Comparative Anatomy of the Autonomic Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Anatomy of the Autonomic Nervous System Autonomic Neuroscience: Basic and Clinical 165 (2011) 3–9 Contents lists available at ScienceDirect Autonomic Neuroscience: Basic and Clinical journal homepage: www.elsevier.com/locate/autneu Review Comparative anatomy of the autonomic nervous system Stefan Nilsson Department of Zoophysiology, Zoological Institute, University of Gothenburg, Box 463, SE 405 30 Göteborg, Sweden article info abstract Article history: This short review aims to point out the general anatomical features of the autonomic nervous systems of Received 4 January 2010 non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased Received in revised form 16 March 2010 complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the Accepted 26 March 2010 cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the Keywords: segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired Autonomic nervous system Cranial nerve sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be Enteric nervous system reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Parasympathetic nervous system Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish Sympathetic nervous system and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial Vagus nerve (VII) and glossopharyngeal (IX) nerves. © 2010 Elsevier B.V. All rights reserved. Contents 1. Introduction ............................................................... 3 2. A note on the terminology ........................................................ 4 3. Arrangement of the autonomic nervous system in the different vertebrate groups . ............................. 4 4. Cyclostomes ............................................................... 5 5. Elasmobranchs .............................................................. 5 6. Teleosts ................................................................. 6 7. Dipnoans ................................................................ 6 8. Amphibians ............................................................... 7 9. Reptiles ................................................................. 7 10. Birds .................................................................. 8 11. Conclusions ............................................................... 8 Acknowledgments ............................................................... 8 References ................................................................... 8 1. Introduction complexity, and in differentiation, is most likely reflected in the physiology of these systems. One note of caution: anatomical, and for An autonomic nervous system, as originally defined by Langley that matter functional, studies that are used to provide a generalised (1898, 1921) is present in all vertebrates, although the anatomical representation of the autonomic innervation patterns in a certain arrangement in cyclostomes (lampetroids and myxinoids) is not well vertebrate group are limited to a very small number of species. Keeping understood. Starting from the elasmobranchs (sharks, rays and this in mind, it may still be possible to gain an overview of the evolution chimaeroids) and via teleosts (bony fish), amphibians and reptiles, it of the autonomic nervous system within the vertebrate kingdom. is at least possible to construct an image of the increased complexity of Useful, and more comprehensive, accounts of anatomical features the autonomic system along the vertebrate lineage. This increase in of the vertebrate autonomic system can be found in Nicol (1952), Burnstock (1969) and Nilsson (1983), who also includes functional aspects, and especially so in the comprehensive review by Gibbins E-mail address: [email protected]. (1994). There are numerous articles that present anatomical 1566-0702/$ – see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.autneu.2010.03.018 4 S. Nilsson / Autonomic Neuroscience: Basic and Clinical 165 (2011) 3–9 information from the different vertebrate classes (e.g., Gabella, 1976 of the parasympathetic pathways released acetylcholine as transmit- (mammals); Bennett, 1974 and Bolton, 1971 (birds); Taxi, 1976 ter substance, while those of the sympathetic system released (amphibians); Berger and Burnstock, 1979 (reptiles); Young, 1931, adrenaline or noradrenaline. These observations seemed to further 1933 (fish); and Nilsson and Holmgren, 1992 and Nilsson, in press strengthen the original anatomical terminology proposed by Langley, (dipnoans)). but later studies clearly demonstrate the lack of any parallel functional The aim of this brief outline is to provide a comparative overview of base for the terminology (e.g. Campbell, 1970). It may therefore be the autonomic nervous anatomy in the non-mammalian vertebrates. useful to, yet again, point out that the sometimes used terminology “sympathetic nerve=adrenergic nerve” mixes anatomical and func- 2. A note on the terminology tional facts in an infelicitous manner. When John Newport Langley proposed the term “autonomic nervous system” in 1898, he divided the system into three portions. 