IRIS Performer™ Programmer's Guide

Total Page:16

File Type:pdf, Size:1020Kb

IRIS Performer™ Programmer's Guide IRIS Performer™ Programmer’s Guide Document Number 007-1680-040 CONTRIBUTORS Written by George Eckel Edited by Steven Hiatt Illustrated by Dany Galgani Production by Derrald Vogt and Linda Rae Sande Engineering contributions by Sharon Clay, Brad Grantham, Don Hatch, Jim Helman, Michael Jones, Martin McDonald, John Rohlf, Allan Schaffer, Chris Tanner, Jenny Zhao, Yair Kurzion, and Tom McReynolds © Copyright 1995 -1997 Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Indigo, Indy, IRIS, IRIS Indigo, ImageVision Library, Onyx, OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks and Crimson, Elan Graphics, Geometry Pipeline, Indigo Elan, Indigo2, IRIS GL, IRIS Graphics Library, IRIS InSight, IRIS Inventor, IRIS Performer, IRIX, Personal IRIS, POWER Series, Performance Co-Pilot, RealityEngine, RealityEngine2, and Showcase are trademarks of Silicon Graphics, Inc. AutoCAD is a registered trademark of Autodesk, Inc. DrAW Computing Associates is a trademark of DrAW Computing Associates. Netscape is a trademark of Netscape Communications Corp. Motif is a registered trademark of Open Software Foundation. WindView is a trademark of Wind River Systems. X Window System is a trademark of Massachusetts Institute of Technology. Many of the techniques and methods disclosed in this Programmer’s Guide are covered by patents held by Silicon Graphics including U.S. Patent Nos. 5,051,737; 5,369,739; 5,438,654; 5,394,170; 5,528,737; 5,528,738; 5,581,680; 5,471,572 and patent applications pending. We encourage you to use these features in your IRIS Performer application on Silicon Graphics systems. This functionality and IRIS Performer are not available for re-implementation and distribution on other platforms without the explicit permission of Silicon Graphics. IRIS Performer™ Programmer’s Guide Document Number 007-1680-040 Contents List of Examples xix Figures xxiii List of Tables xxvii About This Guide xxxi Why Use IRIS Performer? xxxi What You Should Know Before Reading This Guide xxxii Internet and Hard Copy Reading for the Performer Series xxxii How to Use This Guide xxxiv What This Guide Contains xxxiv Sample Applications xxxv Conventions xxxvi Bibliography xxxvi X, Xt, IRIS IM, and Window Systems xxxviii Visual Simulation xxxix Mathematics of Flight Simulation xxxix Virtual Reality xxxix Geometric Reasoning xl Conference Proceedings xl Survey Articles in Magazines xli 1. IRIS Performer Programming Interface 3 General Naming Conventions 3 Prefixes 3 Header Files 4 Naming in C and C++ 4 Abbreviations 4 Macros, Tokens, and Enums 5 iii Contents Class API 5 Object Creation 5 Set Routines 6 Get Routines 6 Action Routines 7 Enable and Disable of Modes 7 Mode, Attribute, or Value 7 Base Classes 8 Inheritance Graph 9 Libpr and Libpf Objects 11 User Data 11 pfDelete() and Reference Counting 12 Copying Objects with pfCopy() 16 Printing Objects with pfPrint() 17 Determining Object Type 18 2. Setting Up the Display Environment 23 Using Pipes 25 The Functional Stages of a Pipeline 25 Creating and Configuring a pfPipe 27 Example of pfPipe Use 29 Using Channels 30 Creating and Configuring a pfChannel 31 Setting Up a Scene 31 Setting Up a Viewport 32 Setting Up a Viewing Frustum 32 Setting Up a Viewpoint 34 Example of Channel Use 36 Controlling the Video Output 39 Using Multiple Channels 40 One Window per Pipe, Multiple Channels per Window 40 Using Channel Groups 44 Multiple Channels and Multiple Windows 48 iv Contents 3. Nodes and Node Types 51 Nodes 51 Attribute Inheritance 51 pfNode 53 pfGroup 55 Working With Nodes 58 Instancing 58 Bounding Volumes 61 Node Types 63 pfScene Nodes 63 pfSCS Nodes 64 pfDCS Nodes 64 pfFCS Nodes 65 pfSwitch Nodes 66 pfSequence Nodes 66 pfLOD Nodes 69 pfASD Nodes 69 pfLayer Nodes 69 pfGeode Nodes 71 pfText Nodes 72 pfBillboard Nodes 74 pfPartition Nodes 77 Sample Program 79 4. Database Traversal 85 Scene Graph Hierarchy 87 Database Traversals 87 State Inheritance 88 Database Organization 88 Application Traversal 89 v Contents Cull Traversal 90 Traversal Order 90 Visibility Culling 91 Organizing a Database for Efficient