Investigating Patterns of Variation in Reproductive Dispersal and Wolbachia Infection in Malagasy Ants (Hymenoptera: Formicidae)

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Patterns of Variation in Reproductive Dispersal and Wolbachia Infection in Malagasy Ants (Hymenoptera: Formicidae) Investigating Patterns of Variation in Reproductive Dispersal and Wolbachia Infection in Malagasy Ants (Hymenoptera: Formicidae) by Fiona J. Tsoi A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Integrative Biology Guelph, Ontario, Canada © Fiona J. Tsoi, September, 2013 ABSTRACT INVESTIGATING PATTERNS OF VARIATION IN REPRODUCTIVE DISPERSAL AND WOLBACHIA INFECTION IN MALAGASY ANTS (HYMENOPTERA: FORMICIDAE) Fiona J. Tsoi Advisor: University of Guelph, 2013 Professor M. A. Smith I examined patterns of variation in queen dispersal state and Wolbachia infection in Malagasy ants. My first study compared intraspecific genetic divergence between reproductive dispersal states. Using calculations of isolation by distance (IBD), all species with ergatoid (wingless) queens exhibited IBD as a result of short distance dispersal. The majority of species possessing alate (winged) queens also exhibited IBD despite their ability to travel farther distances. Alate body size was hypothesized to influence IBD, but this was not supported and requires further investigation. My second study investigated the prevalence of Wolbachia, a genus of endosymbiotic bacteria, in ants. Overall, 61.67% of species were infected and no correlation was observed between infection and ant queen dispersal state. Furthermore, DNA extracted from somatic tissue did not underestimate Wolbachia detection as was previously thought. Dispersal and Wolbachia infection influence reproductive outcomes in ants and are important factors for future investigations of genetic diversity. Acknowledgements Firstly, I would like to thank my advisor Dr. Alex Smith for his patience, guidance and encouragement throughout this entire process. Thank you for opening the world of ants and Wolbachia to me. I truly appreciate the last minute meetings, rapid feedback and for always providing a different perspective to my ideas. I would also like to thank my committee members Dr. Teresa Crease and Dr. Brian Fisher for their support and expert advice. Dr. Crease, thank you for your insightful ideas and for your valuable administrative advice for completing graduate school. Brian, thank you for sharing your knowledge and passion for ants with me. As well, I would like to thank Brian and other members of the California Academy of Sciences for hosting me during my visit and for allowing me to access their extensive Madagascar ant collection. I would like to thank the Biodiversity Institute of Ontario (BIO) for their assistance with retrieving archived DNA extracts, hitpicking and sequencing. Additionally, I would like to thank the Genomics Facility for their assistance with sequencing and for their patience and efficiency with high volume submissions. A special thanks to all past and present members of the Adamowicz, Crease, Hajibabaei, Smith and Gregory labs for their advice and reassurance that everything out of the ordinary was really quite ordinary in graduate school. I appreciate the breaks and distractions from hectic life in the lab and the office. Most importantly to my family, thank you so much for your unwavering emotional support and patience throughout this time. To Bradley, thank you for your continuous optimism and encouragement. I am extremely grateful for your support. Field work in this project was supported by a National Geographic grant (no. 8429-08) and a National Science Foundation grant (no. DEB-0072713, DEB-0344731 to BLF and DEB- 0842395 to BLF and MAS). Research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery and Research Tools and Instruments Grants and a Leaders Opportunity Fund (LOR) from the Canada Foundation for Innovation (CFI) to MAS. iii Table of Contents Abstract .......................................................................................................................................... ii Acknowledgements ...................................................................................................................... iii List of Tables ................................................................................................................................ vi List of Figures .............................................................................................................................. vii Chapter 1: Introduction ............................................................................................................... 1 Overview of Ants ................................................................................................................................. 1 Overview of Madagascar ..................................................................................................................... 2 The Role of DNA Barcoding ............................................................................................................... 2 Genetic Variation and Dispersal .......................................................................................................... 3 Wolbachia and Ants ............................................................................................................................. 4 Chapter 2: Patterns of Intraspecific Variation as Influenced by Dispersal in Malagasy Ants ......................................................................................................................................................... 6 Abstract ................................................................................................................................................... 6 Introduction ............................................................................................................................................ 