Induction and Termination of Diapause in Khapra Beetle, Trogoderma Granarium

Total Page:16

File Type:pdf, Size:1020Kb

Induction and Termination of Diapause in Khapra Beetle, Trogoderma Granarium INDUCTION AND TERMINATION OF DIAPAUSE IN KHAPRA BEETLE, TROGODERMA GRANARIUM SUNIL SHIVANANJAPPA Bachelor of Science in Agriculture, University of Agricultural Sciences, 2016 A thesis submitted in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in BIOLOGICAL SCIENCES Department of Biological Sciences University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Sunil Shivananjappa, 2019 INDUCTION AND TERMINATION OF DIAPAUSE IN KHAPRA BEETLE, TROGODERMA GRANARIUM SUNIL SHIVANANJAPPA Date of Defence: August 12, 2019 Dr. R. Laird Associate Professor Ph.D. Dr. K. Floate Research Scientist Ph.D. Thesis Co-Supervisors Dr. P. Fields Research Scientist Ph.D. Thesis Examination Committee Member Dr. T. Burg Professor Ph.D. Thesis Examination Committee Member Dr. T. Russell Associate Professor Ph.D. Chair, Thesis Examination Committee DEDICATION To my parents, Shivananjappa and Manjula, for being incredibly supportive. iii ABSTRACT Larvae of the stored product pest, khapra beetle, Trogoderma granarium, are unusual in that they can enter a diapause state that confers protection against pest control methods. In Chapter 1, I reviewed the literature on general aspects of insect diapause induction and termination, particularly in Dermestidae. In Chapter 2, I assessed the effects of age of culture and diet quality on diapause termination. The results indicated that diapausing larvae can accumulate the nutrients required to terminate diapause and complete development when provided with an opportunity to do so. In Chapter 3, I assessed whether desiccation enhances cold tolerance in diapausing and non-diapausing larvae. Results showed that cold tolerance of diapausing larvae increased with greater desiccation stress. This finding suggests that the physiological mechanisms that protect diapausing larvae from desiccation may also increase cold-tolerance. Overall results of this research provide new information with potential application for control of this global pest. iv ACKNOWLEDGEMENTS I am beyond grateful to have had the experience of completing my Master's degree in Biological Sciences. First and foremost, I would like to express my sincere gratitude to a team of amazing people, Dr. Paul Fields, Dr. Kevin Floate, and Dr. Robert Laird, who provided me with the opportunity to undertake this project. If it were not for their constant support, guidance, patience and encouragement, I wouldn’t have made this far in completing this thesis. I would like to thank Dr. Sarma Mohan, without whom, I wouldn’t have come to Canada for pursuing my graduate program. His support and encouragement throughout this study has helped me enormously. I would also like to thank my lab mentor Paul Coghlin, for supplying all the necessary materials for my experiments and for looking into my non-academic needs. I greatly acknowledge Diana Wilches and Dr. Timothy Schwinghamer for their statistical guidance and inputs. I also thank my friends from India and fellow graduate students for their pep talks along the way. Finally, I would like to thank my parents and my sister Sowmyashree, for being my pillars of strength during this journey, and for always supporting my passion for entomology. Thank you all for this wonderful learning experience of a lifetime. v TABLE OF CONTENTS DEDICATION.............................................................................................................................. iii ABSTRACT .................................................................................................................................. iv ACKNOWLEDGEMENTS ......................................................................................................... v LIST OF TABLES ..................................................................................................................... viii LIST OF FIGURES ..................................................................................................................... ix LIST OF ABBREVIATIONS ...................................................................................................... x CHAPTER 1: GENERAL INTRODUCTION AND LITERATURE REVIEW .................... 1 1.1 Objectives ............................................................................................................................. 1 1.2 Introduction ......................................................................................................................... 2 1.3 The phenomenon of diapause ............................................................................................ 6 1.3.1 Diapause vs quiescence ................................................................................................. 6 1.3.2 Phases of diapause ......................................................................................................... 7 1.3.3 Physiological changes associated with diapause .......................................................... 8 1.4 Diapause in Dermestidae .................................................................................................. 10 1.5 Diapause in khapra beetle ................................................................................................ 13 1.5.1 Factors responsible for initiation of diapause ............................................................. 13 1.5.1.1 Role of larval density ............................................................................................ 13 1.5.1.2 Role of temperature............................................................................................... 