The Magellanic Clouds, Two Satellite Galaxies of the Milky Way

Total Page:16

File Type:pdf, Size:1020Kb

The Magellanic Clouds, Two Satellite Galaxies of the Milky Way The Magellanic Clouds, two satellite galaxies of the Milky Way Domingos Soares I would like to suggest an exciting adventure through the southern hemi- sphere skies: to see, with the naked eye, an entire galaxy! And if you are lucky, two! They are the LARGE MAGELLANIC CLOUD and the SMALL MAGELLANIC CLOUD! Both are dwarf galaxies, with irregular shapes, satellites of our own galaxy, the Milky Way. But that is not too bad for someone to begin in the fabulous world of galaxies. Galaxies are large ensembles of stars that are kept together by their mutual gravitational attraction. The Sun is just one of the hundreds of billions of stars of our galaxy, which we call Milky Way. The gravitational attraction is one of the fundamental interaction in na- ture | matter attracts matter | and is responsible, for example, for the weight we have and for the presence of the Moon on our skies. The stability of the universe is kept by the perfect balance between the gravitational at- traction and the motion of the bodies. If the Moon, for some reason, stopped moving, it would \fall" into the Earth. If the stars stopped, they would \fall" into each other. Galaxies are many times called the fundamental \blocks" of the structure of the universe. The universe (all that exists) can be studied on its \large scale" as if it were a set of \points", in which every \point" is, in reality, one galaxy. On such studies, one tries to understand the evolution of the universe as a whole. That is why the phenomenal galaxies can be treated as if they were simple points. The investigation of the origin and evolution of the universe is made in the branch of science | in fact, a subdivision of Astrophysics | called Cosmology. The Milky Way has many small companions (satellite galaxies), which go along with it in its journey through the cosmic space. Two of them are 1 especial because are linked to the ancient Portuguese explorers of the oceans and may be easily seen on the southern hemisphere skies. They are the Large Magellanic Cloud and the Small Magellanic Cloud. Those \clouds" were sighted (and recorded) in 1520 by the Portuguese navigator Ferdinand Magellan (1480-1521). He was the first inhabitant of the northern hemisphere to refer to them in his voyage annotations. This is the reason for the name given to those galaxies, which make a breathtaking scenery in the sky, and that have a great importance in the history of scientific discoveries in Astronomy. Being galaxies, the Magellanic Clouds are constituted by stars. But as in every galaxy, between the stars, there is also much gas (mainly hydro- gen, the most abundant chemical element in the whole universe) and much \dust", clusters of particles of dimensions much larger than the most simple molecules. The most common particles are microscopic fragments of graphite, the same of our pencils. These dust particles can be organic macromolecules as well. The Magellanic Clouds are located at a distance of 180,000 light-years and are amongst the first in the list of the closest galaxies to the Milky Way. The galaxies \Canis Majoris Dwarf" (discovered in 2003) and \Sagittarius Dwarf" (discovered in 1994) are our closest neighbors, located at approx- imately 50,000 and 90,000 light-years from our galaxy, respectively. They are, nevertheless, very difficult to see because they blend with the stars, gas and dust of our own galaxy, since they overlap with the region of the largest concentration of matter of the Milky Way. These and other satellite galaxies | they are about twenty! | are in constant motion around the Milky Way, to which they are bound by the gravitational force. With the exception of the Milky Way's satellite galaxies, all other galaxies are at many millions of light-years from us. For example, the Andromeda galaxy, which is very similar to the Milky Way and the closest among the most distant, is at a distance of 2 million light-years. The distance of 1 light-year is the distance that a light ray travels during the time period of 1 year. It is indeed a very long distance! To have an idea of such a distance suffice it to say that the Sun is located at a distance of 8 light-minutes from the Earth, that is, the solar light takes approximately 8 minutes from the surface of the Sun to the surface of the Earth. This is equivalent to 94 million miles! The Small Magellanic Cloud is a bit farther from us than the Large Cloud. The two clouds are connected by an \invisible" cloud of hydrogen, which can only be \seen" with the aid of an especial telescope called \radio telescope", 2 that detects the radio waves emitted by the atoms of hydrogen. The Magellanic Clouds photographed by David Malin, using equipment of the Anglo-Australian Observatory, located in Australia. The Large Cloud is seen at the upper right corner of the picture and the Small Cloud at the lower left corner. We need clear skies to see the Magellanic Clouds. This is only possible outside the pollution (including light pollution) that characterizes large cities. Those who are in regions of darker skies can have a good sight of these neighbors of ours. Nights without the Moon, or with low brightness Moon, are particularly favorable because the sky brightness is enormously reduced, making it easy to observe