7 Female Reproductive Dispersal and Nest Establishment ..................................................................... 8 Characterizing Ant Reproduction: From Morphology to Markers ..................................................... 10 Objective of Study .............................................................................................................................. 13 Methods ................................................................................................................................................. 14 Taxon Sampling ................................................................................................................................. 14 Molecular Analyses ............................................................................................................................ 15 Isolation-By-Distance......................................................................................................................... 16 Alate Body Measurements ................................................................................................................. 18 Results .................................................................................................................................................... 18 Among-Genera Comparisons of IBD ................................................................................................. 18 Species-Specific Comparisons of IBD ............................................................................................... 19 Alate Body Size Measurements ......................................................................................................... 22 Discussion .............................................................................................................................................. 22 Ergatoid vs. Alate Comparisons ......................................................................................................... 23 Unusual Relationships of Geographic vs. Genetic Distance .............................................................. 23 Environmental Factors Affecting Variation ....................................................................................... 25 The Effects of Body Size on Dispersal .............................................................................................. 25 Conclusions ........................................................................................................................................... 26 Chapter 3: A Survey of Wolbachia Infection in Malagasy Ants ............................................. 58 Abstract ................................................................................................................................................. 58 Introduction .......................................................................................................................................... 59 What are Wolbachia? ......................................................................................................................... 59 Methods of Transmission ................................................................................................................... 59 Endosymbiotic Relationships: Parasitism and Mutualism ................................................................. 61 The Effects of Wolbachia Infection on Host Evolution ..................................................................... 62 Detecting Wolbachia .......................................................................................................................... 63 Prevalence in Ants .............................................................................................................................
Recommended publications
  • A New Shield-Faced Ant of the Genus Pheidole (Hymenoptera: Formicidae: Aberrans Group) from Argentina
    TRANSACTIONS OF THE AMERICAN ENTOMOLOGICAL SOCIETY VOLUME 137, NUMBERS 3+4: 297-305, 2011 A New Shield-Faced Ant of the Genus Pheidole (Hymenoptera: Formicidae: aberrans Group) From Argentina William P. Mackay, Francisco J. Sola and Roxana Josens [WPM] Department of Biological Sciences, The University of Texas, El Paso, Texas USA 79968 [FJS and RJ] Grupo de Estudio de Insectos Sociales. IFIBYNE-CONICET Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón II, Ciudad Universitaria (C1428 EHA), Buenos Aires, Argentina ABSTRACT We describe Pheidole acutiloba Mackay, based on the majors, minors, females and males, with the head of the major formed into a shield. This species is similar to P. aberrans and P. obscurifrons, and we discuss the similarities and differences between the majors of the three species. We provide an amendment to the key in Wilson’s monograph to accommodate the new species. RESUMEN Describimos la hormiga Pheidole acutilobata Mackay de Argentina, basada en los soldados, obreras, hembras y machos, con la cabeza del soldado en forma de escudo. Esta nueva especie es semejante a P. aberrans y P. obscurifrons; consideramos las características semejantes y diferentes de estas especies. Incluimos cambios en la clave de Wilson para identificar la nueva especie. INTRODUCTION METHODS AND MATERIALS The ant genus Pheidole is common in most Specimens were measured and illustrated using an terrestrial habitats of the world, including the ocular micrometer and grid in a Zeiss dissecting entire New World, and is considered to be in a microscope. The following abbreviations are used hyperdiverse genus (Wilson, 2003). Wilson’s (all measurements in mm): recent revision (2003) laid a solid foundation for further studies of this important monophyletic HL—Head length, from transverse line across genus, although many of the groups defined in the anteriormost edge of clypeus to transverse line monograph are not monophyletic (Moreau, 2008).