14 1.5.1.3 Role of humidity .................................................................................................... 14 1.5.1.4 Role of fecal pellets ............................................................................................... 15 1.5.1.5 Role of diet quality ................................................................................................ 15 1.5.2 Factors responsible for terminating diapause ............................................................. 16 1.6 Cold and desiccation tolerance ........................................................................................ 16 1.7 Summary ............................................................................................................................ 19 1.8 Structure of thesis and goals of each chapter ................................................................. 20 CHAPTER 2: EFFECT OF DIET QUALITY AND AGE OF CULTURE ON DIAPAUSE TERMINATION IN KHAPRA BEETLE, Trogoderma granarium ....................................... 26 2.1 Abstract .............................................................................................................................. 26 2.2 Introduction ....................................................................................................................... 27 2.3 Materials and methods ..................................................................................................... 30 2.3.1 Insect’s origin and rearing .......................................................................................... 30 2.3.2 Experimental protocol ................................................................................................. 31 vi 2.3.3 Diet analysis ................................................................................................................ 32 2.3.4 Statistical analysis ....................................................................................................... 32 2.4 Results ................................................................................................................................ 33 2.4.1 Diet composition .......................................................................................................... 33 2.4.2 Diapause termination .................................................................................................. 33 2.4.3 Maintenance of diapause after 188 days ..................................................................... 34 2.5 Discussion ........................................................................................................................... 35 CHAPTER 3: CROSS TOLERANCE TO DESICCATION AND COLD IN KHAPRA BEETLE, Trogoderma granarium ............................................................................................. 44 3.1 Abstract .............................................................................................................................. 44 3.2 Introduction ....................................................................................................................... 44 3.3 Materials and Methods ..................................................................................................... 46 3.3.1 Insect’s origin and rearing .......................................................................................... 46 3.3.2 Desiccation .................................................................................................................. 47 3.3.3 Assessment of larval cold-tolerance ............................................................................ 48 3.4 Results ................................................................................................................................ 49 3.4.1 Cold-tolerance of larvae following desiccation ........................................................... 49 3.4.2 Diapause termination post cold exposure ..................................................................
Recommended publications
  • Insecticidal Potentials Property of Black Seed (Nigella Sativa)
    Insecticidal potentials property of black seed (Nigella sativa) powder as an eco- friendly bio-pesticide in the management of skin/hide beetle (Dermestes maculatus) in codfish (Gadus morhua) (Coleptera: Gadidae: Gadiformes). ABSTRACT The bio-pesticidal potential of Nigella sativa seed powder in the management of Dermestes maculatus in codfish (Gadus morhua) was evaluated in the laboratory. D. maculatus beetles were obtained from naturally infested smoked fish, cultured at ambient temperature for the establishment of new stock and same age adults. Purchased N. sativa seeds were ground into fine powder, weighed at 0.4g, 0.8g, 1.2g, 1.6g and 2.0g for use in the bioassay. The treatments were separately added into 40g codfish kept in Kilner jar into which two sexed pairs of D. maculatus were introduced and observed. From the results, the number of the developmental stages (larvae, pupae and adults) of D. maculatus in codfish treated with N. sativa seed powder was inversely proportional to the concentration of the seed powder. Thus, an increase in the concentration of N. sativa powder generated reduction in the mean number of D. maculatus progeny found in the codfish after 35 days as follows: at 0.4g , progeny development was (103.50, 7.75, 2.50) and 77.00, 8.25 and 1.00 at 2.0g respectively for larva, pupa and adult stages. Percentage protection conferred by the botanical on D. maculatus showed that all the doses applied were effective. Corrected mortality of D. maculatus adults after 45 days of exposure to the different doses of N. sativa treatments also increased with an increase in concentration of N.