such a low brightness celestial objects. How to find the Magellanic Clouds in the sky? It is very easy if you are in the southern hemisphere. Find the two brightest stars of the sky: Sirius (\alpha", that is, \the most bright" of the constellation of Canis Major, and Canopus (alpha of the constellation of Carina). In the end and beginning of each year, they can be easily located in the direction of the southeast horizon, 3 around 9 p.m. Next to Sirius, in the east direction, is the constellation of Orion, the Hunter, with the well-known Orion's belt stars, the Three Sisters. Orion's brightest star is Rigel. It is very close to Sirius. The angular separation, that is, the separation seen in the sky, between Sirius and Rigel is more or less two thirds of the separation between Sirius and Canopus. The latter, in its turn, is closest to the south horizon than Sirius. And the Magellanic Clouds? Sirius and Canopus \point" to them. Imagine a straight line beginning in Sirius and passing through Canopus. At a bit less than half the separa- tion between Sirius and Canopus, measured from Canopus, lies the fabulous LARGE MAGELLANIC CLOUD! Go down a little bit farther and there you will find, fainter, the SMALL MAGELLANIC CLOUD! And do not forget that they are galaxies! Millions of stars together due to their mutual gravity; and they, by their turn, are bound to our galaxy's gravity! 4 Picture by Akira Fujii, where one can see the Magellanic Clouds and the stars that point to them, Sirius and Canopus. The brightest star of the whole sky, Sirius, is up and to the left. The Orion constellation is to the right of Sirius and Rigel is its brightest star. Orion's belt is the three aligned stars just above and to the left of Rigel. Canopus, the second brightest star of the sky, is well below Sirius and both point to the Large Magellanic Cloud. The Small Cloud is fainter and is below the Large Cloud, to the right. Use this photo to find the Clouds from your observation site. East is to the right and South downwards. 5 Southern hemisphere observers, willing to see the Magellanic Clouds, do not need to wait until the end of the year, when the hours of observation are much more convenient. In September, for example, they will have to schedule their observations by dawn! Sirius and Canopus are well placed in the directions mentioned above and the Magellanic Clouds can be seen. But | it is worthwhile repeat |, unfortunately, one will have too much difficulty to observe the Clouds in big cities' skies, because of the combination of a polluted atmosphere and of excessive artificial illumination. However, even so, the \pointers", the stars Sirius and Canopus, can be easily seen, as well as Rigel. Those who are in the outskirts of big cities will be able to see the Clouds without major burdens. Simply cheer yourself up and rise very early! But do not give up! There are two factors that quickly put the Clouds in their perfect conditions of observation. First, notice that during the passing of a night the positions of the objects on the sky change. Due to the Earth's rotational motion around its own axis, people in the southern hemisphere see the objects on the sky rotate around the \south celestial pole" (a point where Earth's rotation axis points to). Besides that, the Earth has also its annual movement of translation around the Sun. The combined movements of rotation and translation of the Earth result in that the \rise" of the stars on the horizon \moves forward" 4 minutes each day and 2 hours every month. Because of that, in a few months after our September example, Sirius, Canopus and the Clouds will be \rising" at about 6 p.m. and will be optimal for observation around 9 p.m. Those who are not willing to get up very early in September, have just to wait for two months and the following months. The conditions will be then excellent for a true tour through the galaxies! 6.
Recommended publications
  • The Nearest Stars: a Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 5 - Spring 1986 © 1986, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Nearest Stars: A Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific A tour through our stellar neighborhood As evening twilight fades during April and early May, a brilliant, blue-white star can be seen low in the sky toward the southwest. That star is called Sirius, and it is the brightest star in Earth's nighttime sky. Sirius looks so bright in part because it is a relatively powerful light producer; if our Sun were suddenly replaced by Sirius, our daylight on Earth would be more than 20 times as bright as it is now! But the other reason Sirius is so brilliant in our nighttime sky is that it is so close; Sirius is the nearest neighbor star to the Sun that can be seen with the unaided eye from the Northern Hemisphere. "Close'' in the interstellar realm, though, is a very relative term. If you were to model the Sun as a basketball, then our planet Earth would be about the size of an apple seed 30 yards away from it — and even the nearest other star (alpha Centauri, visible from the Southern Hemisphere) would be 6,000 miles away. Distances among the stars are so large that it is helpful to express them using the light-year — the distance light travels in one year — as a measuring unit. In this way of expressing distances, alpha Centauri is about four light-years away, and Sirius is about eight and a half light- years distant.