    [Show full text]
  • NEW TRAMP ANT SPECIES for TURKEY: Tetramorium Lanuginosum Mayr (HYMENOPTERA: FORMICIDAE)
    http://dergipark.gov.tr/trkjnat Trakya University Journal of Natural Sciences, 19(1): 51-54, 2018 ISSN 2147-0294, e-ISSN 2528-9691 Research Article DOI: 10.23902/trkjnat.340008 NEW TRAMP ANT SPECIES FOR TURKEY: Tetramorium lanuginosum Mayr (HYMENOPTERA: FORMICIDAE) Celal KARAMAN*, Kadri KIRAN Trakya University, Faculty of Science, Department of Biology, Balkan Campus, 22030, Edirne, TURKEY *Corresponding author: e-mail: [email protected] Cite this article as: Karaman C. & Kiran K. 2018. New Tramp Ant Species for Turkey: Tetramorium lanuginosum Mayr (Hymenoptera: Formicidae). Trakya Univ J Nat Sci, 19(1): 51-54, DOI: 10.23902/trkjnat.346537 Received: 26 September 2017, Accepted: 11 January 2018, Online First: 17 January 2018, Published: 15 April 2018 Abstract: Human activities such as tourism, developed transportation and increased trade lead to the introduction of faunal elements into non-native habitats and consequently affect native fauna. These introduced species are called as non-native, exotic, invasive or tramp species. Here we record the well-known tramp species Tetramorium lanuginosum Mayr, for the first time from Turkey (Antalya-Alanya), and present first locality records for Paratrechina longicornis (Latreille) from Antalya- Alanya and Adana. Thus, the number of tramp ant species of Turkey is increased to 19. Key words: Tramp species, new record, Northeastern Mediterranean, Antalya-Alanya. Özet: Turizm, gelişmiş ulaşım ve artan ticaret gibi insan faaliyetleri faunal elemanların dağılım alanları dışındaki habitatlara taşınmasına neden olmakta ve dolayısıyla yerli faunayı etkilemektedir. Bu faaliyetlerle taşınan organizmalar yerli olmayan, egzotik, istilacı veya tramp türler olarak adlandırılır. Bu çalışmada, çok iyi bilinen tramp karınca türü olan Tetramorium lanuginosum Mayr’u Türkiye’den (Antalya-Alanya) ilk defa kayıt edilmekte ve Paratrechina longicornis (Latreille)’e ait ilk lokalite kayıtları ise Antalya-Alanya ve Adana’dan verilmektedir.
    [Show full text]
  • Notes on Ants (Hymenoptera: Formicidae) from Gambia (Western Africa)
    ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 26 (online 010): 1–13 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 08.05.2018 LECH BOROWIEC1, SEBASTIAN SALATA2 Notes on ants (Hymenoptera: Formicidae) from Gambia (Western Africa) http://doi.org/10.5281/zenodo.1243767 1 Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego 65, 51-148 Wrocław, Poland e-mail: [email protected], [email protected] Abstract: A list of 35 ant species or morphospecies collected in Gambia is presented, 9 of them are recorded for the first time from the country:Camponotus cf. vividus, Crematogaster cf. aegyptiaca, Dorylus nigricans burmeisteri SHUCKARD, 1840, Lepisiota canescens (EMERY, 1897), Monomorium cf. opacum, Monomorium cf. salomonis, Nylanderia jaegerskioeldi (MAYR, 1904), Technomyrmex pallipes (SMITH, 1876), and Trichomyrmex abyssinicus (FOREL, 1894). A checklist of 82 ant species recorded from Gambia is given. Key words: ants, faunistics, Gambia, new country records. INTRODUCTION Ants fauna of Gambia (West Africa) is poorly known. Literature data, AntWeb and other Internet resources recorded only 59 species from this country. For comparison from Senegal, which surrounds three sides of Gambia, 89 species have been recorded so far. Both of these records seem poor when compared with 654 species known from the whole western Africa (SHUCKARD 1840, ANDRÉ 1889, EMERY 1892, MENOZZI 1926, SANTSCHI 1939, LUSH 2007, ANTWIKI 2017, ANTWEB 2017, DIAMÉ et al. 2017, TAYLOR 2018). Most records from Gambia come from general web checklists of species. Unfortunately, they lack locality data, date of sampling, collector name, coordinates of the locality and notes on habitats.