3. Arrangement of the autonomic nervous system in the different These came to be called (1) the sympathetic system, (2) the vertebrate groups parasympathetic system (“the allied nervous system of the cranial and sacral nerves”, and (3) the enteric system (“for the local nervous In all vertebrate classes, with the exception of the cyclostomes, a system of the gut”)(Langley 1898, 1921). This original subdivision, remarkably common pattern of the arrangement of the autonomic where the sympathetic systems are anatomically defined by pathways system is found. In the tetrapods, cranial autonomic pathways run leaving the spinal cord in the thoracic and lumbar regions, works well with cranial nerves III, VII, IX and X, although the presence of such for mammals (and, perhaps, for anuran amphibians). However, to pathways in the VII and IX cranial nerves of amphibians has been make the distinction between the posterior sympathetic and the debated (see later). In teleosts, elasmobranchs and dipnoans, cranial sacral parasympathetic pathways is difficult or even impossible in autonomic pathways occur in cranial nerves III and X, and in some of the non-mammalian species. A modified terminology was elasmobranchs there are some claims that also cranial nerves VII proposed by Nilsson (1983), where “cranial autonomic” is used to and IX include autonomic pathways — possibly with vasomotor describe the parasympathetic pathways running in the cranial nerves, function in the head (Nicol, 1952). and “spinal autonomic” is used for all sympathetic and sacral Interconnected paravertebral ganglia form a pair of well developed parasympathetic pathways as defined by Langley. The enteric system sympathetic chains in teleosts and all tetrapods. In dipnoans, retains its original label, but note that here the distinction between sympathetic chains are also present, albeit quite rudimentarily motor neurons (autonomic), sensory neurons and interneurons is (Giacomini, 1906). In elasmobranchs the segmental paravertebral often unclear (Furness and Costa, 1980) (see also contribution on ANS ganglia do not form continuous longitudinally connected chains, and gut motility by Olsson and Holmgren, this volume). although the general function appears to be similar to the other In the early days of research into the autonomic nervous system, groups (Young, 1933; Nicol, 1952). There are no sympathetic chains in there appeared to be some evidence that the postganglionic neurons the cyclostomes (Nicol, 1952; Fänge et al., 1963). Fig. 1. A simplified view of the organisation of the autonomic nervous system of an elasmobranch. Legend: an, anastomosis between spinal autonomic (sympathetic) and cranial nerves; ant spl n, anterior splanchnic nerve; ceph sc, cephalic sympathetic chain; cil g, ciliary ganglion; coel g, coeliac ganglion; comm., commisure between left and right sympathetic chain; deep ceph symp, deep cephalic sympathetic; deep cerv symp, deep cervical sympathetic; g imp, ganglion impar; hypo n, hypogastric nerve; inf mes g, inferior mesenteric ganglion; mid spl n, middle splanchnic nerve; nod g, nodose (vagal) ganglion; pet g, petrous (glossopharyngeal) ganglion; post spl nn, posterior splanchnic nerves; r comm, ramus communicans; sph g, sphenopalatine ganglion; sub g, submadibular ganglion; sup ceph symp, superior cephalic sympathetic; sup cerv g, superior cervical ganglion; sup cerv symp, superior cervical sympathetic; sup mes g, superior mesenteric ganglion; stell g, stellate ganglion; Roman numbers refer to the cranial nerves. Reproduced from Nilsson (1983) Autonomic nerve function in the vertebrates, Zoophysiology series, Vol. 13, Fig. 2.6, p.18, Springer-Verlag, Berlin, Heidelberg, New York. With kind permission of Springer Science+Business Media. S. Nilsson / Autonomic Neuroscience: Basic and Clinical 165 (2011) 3–9 5 4. Cyclostomes There is some difference between the two cyclostome groups, myxinoids and lampetroids, in the autonomic nerve arrangement. Cranial autonomic pathways in myxinoids occur only in the vagus (X), where a prominent innervation of the gall
Recommended publications
  • Autonomic Nerve Activity and Cardiac Arrhythmias
    ACORP Complete (with appendices) Last Name of PI► Protocol No. Assigned by the IACUC►02002 Official Date of Approval► 1. Caging needs. Complete the table below to describe the housing that will have to be accommodated by the housing sites for this protocol: d. Is this housing e. Estimated c. Number of consistent with the maximum number a. Species b. Type of housing* individuals per Guide and USDA of housing units housing unit** regulations? needed at any one (yes/no***) time Chain link run, 3x6 Canines 1 no 7 and 4x10 feet cage *See ACORP Instructions, for guidance on describing the type of housing needed. If animals are to be housed according to a local Standard Operating Procedure (SOP), enter “standard (see SOP)” here, and enter the SOP into the table in Item Y. If the local standard housing is not described in a SOP, enter “standard, see below” in the table and describe the standard housing here: Chain link run, 3x6 feet cages ** The Guide states that social animals should generally be housed in stable pairs or groups. Provide a justification if any animals will be housed singly (if species is not considered “social”, then so note) Dogs are housed singly in chain link runs but can socialize with one another since each room has two to five dog runs. In addition, while their runs are being cleaned on a daily basis, pairs of dogs are allowed to exercise and play together in a designated "romper room". Animals are fitted with DSI transmitters and need to be housed singly in a cage for which DSI receivers are installed to receive signals from the transmitters.