Culling 94 Sorting the Scene 97 Paths Through the Scene Graph 99 Draw Traversal 100 Controlling and Customizing Traversals 100 pfChannel Traversal Modes 100 pfNode Draw Mask 101 pfNode Cull and Draw Callbacks 102 Process Callbacks 105 Process Callbacks and Passthrough Data 107 Intersection Traversal 109 Testing Line Segment Intersections 110 Intersection Requests: pfSegSets 110 Intersection Return Data: pfHit Objects 111 Intersection Masks 112 Discriminator Callbacks 114 Line Segment Clipping 114 Traversing Special Nodes 115 Picking 115 Performance 115 Intersection Methods for Segments 116 5. Frame and Load Control 121 Frame-Rate Management 121 Selecting the Frame Rate 122 Achieving the Frame Rate 122 Fixing the Frame Rate 123 vi Contents Maintaining Frame Rate Using Dynamic Video Resolution 128 The Channel in DVR 129 DVR Scaling 129 Customizing DVR 130 Understanding the Stress Filter 131 Level-of-Detail Management 132 Level-of-Detail Models 133 Level of Detail States 136 Level-of-Detail Range Processing 138 Level-of-Detail Transition Blending 141 Terrain Level of Detail 143 Dynamic Load Management 144 Successful Multiprocessing With IRIS Performer 147 Review of Rendering Stages 147 Choosing a Multiprocessing Model 148 Asynchronous Database Processing 153 Rules for Invoking Functions While Multiprocessing 155 Multiprocessing and Memory 158 Shared Memory and pfInit() 159 pfDataPools 160 Passthrough Data 160 6. Creating Visual Effects 165 Using pfEarthSky 165 Atmospheric Effects 166 7. Importing Databases 173 Overview of IRIS Performer Database Creation and Conversion 173 libpfdu - Utilities for Creation of Efficient IRIS Performer Run-Time Structures 174 pfdLoadFile - Loading Arbitrary Databases into IRIS Performer 175 Database Loading Details 177 vii Contents Developing Custom Importers 180 Structure and Interpretation of the Database File Format 180 Scene Graph Creation using Nodes as defined in libpf 181 Defining Geometry and Graphics State for libpr 181 Creation of a IRIS Performer Database Converter using libpfdu 182 Maximizing Database Loading and Paging Performance with PFB and PFI Formats 192 pfconv 192 pficonv 193 Supported Database Formats 193 Description of Supported Formats 195 AutoDesk 3DS Format 195 Silicon Graphics BIN Format 196 Side Effects POLY Format 197 Brigham Young University BYU Format 199 Optimizer CSB Format 200 Virtual Cliptexture CT Loader 200 Designer’s Workbench DWB Format 200 AutoCAD DXF Format 201 MultiGen OpenFlight Format 203 McDonnell-Douglas GDS Format 205 Silicon Graphics GFO Format 205 Silicon Graphics IM Format 207 AAI/Graphicon IRTP Format 208 Silicon Graphics Open Inventor Format 208 Lightscape Technologies LSA and LSB Formats 210 Medit Productions MEDIT Format 213 NFF Neutral File Format 214 Wavefront Technology OBJ Format 216 Silicon Graphics PFB Format 217 Silicon Graphics PFI Format 218 Silicon Graphics PHD Format 219 Silicon Graphics PTU Format 221 USNA Standard Graphics Format 223 viii Contents Silicon Graphics SGO Format 224 USNA Simple Polygon File Format 227 Sierpinski Sponge Loader 228 Star Chart Format 228 3D Lithography STL Format 229 SuperViewer SV Format 230 Geometry Center Triangle Format 234 UNC Walkthrough Format 234 WRL Format 235 Database Operators with Pseudo Loaders 235 8. Geometry 239 Geometry Sets 239 Primitive Types 241 pfGeoSet Draw Mode 242 Primitive Connectivity 244 Attributes 246 Attribute Bindings 248 Indexed Arrays 249 pfGeoSet Operations 251 3D Text 251 pfFont 251 pfString 253 ix Contents 9. Graphics State 259 Immediate Mode 259 Rendering Modes 261 Rendering Values 266 Enable / Disable 266 Rendering Attributes 267 Graphics Library Matrix Routines 283 Sprite Transformations 283 Display Lists 285 State Management 286 State Override 287 pfGeoState 288 10. ClipTextures 297 Overview 298 Cliptexture Levels 299 Cliptexture Assumptions 300 Image Cache 301 Toroidal Loading 304 Updating the Clipcenter 306 Virtual Cliptextures 307 Cliptexture Support Requirements 308 Special Features 308 How Cliptextures Interact with the Rest of the System 309 Cliptexture Support in IRIS Performer 310 Cliptexture Manipulation 311 Cliptexture API 313 Preprocessing ClipTextures 313 Building a MIPmap 314 Formatting Image Data 315 Tiling an Image 315 Cliptexture Configuration 316 x Contents Configuration API 317 libpr Functionality 317 Configuration Utilities 321 Configuration Files 323 Post-Scene Graph Load Configuration 339 MPClipTextures 339 pfMPClipTexture Utilities 341 Using Cliptextures with Multiple Pipes 344 Texture Memory and Hardware Support Checking 347 Manipulating Cliptextures 347 Cliptexture Load Control 348 Invalidating Cliptextures