    [Show full text]
  • A Catalogue of Coleoptera Specimens with Potential Forensic Interest in the Goulandris Natural History Museum Collection
    ENTOMOLOGIA HELLENICA Vol. 25, 2016 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection Dimaki Maria Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece Anagnou-Veroniki Maria Makariou 13, 15343 Aghia Paraskevi (Athens), Greece Tylianakis Jason Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand http://dx.doi.org/10.12681/eh.11549 Copyright © 2017 Maria Dimaki, Maria Anagnou- Veroniki, Jason Tylianakis To cite this article: Dimaki, M., Anagnou-Veroniki, M., & Tylianakis, J. (2016). A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection. ENTOMOLOGIA HELLENICA, 25(2), 31-38. doi:http://dx.doi.org/10.12681/eh.11549 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 27/12/2018 06:22:38 | ENTOMOLOGIA HELLENICA 25 (2016): 31-38 Received 15 March 2016 Accepted 12 December 2016 Available online 3 February 2017 A catalogue of Coleoptera specimens with potential forensic interest in the Goulandris Natural History Museum collection MARIA DIMAKI1’*, MARIA ANAGNOU-VERONIKI2 AND JASON TYLIANAKIS3 1Goulandris Natural History Museum, 100 Othonos St. 14562 Kifissia, Greece 2Makariou 13, 15343 Aghia Paraskevi (Athens), Greece 3Zoology Department, University of Canterbury, Private Bag 4800, Christchurch, New Zealand ABSTRACT This paper presents a catalogue of the Coleoptera specimens in the Goulandris Natural History Museum collection that have potential forensic interest. Forensic entomology can help to estimate the time elapsed since death by studying the necrophagous insects collected on a cadaver and its surroundings. In this paper forty eight species (369 specimens) are listed that belong to seven families: Silphidae (3 species), Staphylinidae (6 species), Histeridae (11 species), Anobiidae (4 species), Cleridae (6 species), Dermestidae (14 species), and Nitidulidae (4 species).
    [Show full text]
  • Coleoptera: Dermestidae) from the Republic of Namibia
    Studies and Reports Taxonomical Series 15 (2): 329-332, 2019 A new dermestid species (Coleoptera: Dermestidae) from the Republic of Namibia Andreas HERRMANN1 & Jiří HÁVA2,3 1Bremervörder Strasse 123, D - 21682 Stade, Germany e-mail: [email protected] 2Daugavpils University, Institute of Life Sciences and Technology, Department of Biosystematics, Vienības Str. 13, Daugavpils, LV - 5401, Latvia 3Private Entomological Laboratory and Collection, Rýznerova 37, CZ - 252 62 Únětice u Prahy, Praha-západ, Czech Republic e-mail: [email protected] Taxonomy, description, new species, Coleoptera, Dermestidae, Attagenus, Namibia Abstract. A new species Attagenus (s. str.) namibicus sp. nov. from Namibia is described, illustrated and compared with similar looking species. A list of all species from Namibia which belong to the genus Attagenus is furthermore provided. INTRODUCTION The genus Attagenus Latreille, 1802 is one of about 60 genera established within the beetle family Dermestidae. This genus includes of about 250 different species respectively subspecies worldwide (Háva 2015), 11 of them have still been recorded from the Republic of Namibia (Háva 2005, Herrmann & Háva 2007, Háva & Kadej 2008, Herrmann & Háva 2014, Háva, Herrmann & Kadej 2015, Herrmann & Háva 2016). In the present paper we describe a new species of this genus which was detected during an examination of some unidentified dermestids deposited in the collection of the Royal Belgian Institute of Natural Sciences (ISNB). MATERIAL AND METHODS The dried specimens were weakened for 5 days in a solution of 1% pepsin in diluted hydrochloric acid to free them roughly from protein tissues and to make the extremities of the body moveable, again. The abdomen was disconnected from the body and glued upside- down onto the same cardboard plate, just behind the beetle.
