Ants (Hymenoptera: Fonnicidae) of Samoa!

Total Page:16

File Type:pdf, Size:1020Kb

Ants (Hymenoptera: Fonnicidae) of Samoa! Ants (Hymenoptera: Fonnicidae) of Samoa! James K Wetterer 2 and Donald L. Vargo 3 Abstract: The ants of Samoa have been well studied compared with those of other Pacific island groups. Using Wilson and Taylor's (1967) specimen records and taxonomic analyses and Wilson and Hunt's (1967) list of 61 ant species with reliable records from Samoa as a starting point, we added published, unpublished, and new records ofants collected in Samoa and updated taxonomy. We increased the list of ants from Samoa to 68 species. Of these 68 ant species, 12 species are known only from Samoa or from Samoa and one neighboring island group, 30 species appear to be broader-ranged Pacific natives, and 26 appear to be exotic to the Pacific region. The seven-species increase in the Samoan ant list resulted from the split of Pacific Tetramorium guineense into the exotic T. bicarinatum and the native T. insolens, new records of four exotic species (Cardiocondyla obscurior, Hypoponera opaciceps, Solenopsis geminata, and Tetramorium lanuginosum), and new records of two species of uncertain status (Tetramorium cf. grassii, tentatively considered a native Pacific species, and Monomorium sp., tentatively considered an endemic Samoan form). SAMOA IS AN ISLAND CHAIN in western island groups, prompting Wilson and Taylor Polynesia with nine inhabited islands and (1967 :4) to feel "confident that a nearly numerous smaller, uninhabited islands. The complete faunal list could be made for the western four inhabited islands, Savai'i, Apo­ Samoan Islands." Samoa is of particular in­ lima, Manono, and 'Upolu, are part of the terest because it is one of the easternmost independent country of Samoa (formerly Pacific island groups with a substantial en­ Western Samoa). The eastern five inhabited demic ant fauna. Wilson and Taylor (1967:1) islands, Tutuila, Aunu'u, Ofu, Olosega, and concluded that "few if any ant species are Ta'u, are part of American Samoa, an unin­ native to the islands east of Rotuma, Samoa, corporated territory of the United States. Tonga, and New Zealand. This part of Poly­ The ants of Samoa have been well nesia has been populated by tramp species" studied compared with those of other Pacific (i.e., species that associate with humans and are spread by human commerce). In this study, we combine published, un­ published, and new records from Samoa, in­ I Financial support was provided by American Samoa creasing the list of ants known from Samoa to Community College; the Cooperative Research, Educa­ 68 species. tion, and Extension Service of the U.S. Department of Agriculture (CRIS Accession no. 164128, administered by the American Samoa Community College); Wheaton Published Records College; and Florida Atlantic University. Manuscript ac­ cepted 17 March 2003. Wilson and Taylor (1967) summarized pub­ 2 Wilkes Honors College, Florida Atlantic University, lished records for ants from Samoa. In ad­ 5353 Parkside Drive, Jupiter, Florida 33458 (phone: 561­ 799-8648; fax: 561-799-8602; E-mail: [email protected]). dition, they reported new ant specimens 3 Community and Natural Resources, American Sa­ collected in Samoa by Sweeney and Zimmer­ moa Community College, P.O. Box 5319, Pago Pago, man in 1940, by Woodward in 1956, and by American Samoa 96799. Taylor in 1962. Wilson and Taylor (1967) indicated (in their table 2) that there were 59 Pacific Science (2003), vol. 57, no. 4:409-419 ant species recorded from Samoa. Wilson and © 2003 by University of Hawai'i Press Hunt (1967), however, listed 61 ant species All rights reserved from Samoa, and we used this second list as a 409 410 PACIFIC SCIENCE· October 2003 starting point, with one exception. We used Published Records Excluded fronz Wilson and Pachycondyla insulana (Mayr) (formerly Ecto­ Hunt's (1967) List nzonzy17lzex insulanus Mayr) listed by Wilson and Taylor (1967), instead of Ecto1Jzonzyrmex Kami and Miller (1998) compiled a checklist sanzoanus (a name not found in Bolton 1995; of Samoan insects that included 78 ant taxa, apparendy