Recommended publications
  • SGI® Opengl Multipipe™ User's Guide
    SGI® OpenGL Multipipe™ User’s Guide 007-4318-008 Version 1.4.2 CONTRIBUTORS Written by Ken Jones and Jenn Byrnes Illustrated by Chrystie Danzer Edited by Susan Wilkening Production by Glen Traefald Engineering contributions by Bill Feth, Christophe Winkler, Claude Knaus, and Alpana Kaulgud COPYRIGHT © 2000–2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, and OpenGL are registered trademarks and IRIS GL, OpenGL Performer, InfiniteReality2, Open Inventor, OpenGL Multipipe, Power Onyx, Reality Center, and SGI Reality Center are trademarks of Silicon Graphics, Inc. MIPS and R10000 are registered trademarks of MIPS Technologies, Inc. used under license by Silicon Graphics, Inc. Netscape is a trademark of Netscape Communications Corporation.
    [Show full text]
  • Avs Developer's Guide
    333333333 3333 AVS DEVELOPER'S 333333333333GUIDE Release 4 May, 1992 Advanced Visual Systems Inc.33333333 Part Number: 320-0013-02, Rev B NOTICE This document, and the software and other products described or referenced in it, are con®dential and proprietary products of Advanced Visual Systems Inc. (AVS Inc.) or its licensors. They are provided under, and are subject to, the terms and conditions of a written license agreement between AVS Inc. and its customer, and may not be transferred, disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, INCLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUITABILITY FOR USE OF SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A WARRANTY BY AVS INC. FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF AVS INC. WHATSOEVER. AVS INC. MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. AVS INC. SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCUMENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF AVS INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The speci®cations and other information contained in this document for some purposes may not be complete, current or correct, and are subject to change without notice. The reader should consult AVS Inc.
    [Show full text]
  • 3Dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli
    3dfx Oral History Panel Gordon Campbell, Scott Sellers, Ross Q. Smith, and Gary M. Tarolli Interviewed by: Shayne Hodge Recorded: July 29, 2013 Mountain View, California CHM Reference number: X6887.2013 © 2013 Computer History Museum 3dfx Oral History Panel Shayne Hodge: OK. My name is Shayne Hodge. This is July 29, 2013 at the afternoon in the Computer History Museum. We have with us today the founders of 3dfx, a graphics company from the 1990s of considerable influence. From left to right on the camera-- I'll let you guys introduce yourselves. Gary Tarolli: I'm Gary Tarolli. Scott Sellers: I'm Scott Sellers. Ross Smith: Ross Smith. Gordon Campbell: And Gordon Campbell. Hodge: And so why don't each of you take about a minute or two and describe your lives roughly up to the point where you need to say 3dfx to continue describing them. Tarolli: All right. Where do you want us to start? Hodge: Birth. Tarolli: Birth. Oh, born in New York, grew up in rural New York. Had a pretty uneventful childhood, but excelled at math and science. So I went to school for math at RPI [Rensselaer Polytechnic Institute] in Troy, New York. And there is where I met my first computer, a good old IBM mainframe that we were just talking about before [this taping], with punch cards. So I wrote my first computer program there and sort of fell in love with computer. So I became a computer scientist really. So I took all their computer science courses, went on to Caltech for VLSI engineering, which is where I met some people that influenced my career life afterwards.