    [Show full text]
  • Trogoderma Variabile (Warehouse Beetle)
    Warehouse Beetle DIAGNOSTIC MORPHOLOGY Trogoderma variabile (Ballion) Adults: • About 1/8 inch (3.2mm) in length ranging from 1/16 inch to ¼ inch. • Oval in overall shape • Base color is black or brownish-black • Three reddish-brown, golden, or gray irregular lines across the body GENERAL INFORMATION • The elytra (wing covers) have mottled patterns of brown and yellow on a dark background The Warehouse Beetle (T. variabile) is found • Elytra will have numerous hairs throughout the Northern Hemisphere and is being closely monitored in Australia. Of the many Immature Stage: Trogoderma species, it is the most commonly found in dried grains and other stored foods but is • Approximately ¼ inch (6.3 mm) in length also found in homes and museums. In the museum • Yellow-white to dark, reddish- brown, many setae (hairs) setting T. variabile is a special threat to plant and insect collections. The Warehouse Beetle tends to be very active and can develop at a rapid rate. Larvae may be spotted as a result of their coloring and light avoidance found in dead animals, cereals, candy, cocoa, and may be unresponsive to toxic fumigants and movement and may be found in a food source or in cookies, fish meal, flour, dead insects, milk anoxic treatments. This makes them particularly cracks and crevices in the storage area. powder, nut meats, pet foods, potato chips, resistant to many common pest control noodles, spaghetti, pollen, and dried spices. procedures. Because Trogoderma occur naturally Unlike many Trogoderma spp, the adult outdoors and are able to fly, total elimination of Warehouse Beetle can fly.
    [Show full text]
  • Powder As an Eco-Friendly Management of Skin Beetle Dermestes Maculatus (Coleoptera: Dermestidae) in Atlantic Codfish Gadus Morhua (Gadiformes: Gadidae)
    Asian Journal of Advances in Agricultural Research 13(3): 47-56, 2020; Article no.AJAAR.56841 ISSN: 2456-8864 Insecticidal Property of Black Seed (Nigella sativa) Powder as an Eco-friendly Management of Skin Beetle Dermestes maculatus (Coleoptera: Dermestidae) in Atlantic Codfish Gadus morhua (Gadiformes: Gadidae) Bob-Manuel, R. Bekinwari1 and Ukoroije, R. Boate2* 1Department of Biology, Ignatius Ajuru University of Education Rumuolumeni, Port Harcourt. P.M.B. 5047, Rivers Sate, Nigeria. 2Department of Biological Sciences, Niger Delta University, Wilberforce Island, P.O.Box 071, Bayelsa State, Nigeria. Authors’ contributions This work was carried out in collaboration between both authors. Both authors compiled the literature search, assembled, proofread and approved the work. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/AJAAR/2020/v13i330108 Editor(s): (1) Dr. Daniele De Wrachien, The State University of Milan, Italy. Reviewers: (1) Shravan M. Haldhar, India. (2) Adeyeye, Samuel Ayofemi Olalekan, Ton Duc Thang University, Vietnam. (3) Destiny Erhabor, University of Benin, Nigeria. Complete Peer review History: http://www.sdiarticle4.com/review-history/56841 Received 02 March 2020 Accepted 09 May 2020 Original Research Article Published 27 June 2020 ABSTRACT The bio-pesticidal potential of Nigella sativa seed powder in the management of Dermestes maculatus in codfish (Gadus morhua) was evaluated in the laboratory. D. maculatus beetles were obtained from naturally infested smoked fish, cultured at ambient temperature for the establishment of new stock and same age adults. Purchased N. sativa seeds were ground into fine powder, weighed at 0.4 g, 0.8 g, 1.2 g, 1.6 g and 2.0 g for use in the bioassay.
    [Show full text]
  • Bad Bugs: Warehouse Beetle
    Insects Limited, Inc. Pat Kelley, BCE Bad Bugs: Warehouse Beetle complaining customer. That is the nature of the Warehouse beetle. Let’s take a close look at this common stored product insect: The Warehouse beetle prefers feeding on animal protein. This could be anything from road kill to dog food to powdered cheese and milk. The beetle will feed on plant material but a dead insect or mouse would be its preferred food source. You will often find Warehouse beetles (Trogoderma spp.) feeding on dead insects. It is important to empty these lights on a regular basis. The larva (see figure) of the Warehouse beetle is approximately 1/4-inch-long Larval color varies from yellowish/white to dark brown as the larvae mature. Warehouse beetle larvae have two different tones of hairs on the posterior end. These guard hairs protect them against attack from the rear. The Warehouse beetle has about 1,706 hastisetae hairs If there is an insect that is truly a voracious feeder and about 2,196 spicisetae hairs according to a and a potential health hazard to humans and publication by George Okumura. Since a larva sheds young animals, the Warehouse beetle falls into that its hairs during each molt, the damage of this pest category because of the long list of foods that it insect comes from the 1000’s of these pointed hairs attacks. Next to the dreaded quarantine pest, that escape and enter a finished food product as an the Khapra beetle, it is the most serious stored insect fragment. These insect fragments then can be product insect pest with respect to health.
