacecraft Redundancy: a Case Study Analysis
    44th International Conference on Environmental Systems Paper Number 13-17 July 2014, Tucson, Arizona Limitations of Spacecraft Redundancy: A Case Study Analysis Robert P. Ocampo1 University of Colorado Boulder, Boulder, CO, 80309 Redundancy can increase spacecraft safety by providing the crew or ground with multiple means of achieving a given function. However, redundancy can also decrease spacecraft safety by 1) adding additional failure modes to the system, 2) increasing design “opaqueness”, 3) encouraging operational risk, and 4) masking or “normalizing” design flaws. Two Loss of Crew (LOC) events—Soyuz 11 and Challenger STS 51-L—are presented as examples of these limitations. Together, these case studies suggest that redundancy is not necessarily a fail-safe means of improving spacecraft safety. I. Introduction A redundant system is one that can achieve its intended function through multiple independent pathways or Aelements 1,2. In crewed spacecraft, redundancy is typically applied to systems that are critical for safety and/or mission success3,4. Since no piece of hardware can be made perfectly reliable, redundancy—in theory—allows for the benign (e.g. non-catastrophic) failure of critical elements. Redundant elements can be 1) similar or dissimilar to each other, 2) activated automatically (“hot spare”) or manually (“cold spare”), and 3) located together or separated geographically5-7. U.S. spacecraft have employed redundancy on virtually all levels of spacecraft design, from component to subsystem7,8. Redundancy has a successful history of precluding critical and catastrophic failures during human spaceflight. A review of NASA mission reports, from Mercury to Space Shuttle, indicates that redundancy has saved the crew or extended the mission over 160 times, or roughly once per flight9.
    [Show full text]
  • Soyuz Launch Brochure
    Incredible Adventures is excited to offer a unique opportunity – a chance to visit the famous Baikonur Cosmodrome and observe a manned launch of a Russian Soyuz spacecraft. You’ll be completely immersed in the electric atmosphere surrounding a launch. You’ll explore Baikonur’s launch sites, museums and most historic places. Join IA for an Incredible Space Adventure. Highlights of Your Incredible Baikonur Adventure 800-644-7382 or 941-346-2603 www.incredible-adventures.com Observe roll-out and installation of the Soyuz rocket at launch pad. Attend international press conference of main and back- up crews. See the farewell of the crew at the cosmonaut hotel. Hear crew's ready-to-go official report. See launch of the Soyuz rocket, something you’ll never forget. Incredible Baikonur Adventure Day 1 Meet IA representative at the airport. Flight from Moscow to Baikonur .Transfer to the hotel. Time to relax. Day 2 Breakfast in the hotel Transfer to Baikonur Cosmodrome Roll-out of the Soyuz Rocket. (Follow the Soyuz to its launch site.) Observe installation of the rocket on the launch pad. Visit to the integration building of Soyuz and Progress spaceships. Transfer back to town. Visit to the International Space School. 9 Day 3 Breakfast in the hotel. Visit Museum of History Cosmodrome Baikonur. Enjoy general sightseeing in the town of Baikonur (learn history of the town, visit memorials and monuments). Transfer to Cosmonaut hotel. International press conference with the main and backup crews of Soyuz-TMA vehicle. Walk along the historical alley of Cosmonauts where personalized trees are planted.
    [Show full text]