    [Show full text]
  • IRIS Performer™ Programmer's Guide
    IRIS Performer™ Programmer’s Guide Document Number 007-1680-030 CONTRIBUTORS Edited by Steven Hiatt Illustrated by Dany Galgani Production by Derrald Vogt Engineering contributions by Sharon Clay, Brad Grantham, Don Hatch, Jim Helman, Michael Jones, Martin McDonald, John Rohlf, Allan Schaffer, Chris Tanner, and Jenny Zhao © Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved This document contains proprietary and confidential information of Silicon Graphics, Inc. The contents of this document may not be disclosed to third parties, copied, or duplicated in any form, in whole or in part, without the prior written permission of Silicon Graphics, Inc. RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/ or in similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311. Indigo, IRIS, OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks and Crimson, Elan Graphics, Geometry Pipeline, ImageVision Library, Indigo Elan, Indigo2, Indy, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight, IRIS Inventor, IRIS Performer, IRIX, Onyx, Personal IRIS, Power Series, RealityEngine, RealityEngine2, and Showcase are trademarks of Silicon Graphics, Inc. AutoCAD is a registered trademark of Autodesk, Inc. X Window System is a trademark of Massachusetts Institute of Technology.
    [Show full text]
  • SGI™ Origin™ 200 Scalable Multiprocessing Server Origin 200—In Partnership with You
    Product Guide SGI™ Origin™ 200 Scalable Multiprocessing Server Origin 200—In Partnership with You Today’s business climate requires servers that manage, serve, and support an ever-increasing number of clients and applications in a rapidly changing environment. Whether you use your server to enhance your presence on the Web, support a local workgroup or department, complete dedicated computation or analy- sis, or act as a core piece of your information management infrastructure, the Origin 200 server from SGI was designed to meet your needs and exceed your expectations. With pricing that starts on par with PC servers and performance that outstrips its competition, Origin 200 makes perfect business sense. •The choice among several Origin 200 models allows a perfect match of power, speed, and performance for your applications •The Origin 200 server has high-performance processors, buses, and scalable I/O to keep up with your most complex application demands •The Origin 200 server was designed with embedded reliability, availability, and serviceability (RAS) so you can confidently trust your business to it •The Origin 200 server is easily expandable and upgradable—keeping pace with your demanding and changing business requirements •The Origin 200 server is a cost-effective business solution, both now and in the future Origin 200 is a sound server investment for your most important applications and is the gateway to the scalable Origin™ and SGI™ server product families. SGI offers an evolving portfolio of complete, pre-packaged solutions to enhance your productivity and success in areas such as Internet applications, media distribution, multiprotocol file serving, multitiered database management, and performance- intensive scientific or technical computing.
    [Show full text]
  • SGI® Opengl Multipipe™ User's Guide
    SGI® OpenGL Multipipe™ User’s Guide Version 2.3 007-4318-012 CONTRIBUTORS Written by Ken Jones and Jenn Byrnes Illustrated by Chrystie Danzer Production by Karen Jacobson Engineering contributions by Craig Dunwoody, Bill Feth, Alpana Kaulgud, Claude Knaus, Ravid Na’ali, Jeffrey Ungar, Christophe Winkler, Guy Zadicario, and Hansong Zhang COPYRIGHT © 2000–2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc. LIMITED RIGHTS LEGEND The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351. TRADEMARKS AND ATTRIBUTIONS Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIS, IRIX, Onyx, Onyx2, OpenGL, and Reality Center are registered trademarks and GL, InfinitePerformance, InfiniteReality2, IRIS GL, Octane2, Onyx4, Open Inventor, the OpenGL logo, OpenGL Multipipe, OpenGL Performer, Power Onyx, Tezro, and UltimateVision are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide. MIPS and R10000 are registered trademarks of MIPS Technologies, Inc.