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Chapter 16 the Sun and Stars
    Chapter 16 The Sun and Stars Stargazing is an awe-inspiring way to enjoy the night sky, but humans can learn only so much about stars from our position on Earth. The Hubble Space Telescope is a school-bus-size telescope that orbits Earth every 97 minutes at an altitude of 353 miles and a speed of about 17,500 miles per hour. The Hubble Space Telescope (HST) transmits images and data from space to computers on Earth. In fact, HST sends enough data back to Earth each week to fill 3,600 feet of books on a shelf. Scientists store the data on special disks. In January 2006, HST captured images of the Orion Nebula, a huge area where stars are being formed. HST’s detailed images revealed over 3,000 stars that were never seen before. Information from the Hubble will help scientists understand more about how stars form. In this chapter, you will learn all about the star of our solar system, the sun, and about the characteristics of other stars. 1. Why do stars shine? 2. What kinds of stars are there? 3. How are stars formed, and do any other stars have planets? 16.1 The Sun and the Stars What are stars? Where did they come from? How long do they last? During most of the star - an enormous hot ball of gas day, we see only one star, the sun, which is 150 million kilometers away. On a clear held together by gravity which night, about 6,000 stars can be seen without a telescope.
    [Show full text]
  • The Sky Tonight
    MARCH POUTŪ-TE-RANGI HIGHLIGHTS Conjunction of Saturn and the Moon A conjunction is when two astronomical objects appear close in the sky as seen THE- SKY TONIGHT- - from Earth. The planets, along with the TE AHUA O TE RAKI I TENEI PO Sun and the Moon, appear to travel across Brightest Stars our sky roughly following a path called the At this time of the year, we can see the ecliptic. Each body travels at its own speed, three brightest stars in the night sky. sometimes entering ‘retrograde’ where they The brightness of a star, as seen from seem to move backwards for a period of time Earth, is measured as its apparent (though the backwards motion is only from magnitude. Pictured on the cover is our vantage point, and in fact the planets Sirius, the brightest star in our night sky, are still orbiting the Sun normally). which is 8.6 light-years away. Sometimes these celestial bodies will cross With an apparent magnitude of −1.46, paths along the ecliptic line and occupy the this star can be found in the constellation same space in our sky, though they are still Canis Major, high in the northern sky. millions of kilometres away from each other. Sirius is actually a binary star system, consisting of Sirius A which is twice the On March 19, the Moon and Saturn will be size of the Sun, and a faint white dwarf in conjunction. While the unaided eye will companion named Sirius B. only see Saturn as a bright star-like object (Saturn is the eighth brightest object in our Sirius is almost twice as bright as the night sky), a telescope can offer a spectacular second brightest star in the night sky, view of the ringed planet close to our Moon.
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]
  • ANNUAL REPORT June 30, 2021
    JOB TITLE SA FUNDS AR REVISION 8 SERIAL <12345678> TIME Friday, August 27, 2021 JOB NUMBER 393837-1 TYPE PAGE NO. I ANNUAL REPORT June 30, 2021 PORTFOLIOS OF INVESTMENTS SA U.S. Fixed Income Fund SA Global Fixed Income Fund SA U.S. Core Market Fund SA U.S. Value Fund SA U.S. Small Company Fund SA International Value Fund SA International Small Company Fund SA Emerging Markets Value Fund SA Real Estate Securities Fund SA Worldwide Moderate Growth Fund Beginning on January 1, 2022, as permitted by regulations adopted by the Securities and Exchange Commission, we intend to no longer mail paper copies of each Fund’s shareholder reports, unless you specifically request paper copies of the reports from the SA Funds - Investment Trust (the “Trust”) or from your financial intermediary, such as a broker-dealer or bank. Instead, the reports will be made available on the Trust’s website (http://www.sa-funds.com), and you will be notified by mail each time a report is posted and provided with a website link to access the report. If you already elected to receive shareholder reports electronically, you will not be affected by this change and you need not take any action. You may elect to continue to receive paper copies of all future reports free of charge. If you invest through a financial intermediary, you may contact your financial intermediary to request that you continue to receive paper copies of your shareholder reports. If you invest directly with the Trust, you may inform the Trust that you wish to continue receiving paper copies of your shareholder reports by contacting us at (844) 366-0905.