    [Show full text]
  • Fire Ant Curriculum for Youth Leader Guide
    B-6141 9-03 Fire Ant Curriculum for Youth leader guide Authors Nathan Riggs, Paul Nester and Wizzie Brown Extension Agents, Integrated Pest Management (Fire Ant Project) The Texas A&M University System Contributors Darlene Locke, Extension Agent Beth Barbee, Extension Assistant Vera Johnson, Typesetter Steven Keating, Assistant Graphic Designer Jerry Nucker, Assistant Graphic Designer Diane Bowen, Associate Editor Beth Hickman, Former Extension Agent IPM–Dallas County Educational support materials from the Texas Imported Fire Ant Project Texas Imported Fire Ant Research & Management Project in collaboration with Texas Agricultural Experiment Station Texas Cooperative Extension of The Texas A&M University System Texas Tech University University of Texas Texas Departmentof Agriculture Dear Educator: Welcome to the wonderful world of KIDzANTS! In these lessons, you will find an interesting world of history, biology and many other interesting facts about the red imported fire ant in Texas. Red imported fire ants are exotic, introduced insects that have tipped the eco- logical balance within the food chain in their favor and have taken advantage of disturbed landscapes to spread throughout the eastern two-thirds of Texas. In this KIDzANTS package is information about where red imported fire ants originated; how their bodies are built; what are their favorite foods, favorite places to nest, life cycle, hustle and bustle within their mound nests; and how they compare with other native ant species in the landscape. We hope that children will learn about the importance of fire ants from a health standpoint and also learn how to recognize them easily outdoors. We hope that this knowledge leads to better and more responsible management of fire ants in the future.
    [Show full text]
  • Observations on the Genus Terataner in by Gary D
    OBSERVATIONS ON THE GENUS TERATANER IN MADAGASCAR (HYMENOPTERA: FORMICIDAE) BY GARY D. ALPERT Museum of Comparative Zoology Harvard University, Cambridge, MA 02138 INTRODUCTION The present study was inspired by the analysis of endemism in Malagasy ants by William L. Brown (1973). The rare myrmicine ant genus Terataner, presently with twelve described species, is known only from the Ethiopian and Malagasy zoogeographical regions. Bolton (1981) revised the Ethiopian species of Terataner, and provided illustrations and a key to workers. In the same paper, Bolton described a new species of Terataner from Madagascar and included an illustrated key to workers from the Malagasy region. An ongoing study of Malagasy Terataner resulted in the discovery of many new species (Alpert, in prep.) and the first .rtatural history data on any of the ants in this group. This new information sepa- rates Terataner into two distinct groups with fundamental biologi- cal differences. The first group, containing four closely related arboreal species, occurs only in tropical West Africa. According to Bolton (1981, pers. comm.), these species construct nests in rotten parts of stand- ing timber, often located a considerable distance above the ground. The males in this group are unknown and the female reproductives, although presently undescribed, are morphologically typical ant queens. No other biological information is available on this group of ants. The second, much larger, group of Terataner species nests near the ground and inhabits preformed plant cavities, such as hollow twigs and burrows of wood-boring insects. One species occurs in the Transvaal of South Africa, one in East Africa, one in the Sey- chelles, and five are currently recognized in Madagascar.