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • Dear Subscribers! This Issue of Our Magazine Is Devoted to Cooperation of Our Editorial Board with Ukrainian Medical Scientists
    Deutscher Wissenschaftsherold • German Science Herald, N 4/2016 Dear subscribers! This issue of our magazine is devoted to cooperation of our editorial board with Ukrainian medical scientists. We present you the results of their researches. UDC: 611.831.1:611.216-018.73 Boichuk O.M. Higher State Educational Institution of Ukraine “Bukovinian State Medical University”, M.H. Turkevych Department of Human Anatomy, Chernivtsi, Ukraine, [email protected] Kryvetska I.I. Higher State Educational Institution of Ukraine “Bukovinian State Medical University”, S.M. Savenko Department of Neurology, Psychiatry and Medical Psychology Chernivtsi, Ukraine Bambuliak A.V. Higher State Educational Institution of Ukraine “Bukovinian State Medical University”, Department of Surgical and Pediatric Dentistry, Chernivtsi, Ukraine, [email protected] Sapunkov O.D. Higher State Educational Institution of Ukraine “Bukovinian State Medical University”, Department of Pediatric Surgery and Otolaryngology, Chernivtsi, Ukraine STRUCTURAL COMPONENTS OF AUTONOMIC INNERVATION OF MUCOSA OF NASAL CAVITY AND PARANASAL SINUSES Abstract. Autonomic innervation of mucosa of the nasal cavity and paranasal sinuses has been studied using complex morphological methods. It was determined that autonomic innervation of the nasal cavity and paranasal sinuses mostly occurs due to the branches of the pterygopalatine ganglion Keywords: nasal cavity, paranasal sinuses, innervation, pterygopalatine ganglion, mucosa, anatomy. Introduction. Mucosa of nasal cavity is peripheral element of olfactory analyzer functionally large receptor surface with a very consists of highly specialized epithelium of the complex and various reflex connections. It is upper nasal passage, short dendrites, which equipped with lots of blood and lymphatic ends with receptors, and axons form olfactory vessels, which are surrounded with numerous filaments that enter the olfactory bulb where nerve endings.
    [Show full text]
  • Comparative Anatomy and Functional Morphology University of California at Berkeley Department of Integrative Biology (5 Units)
    Comparative Anatomy and Functional Morphology University of California at Berkeley Department of Integrative Biology (5 Units) Course Description: This course is an in-depth look at the biology of form and function. We will examine vertebrate anatomy to understand how structures develop, how they have evolved, and how they interact with one another to allow animals to live in a variety of environments. We will study the integration of the skeletal, muscular, nervous, vascular, respiratory, digestive, endocrine, and urogenital systems to explore the historical and present diversity of vertebrate animals. Format: This course will include lecture, discussion, and laboratory sessions. Lectures will focus primarily on broad concepts and ideas. Discussion sections will emphasize how to both read and analyze primary scientific literature. Laboratory sessions will allow students to physically explore the morphologies of a diversity of taxa and will include museum specimens as well as dissections of whole animals. Lecture: Monday, Tuesday, Wednesday, and Thursday, 9:30-11:00a.m. Discussion: Monday and Thursday, 11:00a.m. or 12:00p.m. Laboratory: Monday, Tuesday, Wednesday, and Thursday, 2:00-5:00p.m. All students must take lectures, discussion sections, and laboratory sections concurrently. Attendance of all sections is required. Goals: 1. A comparative approach will allow students to gain experience in identifying similarities and differences among taxa and further their understanding of how both evolutionary and environmental contexts influence the morphology and function. 2. Students will improve their ability to ask questions and answer them using scientific methodology. 3. Students will gain factual knowledge of terms and concepts regarding vertebrate anatomy and functional morphology.