    [Show full text]
  • Part 2 – Brightness of the Stars
    5th Grade Curriculum Space Systems: Stars and the Solar System An electronic copy of this lesson in color that can be edited is available at the website below, if you click on Soonertarium Curriculum Materials and login in as a guest. The password is “soonertarium”. http://moodle.norman.k12.ok.us/course/index.php?categoryid=16 PART 2 – BRIGHTNESS OF THE STARS -PRELIMINARY MATH BACKGROUND: Students may need to review place values since this lesson uses numbers in the hundred thousands. There are two website links to online education games to review place values in the section. -ACTIVITY - HOW MUCH BIGGER IS ONE NUMBER THAN ANOTHER NUMBER? This activity involves having students listen to the sound that different powers of 10 of BBs makes in a pan, and dividing large groups into smaller groups so that students get a sense for what it means to say that 1,000 is 10 times bigger than 100. Astronomy deals with many big numbers, and so it is important for students to have a sense of what these numbers mean so that they can compare large distances and big luminosities. -ACTIVITY – WHICH STARS ARE THE BRIGHTEST IN THE SKY? This activity involves introducing the concepts of luminosity and apparent magnitude of stars. The constellation Canis Major was chosen as an example because Sirius has a much smaller luminosity but a much bigger apparent magnitude than the other stars in the constellation, which leads to the question what else effects the brightness of a star in the sky. -ACTIVITY – HOW DOES LOCATION AFFECT THE BRIGHTNESS OF STARS? This activity involves having the students test how distance effects apparent magnitude by having them shine flashlights at styrene balls at different distances.
    [Show full text]
  • The Relative Sizes of the Sun and Stars 25
    The relative sizes of the sun and stars 25 Stars come in many sizes, but their true appearances are impossible to see without special telescopes. The image to the left was taken by the Hubble Space telescope and resolves the red supergiant star Betelgeuse so that its surface can be just barely seen. Follow the number clues below to compare the sizes of some other familiar stars! Problem 1 - The sun's diameter if 10 times the diameter of Jupiter. If Jupiter is 11 times larger than Earth, how much larger than Earth is the Sun? Problem 2 - Capella is three times larger than Regulus, and Regulus is twice as large as Sirius. How much larger is Capella than Sirius? Problem 3 - Vega is 3/2 the size of Sirius, and Sirius is 1/12 the size of Polaris. How much larger is Polaris than Vega? Problem 4 - Nunki is 1/10 the size of Rigel, and Rigel is 1/5 the size of Deneb. How large is Nunki compared to Deneb? Problem 5 - Deneb is 1/8 the size of VY Canis Majoris, and VY Canis Majoris is 504 times the size of Regulus. How large is Deneb compared to Regulus? Problem 6 - Aldebaran is 3 times the size of Capella, and Capella is twice the size of Polaris. How large is Aldebaran compared to Polaris? Problem 7 - Antares is half the size of Mu Cephi. If Mu Cephi is 28 times as large as Rigel, and Rigel is 50 times as large as Alpha Centauri, how large is Antares compared to Alpha Centauri? Problem 8 - The Sun is 1/4 the diameter of Regulus.
    [Show full text]
  • A New View of Supernova Remnants in the L\:Fagellanic Clouds from David Clark
    690 Nature Vol. 294 24/31 December 1981 Finally, whatofTRF4? Aftermanyyears functions early (proliferative phase). The given by a current report describing a start of difficulty, created in part by the ability relationship to the newly described B cell on molecular biological studies of IL2. of factors like IL2 and the B cell growth growth factor awaits further experiments. Given several T cell tumour lines which can factor to replace T cells indirectly, assays In both cases, a clearer understanding of be induced to generate high levels of IL2 which clearly distinguish between IL2 and the roles of several lymphokines now (several thousand times the amounts pro­ TRF are now in hand. And the take-home exists, and perhaps more important, the duced by normal lymphocytes), it has been message is that, indeed, TRF exists12 • It tools and approaches necessary for more possible to follow the lead of workers in the acts at the time when B cells, having sophisticated analysis are evident. interferon field, by looking for mRNA undergone clonal expansion following An indication of future directions is coding for the lymphokine, and then antigenic stimulation, are to begin attempting to clone its complementary secreting high levels of immunoglobulin. I. OiSabato, G .• Chen, 0.-M. & Erickson . .1.W. Cell. DNA. The EL4 variant cell line originally Then, as proposed years ago by Dutton and lmmun. 17,495 (1975). described by Farrar and colleagues at 2. Gillis. S. & Smith, K.A. Nature 268, 154 (1977). 13 colleagues, TRF can replace T cells in ). Ruscetti, F.W., Morgan, D.A. & Gallo, R.C.