    [Show full text]
  • Records of Synanthropic Species of Alien Beetles (Coleoptera) in the Anthills of Genus Formica A
    ISSN 2075-1117, Russian Journal of Biological Invasions, 2020, Vol. 11, No. 1, pp. 85–87. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2019, published in Rossiiskii Zhurnal Biologicheskikh Invazii, 2019, No. 3, pp. 106–110. Records of Synanthropic Species of Alien Beetles (Coleoptera) in the Anthills of Genus Formica A. S. Sazhneva, b, * and I. S. Turbanova, c, ** aPapanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl oblast, 152742 Russia bSevertsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, 119071 Russia cCherepovets State University, Cherepovets, 162600 Russia *e-mail: [email protected] **e-mail: [email protected] Received June 26, 2019; revised August 7, 2019; accepted August 21, 2019 Abstract—For the first time, two alien species of beetles, obligate synanthropes, namely, Attagenus smirnovi Zhantiev, 1973 (Dermestidae) and Lasioderma serricorne (Fabricius, 1792) (Ptinidae), were revealed in ant- hills (genus Formica). These records widen the spectrum of biotopes inhabited by these species outside their native ranges and specify their adaptive abilities under the movement of invaders to the north. Keywords: biotope, beetles, invasion, myrmecophiles, nidicols, Dermestidae, Formicidae, Ptinidae DOI: 10.1134/S2075111720010117 INTRODUCTION objects, nylon nets (mesh diameter of 50 μm) were put Biological invasions are the introduction of alien on top of the funnels with the substrate. In total, eight species, one of the most serious environmental and high-quality samples were taken from eight anthills: economic problems of our time. Alien Coleoptera is from three, Formica truncorum Fabricius, 1804; from the largest group of arthropods in Europe, the number three, F.
    [Show full text]
  • Em2631 1966.Pdf (203.3Kb)
    I COLLEGE OF AGRICULTURE COOPERATIVE EXTENSION SERVICE WASHINGTON STATE UNIVERSITY PULLMAN, WASHINGTON 99163 May, 1966 E. Mo 2631 ENEMIES OF THE ALFALFA LEAFCUTTING BEE AND THEIR (X)NTROL by Carl Johansen and Jack Eves Associate Entomologist and Experimental Aide Department of Entomology One of the major pollinators of alfalfa grown for seed in the state of Washington, the alfalfa leafcutting bee (Megachile rotundata), has been increasingly killed by insect parasites and nest destroyers during the past 3 years. Seventeen of these pests have been identified to date. The most numerous parasite is the small wasp, Monodontomerus obscurus . It is shiny blue-green and only 1/8 to 1/6 inch long. A carpet beetle, Trogoderma glabrum, is currently the most abundant nest destroyer. It is oval, dull black with three faint lines of white bristles across the wing covers, and 1/10 to 1/7 inch long. Control Control of the parasites and nest destroyers of the alfalfa leafcutting bee is largely a matter of good management practices. Since all parasite adults complete emergence at least t wo days before the ma le leafcutters begin to emerge, they can be readily destroyed in an incubation room. Pests such as Trogoderma remain active in the bee nests , feeding and reproducing through­ out the year. A more complex system of sanitary measures is required to keep them below damaging population levels. Helpful practices are classified as: (1) cleanup, (2) cold storage , ( 3) nest renovation, and (4) use of poison baits. Cleanup -- To trap the parasites emerging in your leafcutting bee incubation room, simply place a pan of water beneath a light bul b.
    [Show full text]
  • From Guatemala
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2019 A contribution to the knowledge of Dermestidae (Coleoptera) from Guatemala José Francisco García Ochaeta Jiří Háva Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. December 23 2019 INSECTA 5 ######## A Journal of World Insect Systematics MUNDI 0743 A contribution to the knowledge of Dermestidae (Coleoptera) from Guatemala José Francisco García-Ochaeta Laboratorio de Diagnóstico Fitosanitario Ministerio de Agricultura Ganadería y Alimentación Petén, Guatemala Jiří Háva Daugavpils University, Institute of Life Sciences and Technology, Department of Biosystematics, Vienības Str. 13 Daugavpils, LV - 5401, Latvia Date of issue: December 23, 2019 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL José Francisco García-Ochaeta and Jiří Háva A contribution to the knowledge of Dermestidae (Coleoptera) from Guatemala Insecta Mundi 0743: 1–5 ZooBank Registered: urn:lsid:zoobank.org:pub:10DBA1DD-B82C-4001-80CD-B16AAF9C98CA Published in 2019 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history.