    [Show full text]
  • Data Sanity Check for Deep Learning Systems Via Learnt Assertions
    Data Sanity Check for Deep Learning Systems via Learnt Assertions Haochuan Lu∗y, Huanlin Xu∗y, Nana Liu∗y, Yangfan Zhou∗y, Xin Wang∗y ∗School of Computer Science, Fudan University, Shanghai, China yShanghai Key Laboratory of Intelligent Information Processing, Shanghai, China Abstract—Reliability is a critical consideration to DL- based deviations in a data flow perspective. Invalid input cases are systems. But the statistical nature of DL makes it quite vulnerable thus identified effectively. to invalid inputs, i.e., those cases that are not considered in We summarize the contributions of this paper as follows. the training phase of a DL model. This paper proposes to perform data sanity check to identify invalid inputs, so as to • We approach reliability enhancement of DL systems via enhance the reliability of DL-based systems. We design and data sanity check. We proposed a tool, namely SaneDL, implement a tool to detect behavior deviation of a DL model to perform data sanity check for DL-based systems. when processing an input case. This tool extracts the data flow SaneDL provides assertion mechanism to detect behavior footprints and conducts an assertion-based validation mechanism. The assertions are built automatically, which are specifically- deviation of DL model. To our knowledge, SaneDL is the tailored for DL model data flow analysis. Our experiments first assertion-based tool that can automatically detects conducted with real-world scenarios demonstrate that such an invalid input cases for DL systems. Our work can shed assertion-based data sanity check mechanism is effective in light to other practices in improving DL reliability.
    [Show full text]
  • SGI Origin 3000 Series Datasheet
    Datasheet SGI™ Origin™ 3000 Series SGI™ Origin™ 3200, SGI™ Origin™ 3400, and SGI™ Origin™ 3800 Servers Features As Flexible as Your Imagination •True multidimensional scalability Building on the robust NUMA architecture that made award-winning SGI •Snap-together flexibility, serviceability, and resiliency Origin family servers the most modular and scalable in the industry, the •Clustering to tens of thousands of processors SGI Origin 3000 series delivers flexibility, resiliency, and performance at •SGI Origin 3200—scales from two to eight breakthrough levels. Now taking modularity a step further, you can scale MIPS processors CPU, storage, and I/O components independently within each system. •SGI Origin 3400—scales from 4 to 32 MIPS processors Complete multidimensional flexibility allows organizations to deploy, •SGI Origin 3800—scales from 16 to 512 MIPS processors upgrade, service, expand, and redeploy system components in every possible dimension to meet any business demand. The only limitation is your imagination. Build It Your Way SGI™ NUMAflex™ is a revolutionary snap-together server system concept that allows you to configure—and reconfigure—systems brick by brick to meet the exact demands of your business applications. Upgrade CPUs to keep apace of innovation. Isolate and service I/O interfaces on the fly. Pay only for the computation, data processing, or communications power you need, and expand and redeploy systems with ease as new technologies emerge. Performance, Reliability, and Versatility With their high bandwidth, superior scalability, and efficient resource distribution, the new generation of Origin servers—SGI™ Origin™ 3200, SGI™ Origin™ 3400, and SGI™ Origin™ 3800—are performance leaders. The series provides peak bandwidth for high-speed peripheral connectiv- ity and support for the latest networking protocols.
    [Show full text]
  • Design and Speedup of an Indoor Walkthrough System
    Vol.4, No. 4 (2000) THE INTERNATIONAL JOURNAL OF VIRTUAL REALITY 1 DESIGN AND SPEEDUP OF AN INDOOR WALKTHROUGH SYSTEM Bin Chan, Wenping Wang The University of Hong Kong, Hong Kong Mark Green The University of Alberta, Canada ABSTRACT This paper describes issues in designing a practical walkthrough system for indoor environments. We propose several new rendering speedup techniques implemented in our walkthrough system. Tests have been carried out to benchmark the speedup brought about by different techniques. One of these techniques, called dynamic visibility, which is an extended view frustum algorithm with object space information integrated. It proves to be more efficient than existing standard visibility preprocessing methods without using pre-computed data. 1. Introduction Architectural walkthrough models are useful in previewing a building before it is built and in directory systems that guide visitors to a particular location. Two primary problems in developing walkthrough software are modeling and a real-time display. That is, how to easily create the 3D model and how to display a complex architectural model at a real-time rate. Modeling involves the creation of a building and the placement of furniture and other decorative objects. Although most commercially available CAD software serves similar purposes, it is not flexible enough to allow us to easily create openings on walls, such as doors and windows. Since in our own input for building a walkthrough system consists of 2D floor plans, we developed a program that converts the 2D floor plans into 3D models and handles door and window openings in a semi-automatic manner. By rendering we refer to computing illumination and generating a 2D view of a 3D scene at an interactive rate.