    [Show full text]
  • Global Models of Ant Diversity Suggest Regions Where New Discoveries Are Most Likely Are Under Disproportionate Deforestation Threat
    Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat Benoit Guénard1, Michael D. Weiser, and Robert R. Dunn Department of Biology and the Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695 Edited* by Edward O. Wilson, Harvard University, Cambridge, MA, and approved March 23, 2012 (received for review August 24, 2011) Most of the described and probably undescribed species on Earth As for other taxa, richness decreased with latitude (e.g., refs. 13 are insects. Global models of species diversity rarely focus on and 14) (Fig. 1) and there were also strong regional effects on the insects and none attempt to address unknown, undescribed magnitude of diversity. African regions were less diverse than diversity. We assembled a database representing about 13,000 would be expected given their latitude (or climate), the reverse of records for ant generic distribution from over 350 regions that the pattern observed for termites (15, 16) and terrestrial mammals cover much of the globe. Based on two models of diversity and (17), although similar to that for vascular plants (5, 18). The 53 endemicity, we identified regions where our knowledge of ant endemic genera were found almost exclusively in tropical regions diversity is most limited, regions we have called “hotspots of dis- that were diverse more generally, with four interesting exceptions covery.” A priori, such regions might be expected to be remote in North Africa, Armenia, Azerbaijan, and South Korea (Fig. 2). and untouched. Instead, we found that the hotspots of discovery Both overall generic diversity and endemic diversity showed are also the regions in which biodiversity is the most threatened a peak in the Oriental region, especially in Borneo, and were also by habitat destruction.
    [Show full text]
  • Radiation in Socially Parasitic Formicoxenine Ants
    RADIATION IN SOCIALLY PARASITIC FORMICOXENINE ANTS DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (D R. R ER . N AT .) DER NATURWISSENSCHAFTLICHEN FAKULTÄT III – BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG vorgelegt von Jeanette Beibl aus Landshut 04/2007 General Introduction II Promotionsgesuch eingereicht am: 19.04.2007 Die Arbeit wurde angeleitet von: Prof. Dr. J. Heinze Prüfungsausschuss: Vorsitzender: Prof. Dr. S. Schneuwly 1. Prüfer: Prof. Dr. J. Heinze 2. Prüfer: Prof. Dr. S. Foitzik 3. Prüfer: Prof. Dr. P. Poschlod General Introduction I TABLE OF CONTENTS GENERAL INTRODUCTION 1 CHAPTER 1: Six origins of slavery in formicoxenine ants 13 Introduction 15 Material and Methods 17 Results 20 Discussion 23 CHAPTER 2: Phylogeny and phylogeography of the Mediterranean species of the parasitic ant genus Chalepoxenus and its Temnothorax hosts 27 Introduction 29 Material and Methods 31 Results 36 Discussion 43 CHAPTER 3: Phylogenetic analyses of the parasitic ant genus Myrmoxenus 46 Introduction 48 Material and Methods 50 Results 54 Discussion 59 CHAPTER 4: Cuticular profiles and mating preference in a slave-making ant 61 Introduction 63 Material and Methods 65 Results 69 Discussion 75 CHAPTER 5: Influence of the slaves on the cuticular profile of the slave-making ant Chalepoxenus muellerianus and vice versa 78 Introduction 80 Material and Methods 82 Results 86 Discussion 89 GENERAL DISCUSSION 91 SUMMARY 99 ZUSAMMENFASSUNG 101 REFERENCES 103 APPENDIX 119 DANKSAGUNG 120 General Introduction 1 GENERAL INTRODUCTION Parasitism is an extremely successful mode of life and is considered to be one of the most potent forces in evolution. As many degrees of symbiosis, a phenomenon in which two unrelated organisms coexist over a prolonged period of time while depending on each other, occur, it is not easy to unequivocally define parasitism (Cheng, 1991).