    [Show full text]
  • Large Magellanic Cloud, One of Our Busy Galactic Neighbors
    The Large Magellanic Cloud, One of Our Busy Galactic Neighbors www.nasa.gov Our Busy Galactic Neighbors also contain fewer metals or elements heavier than hydrogen and helium. Such an environment is thought to slow the growth The cold dust that builds blazing stars is revealed in this image of stars. Star formation in the universe peaked around 10 billion that combines infrared observations from the European Space years ago, even though galaxies contained lesser abundances Agency’s Herschel Space Observatory and NASA’s Spitzer of metallic dust. Previously, astronomers only had a general Space Telescope. The image maps the dust in the galaxy known sense of the rate of star formation in the Magellanic Clouds, as the Large Magellanic Cloud, which, with the Small Magellanic but the new images enable them to study the process in more Cloud, are the two closest sizable neighbors to our own Milky detail. Way Galaxy. Herschel is a European The Large Magellanic Cloud looks like a fiery, circular explosion Space Agency in the combined Herschel–Spitzer infrared data. Ribbons of dust cornerstone mission, ripple through the galaxy, with significant fields of star formation with science instruments noticeable in the center, center-left and top right. The brightest provided by consortia center-left region is called 30 Doradus, or the Tarantula Nebula, of European institutes for its appearance in visible light. and with important participation by NASA. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel’s three science instruments.
    [Show full text]
  • MINIREVIEW Normal and Pathologic Soft Tissue Remodeling: Role of the Myofibroblast, with Special Emphasis on Liver and Kidney Fibrosis Alexis Desmoulière, Ian A
    0023-6837/03/8312-1689$03.00/0 LABORATORY INVESTIGATION Vol. 83, No. 12, p. 1689, 2003 Copyright © 2003 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. MINIREVIEW Normal and Pathologic Soft Tissue Remodeling: Role of the Myofibroblast, with Special Emphasis on Liver and Kidney Fibrosis Alexis Desmoulière, Ian A. Darby, and Giulio Gabbiani Groupe de Recherches pour l’Etude du Foie (AD), INSERM E0362, Université Victor Segalen Bordeaux 2, Bordeaux, France; Wound Healing and Microvascular Biology Group (IAD), School of Medical Sciences, RMIT University, Victoria, Australia; and Department of Pathology (GG), Centre Médical Universitaire, Geneva, Switzerland he retractile and remodeling phenomena accom- Definition and Cytoskeletal Markers of Myofibroblasts panying and, in pathologic situations, following T Granulation tissue, which allows the replacement of the healing of an open wound have attracted the the injured tissue, is mainly characterized by fibroblast interest of physicians and scientists for many centu- proliferation, angiogenesis, and extracellular matrix ries. It has long been assumed that these phenomena deposition. Fibroblasts acquire smooth muscle (SM) depend on extracellular matrix reorganization; how- features characterizing the myofibroblast (for review, ever, the demonstration that fibroblastic cells acquire see Desmoulière and Gabbiani, 1996; Schürch et al, contractile features during the evolution of granulation 1998; Serini and Gabbiani, 1999; Tomasek et al, 2002) tissue (for review, see
    [Show full text]
  • The Fundamentals of Stargazing Sky Tours South
    The Fundamentals of Stargazing Sky Tours South 01 – The March Sky Copyright © 2014-2016 Mintaka Publishing Inc. www.CosmicPursuits.com -2- The Constellation Orion Let’s begin the tours of the deep-southern sky with the most famous and unmistakable constellation in the heavens, Orion, which will serve as a guide for other bright constellations in the southern late-summer sky. Head outdoors around 8 or 9 p.m. on an evening in early March, and turn towards the north. If you can’t find north, you can ask someone else, or get a small inexpensive compass, or use the GPS in your smartphone or tablet. But you need to face at least generally northward before you can proceed. You will also need a good unobstructed view of the sky in the north, so you may need to get away from structures and trees and so on. The bright stars of the constellation Orion (in this map, south is up and east is to the right) And bring a pair of binoculars if you have them, though they are not necessary for this tour. Fundamentals of Stargazing -3- Now that you’re facing north with a good view of a clear sky, make a 1/8th of a turn to your left. Now you are facing northwest, more or less. Turn your gaze upward about halfway to the point directly overhead. Look for three bright stars in a tidy line. They span a patch of sky about as wide as your three middle fingers held at arm’s length. This is the “belt” of the constellation Orion.
    [Show full text]