    [Show full text]
  • Digital Media: Bridges Between Data Particles and Artifacts
    DIGITAL MEDIA: BRIDGES BETWEEN DATA PARTICLES AND ARTIFACTS FRANK DIETRICH NDEPETDENTCONSULTANT 3477 SOUTHCOURT PALO ALTO, CA 94306 Abstract: The field of visual communication is currently facing a period of transition to digital media. Two tracks of development can be distinguished; one utilitarian, the other artistic in scope. The first area of application pragmatically substitutes existing media with computerized simulations and adheres to standards that have evolved out of common practice . The artistic direction experimentally investigates new features inherent in computer imaging devices and exploits them for the creation of meaningful expression. The intersection of these two apparently divergent approaches is the structural foundation of all digital media. My focus will be on artistic explorations, since they more clearly reveal the relevant properties. The metaphor of a data particle is introduced to explain the general universality of digital media. The structural components of the data particle are analysed in terms of duality, discreteness and abstraction. These properties are found to have significant impact on the production process of visual information : digital media encourage interactive use, integrate, different classes of symbolic representation, and facilitate intelligent image generation. Keywords: computerized media, computer graphics, computer art, digital aesthetics, symbolic representation. Draft of an invited paper for VISUAL COMPUTER The International Journal of Comuter Graphics to be published summer 1986. digital media 0 0. INTRODUCTION Within the last two decades we have witnessed a substantial increase in both quantity and quality of computer generated imagery. The work of a small community of pioneering engineers, scientists and artists started in a few scattered laboratories 20 years ago but today reaches a prime time television audience and plays an integral part in the ongoing diffusion of computer technology into offices and homes.
    [Show full text]
  • Overview of Recent Supercomputers
    Overview of recent supercomputers Aad J. van der Steen high-performance Computing Group Utrecht University P.O. Box 80195 3508 TD Utrecht The Netherlands [email protected] www.phys.uu.nl/~steen NCF/Utrecht University July 2007 Abstract In this report we give an overview of high-performance computers which are currently available or will become available within a short time frame from vendors; no attempt is made to list all machines that are still in the development phase. The machines are described according to their macro-architectural class. Shared and distributed-memory SIMD an MIMD machines are discerned. The information about each machine is kept as compact as possible. Moreover, no attempt is made to quote price information as this is often even more elusive than the performance of a system. In addition, some general information about high-performance computer architectures and the various processors and communication networks employed in these systems is given in order to better appreciate the systems information given in this report. This document reflects the technical state of the supercomputer arena as accurately as possible. However, the author nor NCF take any responsibility for errors or mistakes in this document. We encourage anyone who has comments or remarks on the contents to inform us, so we can improve this report. NCF, the National Computing Facilities Foundation, supports and furthers the advancement of tech- nical and scientific research with and into advanced computing facilities and prepares for the Netherlands national supercomputing policy. Advanced computing facilities are multi-processor vectorcomputers, mas- sively parallel computing systems of various architectures and concepts and advanced networking facilities.
    [Show full text]
  • Proceedings of the Third Phantom Users Group Workshop
    _ ____~ ~----- The Artificial Intelligence Laboratory and The Research Laboratory of Electronics at the Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Proceedings of the Third PHANToM Users Group Workshop Edited by: Dr. J. Kenneth Salisbury and Dr. Mandayam A.Srinivasan A.I. Technical Report No.1643 R.L.E. Technical Report No.624 December, 1998 Massachusetts Institute of Technology ---^ILUY((*4·U*____II· IU· Proceedings of the Third PHANToM Users Group Workshop October 3-6, 1998 Endicott House, Dedham MA Massachusetts Institute of Technology, Cambridge, MA Hosted by Dr. J. Kenneth Salisbury, AI Lab & Dept of ME, MIT Dr. Mandayam A. Srinivasan, RLE & Dept of ME, MIT Sponsored by SensAble Technologies, Inc., Cambridge, MA I - -C - I·------- - -- -1 - - - ---- Haptic Rendering of Volumetric Soft-Bodies Objects Jon Burgin, Ph.D On Board Software Inc. Bryan Stephens, Farida Vahora, Bharti Temkin, Ph.D, William Marcy, Ph.D Texas Tech University Dept. of Computer Science, Lubbock, TX 79409, (806-742-3527), [email protected] Paul J. Gorman, MD, Thomas M. Krummel, MD, Dept. of Surgery, Penn State Geisinger Health System Introduction The interfacing of force-feedback devices to computers adds touchability in computer interactions, called computer haptics. Collision detection of virtual objects with the haptic interface device and determining and displaying appropriate force feedback to the user via the haptic interface device are two of the major components of haptic rendering. Most of the data structures and algorithms applied to haptic rendering have been adopted from non-pliable surface-based graphic systems, which is not always appropriate because of the different characteristics required to render haptic systems.
    [Show full text]