    [Show full text]
  • Pest Profile
    Pest Profile Photo credit By Simon Hinkley & Ken Walker, Museum Victoria [CC BY 3.0 au (http://creativecommons.org/licenses/by/3.0/au/deed.en)], via Wikimedia Commons Common Name: Cabinet Beetle, Warehouse Beetle Scientific Name: Trogoderma inclusum Order and Family: Coleoptera: Dermestidae Size and Appearance: Adult cabinet beetles are about 3.5 mm long and can vary in color but are generally darker brown. Hairs cover the body surface, giving the beetles a mottled look. The head is not visible from dorsal view, and has compacted antennae. Larvae are about 8 mm in length and can vary from yellow to dark brown depending on instar. Length (mm) Appearance Egg 0.1 mm in length 5-129 white, round eggs are laid randomly on material female is currently feeding on. Larva/Nymph 1-8 mm in length depending on Dark brown, segmented in appearance, instar small brownish hair covering body. 8-12 molts. Adult 8 mm long Dark brown with hairs covering body. Mottled appearance. Compacted antennae, head not visible from dorsal view. Pupa (if applicable) 7-10 mm long Pupates in last larval skin within infested material. Type of feeder (Chewing, sucking, etc.): Chewing Host food product/s: Trogoderma inclusum feeds on a variety of animal products including furs, hides, leather, and museum specimens. They will also feed on clothing, stored food, and plant materials. Description of Damage (larvae and adults): Cabinet beetles’ feeding results in damage on the outer surface of hides and loosened hairs on furs. With museum specimens, frass and molts beneath the specimen is an indicator of their presence.
    [Show full text]
  • Yellowstone Science Volume 6, Number 1
    Yellowstone Science A quarterly publication devoted to the natural and cultural resources ·A Chat with a Grizzly Bear Expert Carrion Beetles and Biodiversity. Observing Yellowstone Otters Volume 6 Number I The Legacy of Research As we begin a new year for Yellowstone But scientific understanding comes big and small. Studies ofnon-charismatic Science (the journal and, more important, slowly, often with p_ainstaking effort. creatures and features are as vital to our the program), we might consider the As a graduate student I was cautioned understanding the ecosystem as those of value of the varied research undertaken that my goal should not be to save the megafauna. in and around the park. It is popular in world with my research, but to contrib­ For 24 years, Dick Knight studied some circles to criticize the money we­ ute a small piece of knowledge from a one ofYellowstone's most famous and our society, not just the National Park Ser­ particular time and place to just one dis­ controversial species. With ?, bluntness vice-spend on science. Even many of cipline. I recalled this advice as I spoke atypical of most government bureau­ us who work within a scientific discipline with Nathan Varley, who in this issue crats, he answered much of what we admit that the ever-present "we need shares results of his work on river otters, demanded to know about grizzly bears, more data" can be both a truthful state­ about his worry that he could not defini­ never seeking the mantel of fame or ment and an excuse for not taking a stand.
    [Show full text]
  • Biological Infestations Page
    Chapter 5: Biological Infestations Page A. Overview ........................................................................................................................... 5:1 What information will I find in this chapter? ....................................................................... 5:1 What is a museum pest? ................................................................................................... 5:1 What conditions support museum pest infestations? ....................................................... 5:2 B. Responding to Infestations ............................................................................................ 5:2 What should I do if I find live pests or signs of pests in or around museum collections? .. 5:2 What should I do after isolating the infested object? ......................................................... 5:3 What should I do after all infested objects have been removed from the collections area? ................................................................................................ 5:5 What treatments can I use to stop an infestation? ............................................................ 5:5 C. Integrated Pest Management (IPM) ................................................................................ 5:8 What is IPM? ..................................................................................................................... 5:9 Why should I use IPM? .....................................................................................................
    [Show full text]