    [Show full text]
  • Ants (Hymenoptera: Formicidae) of Bermuda
    212 Florida Entomologist 87(2) June 2004 ANTS (HYMENOPTERA: FORMICIDAE) OF BERMUDA JAMES K. WETTERER1 AND ANDREA L. WETTERER2 1Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 2Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027 ABSTRACT For more than 50 years, two exotic ant species, Linepithema humile (Mayr) and Pheidole megacephala (F.), have been battling for ecological supremacy in Bermuda. Here we summa- rize known ant records from Bermuda, provide an update on the conflict between the domi- nant ant species, and evaluate the possible impact of the dominant species on the other ants in Bermuda. We examined ant specimens from Bermuda representing 20 species: Brachy- myrmex heeri Forel, B. obscurior Forel, Camponotus pennsylvanicus (De Geer), Cardio- condyla emeryi Forel, C. obscurior Wheeler, Crematogaster sp., Hypoponera opaciceps (Mayr), H. punctatissima (Roger), L. humile, Monomorium monomorium Bolton, Odontomachus rug- inodis Smith, Paratrechina longicornis (Latreille), P. vividula (Nylander), P. megacephala, Plagiolepis alluaudi Forel, Solenopsis (Diplorhoptrum) sp., Tetramorium caldarium Roger, T. simillimum (Smith), Wasmannia auropunctata (Roger), and an undetermined Dacetini. Records for all but three (H. punctatissima, P. vividula, W. auropunctata) include specimens from 1987 or later. We found no specimens to confirm records of several other ant species, in- cluding Monomorium pharaonis (L.) and Tetramorium caespitum (L.). Currently, L. humile dominates most of Bermuda, while P. megacephala appear to be at its lowest population lev- els recorded. Though inconspicuous, B. obscurior is common and coexists with both dominant species. Paratrechina longicornis has conspicuous populations in two urban areas. Three other ant species are well established, but inconspicuous due to small size (B.
    [Show full text]
  • REVISIÓN TAXONÓMICA DE LAS HORMIGAS Tapinoma Förster (HYMENOPTERA: FORMICIDAE: DOLICHODERINAE) EN LA REGIÓN NEOTROPICAL
    UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS POSTGRADO EN ZOOLOGÍA REVISIÓN TAXONÓMICA DE LAS HORMIGAS Tapinoma Förster (HYMENOPTERA: FORMICIDAE: DOLICHODERINAE) EN LA REGIÓN NEOTROPICAL Tesis Doctoral presentado ante la ilustre Universidad Central de Venezuela por el Ldo. Roberto José Guerrero Flórez, para optar al título de Doctor en Ciencias Tutor (es): Juan Carlos Navarro, Ph. D. Fernando Fernández, Ph. D (ICN-UN, Colombia) Caracas – Venezuela Octubre de 2017 2 3 RESUMEN Las hormigas del género Tapinoma son un elemento conspicuo adentro de la subfamilia Dolichoderinae. Estas hormigas son cosmopolitas, exhibiendo una mayor riqueza de especies en las regiones paleotropicales, no obstante, la región Neotropical alberga una fauna considerable de especies de Tapinoma. Por primera vez y tomando en consideración las especies de la región Neotropical, se revisan taxonómicamente las especies del género Tapinoma. El análisis morfológico, datos de distribución y en algunos casos la integración de información ecológica, respaldan la delimitación de 10 especies distribuidas en cuatro grupos de especies (Grupo Litorale, Grupo Melanocephalum, Grupo Ramulorum y Grupo Sessile), de los cuales Litorale y Ramulorum albergan el mayor número de especies Neotropicales. El esquema taxonómico es el siguiente: Tapinoma amazonae Wheeler, W.M. 1934, Tapinoma atriceps Emery, 1888 (=Tapinoma atriceps breviscapus Forel, 1908), Tapinoma inrectum Forel, 1908 (estatus revisado y revivido), T. litorae Wheeler, 1905 (=litorale cubaensis Wheeler, W.M. 1913, nuevo sinónimo; =panamense Wheeler, W.M. 1934, nuevo sinónimo), T. melanocephalum (Fabricius, 1793) (=T. luffae (Kuriam 1955), nuevo sinónimo; =T. melanocephalum coronatum Forel, 1908, nuevo sinónimo; =T. melanocephalum malesianum Forel, 1913, nuevo sinónimo), T. opacum Wheeler, W.M. & Mann, 1914, T.