    [Show full text]
  • The Sacral Autonomic Outflow Is Sympathetic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery The sacral autonomic outflow is sympathetic Isabel Espinosa-Medina1,†, Orthis Saha1,†, Franck Boismoreau1, Zoubida Chettouh1, Francesca Rossi1, William D. Richardson2 and Jean-François Brunet1* 1 Institut de Biologie de l’ENS (IBENS), INSERM, CNRS, École Normale Supérieure, PSL Research University, Paris, 75005 France. 2 Wolfson Institute for Biomedical Research, University College London, London UK. †These authors contributed equally to this work *Correspondence to [email protected] 1 Abstract In the autonomic nervous system of mammals and birds, sacral preganglionic neurons are considered parasympathetic, as are their targets in the pelvic ganglia that prominently control rectal, bladder and genital functions. The allocation of the sacral autonomic outflow to the parasympathetic nervous system —i.e. as the second tier of a “cranio-sacral outflow”— has an ancient history: rooted in the work of Gaskell 1, formalized by Langley2 and universally accepted ever since (e.g. 3). The rationale lied in several perceived similarities between the sacral and cranial outflows: anatomical —separation from the thoracolumbar, sympathetic outflow by a gap at limb levels 1, a target territory less diffuse than that of the latter and a lack of projections to the paravertebral sympathetic chain 1; physiological —an influence on some organs opposite to that of the thoracolumbar outflow 4; and pharmacological — an overall sensitivity to muscarinic antagonists2. However, cell-phenotypic criteria have been lacking and were never sought. Here we uncover fifteen phenotypic and ontogenetic features that distinguish pre- and postganglionic neurons of the cranial parasympathetic outflow from those of the thoracolumbar sympathetic outflow.
    [Show full text]
  • Sympathetic Tales: Subdivisons of the Autonomic Nervous System and the Impact of Developmental Studies Uwe Ernsberger* and Hermann Rohrer
    Ernsberger and Rohrer Neural Development (2018) 13:20 https://doi.org/10.1186/s13064-018-0117-6 REVIEW Open Access Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies Uwe Ernsberger* and Hermann Rohrer Abstract Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system. Keywords: Sympathetic, Parasympathetic, Transcription factor, Preganglionic, Postganglionic, Autonomic nervous system, Sacral, Pelvic ganglion, Heart Background interplay of nervous and hormonal control in particular The “great sympathetic”... “was the principal means of mediated by the sympathetic nervous system and the ad- bringing about the sympathies of the body”. With these renal gland in adapting the internal
    [Show full text]
  • Comparative Anatomy: for Educators and Caregivers
    ABOUT THIS PACKET COMPARATIVE ANATOMY: FOR EDUCATORS AND CAREGIVERS INTRODUCTION This Burke Box packet uses the basic principles of comparative anatomy to lead students through a critical thinking investigation. Learners and educators can explore digital specimen cards, view a PowerPoint lesson, and conduct independent research through recommended resources before filling in a final comparative Venn diagram. By the end of the packet, students will use a comparative anatomy lens to independently answer the question: are bats considered birds or mammals? BACKGROUND The study of comparative anatomy can be traced back to investigations made by philosophers in ancient Greece. Using firsthand observations and accounts by hunters, farmers, and doctors, Aristotle and other Greek philosophers made detailed anatomical comparisons between species. The field of comparative anatomy has contributed to a better understanding of the evolution of species. Once thought to be a linear pattern, studies utilizing the principles of comparative anatomy identified shared ancestors among many species, indicating evolution occurs in a branching manner. Comparative anatomy has been used to prove relationships between species previously thought unrelated, or disprove relationships between species that share similar features but are not biologically related. Comparative anatomy can study internal organs and soft tissues, skeletal structures, embryonic phases and DNA. Researchers look for homologous structures, or structures within species that are the same internally. These structures indicate shared ancestry and an evolutionary relationships between species. Researchers also look for analogous structures, which may look similar at a glance but have different internal structures. Analogous structures indicate the species have divergent ancestry. Vestigial structures are also important in comparative anatomy.