    [Show full text]
  • Stings of Some Species of Lordomynna and Mayriella (Formicidae: Myrmicinae)
    INSECTA MUNDI, Vol. 11, Nos. 3-4, September-December, 1997 193 Stings of some species of Lordomynna and Mayriella (Formicidae: Myrmicinae) Charles Kugler Biology Department, Radford University, Radford, VA 24142 Abstract: The sting apparatus and pygidium are described for eight of20 Lordomyrma species and one of five Mayriella species. The apparatus of L. epinotaiis is distinctly different from that of other Lordomyrma species. Comparisons with other genera suggest affinities of species of Lordomymw to species of Cyphoidris and Lachnomyrmex, while Mayriella abstinens Forel shares unusual features with those of P/'Oattct butteli. Introduction into two halves and a separate sting. The stings were mounted in glycerin jelly for ease of precise This paper describes the sting apparatus in positioning and repositioning for different views. eight species of Lordomyrma that were once mem- The other sclerites were usually mounted in Cana- bers of four different genera. The stings of five da balsam. Lordomyrma species were partially described by Voucher specimens identified with the label Kugler (1978), but at the time three were consid- "Kugler 1995 Dissection voucher" or "Voucher spec- ered to be in the genus Prodicroaspis or Promera­ imen, Kugler study 1976" are deposited in the noplus (Promeranoplus rouxi Emery, one an unde- Museum of Comparative Zoology, Cambridge, Mas- termined species of Promeranoplus, and Prodi­ sachusetts. croaspis sarasini Emery). These genera are now Most preparations were drawn and measured considered synonyms of Lordomyrma (Bolldobler using a Zeiss KF-2 phase contrast microscope with and Wilson 1990, p. 14; Bolton 1994, p. 106). In an ocular grid. Accuracy is estimated at plus or addi tion, during a revision of Rogeria (Kugler 1994) minus O.OOlmm at 400X magnification.
    [Show full text]
  • Revision of the Pachycondyla Wasmannii-Group (Hymenoptera: Formicidae) from the Malagasy Region
    Zootaxa 3609 (2): 101–141 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2013 Magnolia Press Article ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3609.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A8B7BD9C-7959-4036-8D76-9BE72D0F07AA Revision of the Pachycondyla wasmannii-group (Hymenoptera: Formicidae) from the Malagasy region JEAN CLAUDE RAKOTONIRINA1 & BRIAN L. FISHER2 1 Madagascar Biodiversity Center, BP 6257, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo, Madagascar. Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, U.S.A. Email: [email protected] 2 Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, U.S.A. Email: [email protected] Abstract Defining species limits and describing species of ants are important to identify taxa and habitats with elevated diversity in areas of high conservation priority such as the Malagasy region. The Pachycondyla wasmannii-group is revised in the Malagasy region where eight species are recognized, four of which are new: P. ma soa la sp. n., P. planicornis sp. n., P. tavaratra sp. n., and P. v azimb a sp. n. Four species have been previously described: P. ca mbo ue i Forel, P. comorensis (André), P. perroti Forel, and P. wasmannii Forel. Pachycondyla perroti admista Forel is newly synonymized under P. perroti. Pachycondyla cambouei is widespread in eastern Madagascar, morphologically variable, and divided into seven morphotypes. An identification key to species and distribution maps are provided for the genus in the Malagasy region. All species are known only from Madagascar except P.
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]