    [Show full text]
  • Evolution of the Muscular System in Tetrapod Limbs Tatsuya Hirasawa1* and Shigeru Kuratani1,2
    Hirasawa and Kuratani Zoological Letters (2018) 4:27 https://doi.org/10.1186/s40851-018-0110-2 REVIEW Open Access Evolution of the muscular system in tetrapod limbs Tatsuya Hirasawa1* and Shigeru Kuratani1,2 Abstract While skeletal evolution has been extensively studied, the evolution of limb muscles and brachial plexus has received less attention. In this review, we focus on the tempo and mode of evolution of forelimb muscles in the vertebrate history, and on the developmental mechanisms that have affected the evolution of their morphology. Tetrapod limb muscles develop from diffuse migrating cells derived from dermomyotomes, and the limb-innervating nerves lose their segmental patterns to form the brachial plexus distally. Despite such seemingly disorganized developmental processes, limb muscle homology has been highly conserved in tetrapod evolution, with the apparent exception of the mammalian diaphragm. The limb mesenchyme of lateral plate mesoderm likely plays a pivotal role in the subdivision of the myogenic cell population into individual muscles through the formation of interstitial muscle connective tissues. Interactions with tendons and motoneuron axons are involved in the early and late phases of limb muscle morphogenesis, respectively. The mechanism underlying the recurrent generation of limb muscle homology likely resides in these developmental processes, which should be studied from an evolutionary perspective in the future. Keywords: Development, Evolution, Homology, Fossils, Regeneration, Tetrapods Background other morphological characters that may change during The fossil record reveals that the evolutionary rate of growth. Skeletal muscles thus exhibit clear advantages vertebrate morphology has been variable, and morpho- for the integration of paleontology and evolutionary logical deviations and alterations have taken place unevenly developmental biology.
    [Show full text]
  • Neuropeptides and the Innervation of the Avian Lacrimal Gland
    Investigative Ophthalmology & Visual Science, Vol. 30, No. 7, July 1989 Copyright © Association for Research in Vision and Ophthalmology Neuropeptides and the Innervation of the Avian Lacrimal Gland Denjomin Wolcorr,* Patrick A. 5ibony,j- and Kent T. Keyser^: The chicken Harderian gland, the major lacrimal gland, has two major cell populations: a cortical secretory epithelium and a medullary interstitial cell population of lymphoid cells. There is an exten- sive acetylcholinesterase (AChE) network throughout the gland, as well as catecholamine positive fibers among the interstitial cells. There are substance P-like (SPLI) and vasoactive intestinal poly- peptide-like (VIPLI) immunoreactivite fibers throughout the gland. These fibers are particularly dense and varicose among the interstitial cells. The adjacent pterygopalatine ganglion complex has neuronal somata that exhibit VIPLI and were AChE-positive. This ganglion complex also contains SPLI and catecholamine-positive fibers. In regions of the ganglion, the somata appear surrounded by SPLI varicosities. Surgical ablation of the ganglion eliminated or reduced the VIPLI, AChE and catecholamine staining in the gland. The SPLI was reduced only in some regions. Ablation of the superior cervical ganglion or severance of the radix autonomica resulted in the loss of catecholamine staining in the pterygopalatine ganglion and the gland. Severance of the ophthalmic or infraorbital nerves had no effect on the VIPLI or the SPLI staining pattern in the gland. Invest Ophthalmol Vis Sci 30:1666-1674, 1989 The avian Harderian gland is the major source of further investigation. Using immunohistochemical serous fluid1 and immunoglobulins2 in tears. Like the techniques and surgical ablations, the source, pat- mammalian lacrimal gland, it is innervated by both terns and regional distribution of cholinergic, adren- sympathetic and parasympathetic nerve fibers.34 The ergic and neuropeptide innervation of the chicken avian gland differs from the mammalian lacrimal Harderian gland were studied.
    [Show full text]
  • Autonomic Nerve Regulation for Prostate Cancer: Study Based on the Tissue Transcriptional Analysis
    6767 Original Article Autonomic nerve regulation for prostate cancer: study based on the tissue transcriptional analysis Fang Liu1#, Huan Xu2#, Junyi Chen3#, Bo Yang2, Lin Zhao2, Jin Ji2, Zhi Cao2, Ji Lyu2, Fubo Wang2 1Department of Urology, Pingxiang People’s Hospital, Pingxiang, China; 2Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China; 3Department of Urology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China Contributions: (I) Conception and design: H Xu; (II) Administrative support: F Wang; (III) Provision of study materials or patients: F Liu, J Chen, J Lyu; (IV) Collection and assembly of data: B Yang; (V) Data analysis and interpretation: L Zhao, J Ji, Z Cao; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Fubo Wang. Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, China. Email: [email protected]. Background: The whole-body energy metabolism is regulated by autonomic nerves which also play important roles in the regulation of the generation and development of different kinds of cancers. This study is to analyze the expression of autonomic nerve receptors and their relationship with the development of prostate cancer (PCa) and to further understand the central regulation of the prostate. Methods: RNA sequencing data concerning autonomic nerve receptors from paired tumor and adjacent benign tissues from 65 patients were collected. The mRNA expression and patient data were analyzed. The Cancer Genome Atlas (TCGA) data confirmed the results, and Pearson analysis, Pearson heat maps, gene heat maps, multivariate logistic regression models, receiver operating characteristic (ROC) curves and Gene Set Enrichment Analysis (GSEA) and Pearson’s analysis were analyzed for correlation analysis in this study.
    [Show full text]
  • Comparative Anatomy of the Caudal Skeleton of Lantern Fishes of The
    Revista de Biología Marina y Oceanografía Vol. 51, Nº3: 713-718, diciembre 2016 DOI 10.4067/S0718-19572016000300025 RESEARCH NOTE Comparative anatomy of the caudal skeleton of lantern fishes of the genus Triphoturus Fraser-Brunner, 1949 (Teleostei: Myctophidae) Anatomía comparada del complejo caudal de los peces linterna del género Triphoturus Fraser-Brunner, 1949 (Teleostei: Myctophidae) Uriel Rubio-Rodríguez1, Adrián F. González-Acosta1 and Héctor Villalobos1 1Instituto Politécnico Nacional, Departamento de Pesquerías y Biología Marina, CICIMAR-IPN, Av. Instituto Politécnico Nacional s/n, Col. Playa Palo de Santa Rita, La Paz, BCS, 23096, México. [email protected] Abstract.- The caudal skeleton provides important information for the study of the systematics and ecomorphology of teleostean fish. However, studies based on the analysis of osteological traits are scarce for fishes in the order Myctophiformes. This paper describes the anatomy of the caudal bones of 3 Triphoturus species: T. mexicanus (Gilbert, 1890), T. nigrescens (Brauer, 1904) and T. oculeum (Garman, 1899). A comparative analysis was performed on cleared and stained specimens to identify the differences and similarities of bony elements and the organization of the caudal skeleton among the selected species. Triphoturus mexicanus differs from T. oculeum in the presence of medial neural plates and a foramen in the parhypural, while T. nigrescens differs from their congeners in a higher number of hypurals (2 + 4 = 6) and the separation and number of cartilaginous elements. This osteological description of the caudal region allowed updates to the nomenclature of bony and cartilaginous elements in myctophids. Further, this study allows for the recognition of structural differences between T.
    [Show full text]
  • The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction
    Journal of Cardiovascular Development and Disease Review The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction Laura Fedele * and Thomas Brand * Developmental Dynamics, National Heart and Lung Institute (NHLI), Imperial College, London W12 0NN, UK * Correspondence: [email protected] (L.F.); [email protected] (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.) Received: 17 August 2020; Accepted: 20 November 2020; Published: 24 November 2020 Abstract: The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
    [Show full text]