a typographical error) listed by 16 more than the list of 62 in the preceding Wilson and Hunt (1967). section derived from records in Wilson and Wilson and Hunt's (1967) list increased Taylor (1967). In this extremely useful sum­ to 62 when Bolton (1977) separated Pacific mary of Samoan records, Kami and Miller specimens oftwo taxa that Wilson and Taylor (1998:i) stated that "in some cases it is clear (1967) had synonymized, Tetranzoriunz gui­ that the names were misapplied," and this neense (Bernard) and Tetranzoriunz guineense appears to be true of a number of ant nzaC'rum Emery, recognizing dle former as records. Of the 16 additional taxa on Kami an exotic from Southeast Asia, Tetranzorium and Miller's (1998) list, eight were duplicate bica1'inatum (Nylander), and the latter as a records, seven were records that Wilson and Pacific native, Tetranz01'ium insolens (Smith). Taylor (1967) considered but dismissed as Bolton (2000) reclassified Samoan specimens doubtful, and one taxon Wilson and Taylor listed by Wilson and Taylor (1967) as Snzi­ (1967) did not consider (Table 1). Only two thistrunza dubia Brown [now Pyramica kara­ of these 16 species [Solenopsis genzinata (Fa­ wajewi (Brown)] as a new species, Pyramica bricius) and Tet1'amorium lanuginosunz Mayr] epipola Bolton. This species is known only are known from elsewhere in Polynesia, and from Samoa, but Bolton (2000) thought that both have been subsequendy found in Samoa it was likely to occur elsewhere in the Pacific. (see Results). The 62 ant species with specimens docu­ DUPLICATE RECORDS. Kami and Miller's mented in Wilson and Taylor (1967) are (1998) checklist included eight pairs of dupli­ listed in Tables 2 and 3 (updated taxonomy cate records, where Samoan specimens were from Bolton 1995, 2000). The following 12 identified as one species, then reidentified as species names differ from those used by another, but both names were included on Wilson and Taylor (1967) (in parentheses): the list (name considered valid for Samoan Anoplolepis gracilipes (Smith) (A. longipes), Ce­ specimens in parentheses): Canzponotus con­ rapachys biroi Forel (Syscia silvestrii), Mono­ ithorax Emery (= C. fiavolimbatus Viehmeyer), morium liliuokalanii Forel (M. nzinutum), Canzponotus novaehollandiae Mayr (= C. chlo­ Mononz01'iunz sechellense Emery (M. fossulatunz), roticus Emery), Canzponotus mfifrons leucopus Pachycondyla insulana (Ectonzo1Jzyrnzex insula­ Emery (= C. flavolimbatus), Cerapachys typhlus nus), Pachycondyla stigma (Fabricius) (Trachy­ (Roger) (= C. biroi Forel), Hypoponera con­ nzesopus stigma), Pyranzica epipola (Snzithistru­ vexiuscula (Forel) [= H. confinis (Roger)], nza dubia), Pyramica nzenzbranifera (Emery) Mono1Jzoriunz 1Jzononzoriunz Bolton (= M. li­ (Trichoscapa nzembranife1'a), Rogeria stigmatica liuokalanii), Odontonzachus haematodus (L.) Emery (R. sublevinodis), Stmnzigenys enznzae (= o. sinzillimus F. Smith), and Pheidole tene­ (Emery) (Quadristmma enzmae), Tet1'amo1'ium 1'iffana Fore [= P. megacephala (Fabricius)]. bica1'inatznn (T. guineense), and Tetramorium Wilson and Taylor (1967) reclassified insolens (T. guineense). Canzponotus specimens from Samoa previously Dlussky (1994a,b,c) reported on ants col­ identified as C. novaehollandiae, C. conithorax lected during a 1980 visit to Samoa by the var. nautant11z, and C. mfifrons leucopus: the Soviet research ship Kallisto, adding a new first as C. chloroticus and the other two as C. record of one additional species, Hypopone1'a flavolinzbatus. Taylor (1967a:91) wrote that opaciceps (Mayr), raising the number of Sa­ Syscia typhla Roger (now Cerapachys typhlus) moan ants to 63 species. Although not in­ was "known under various names from cluded in his paper, G. M. Dlussky (pers. China, Nepal, Okinawa, Hawai'i, Samoa and comm.) provided us with collection informa­ Puerto Rico (Wilson and Taylor mss)." Wil­ tion for these ants (see Results). son and Taylor (1967), however, used the Ants of Samoa . Wette1'e1' and Va1'go 411 TABLE 1 Previously Published Samoan Ant Records Listed in Kami and Miller (1998), but Not Included in Wilson and Hunt (1967) Known Regional Range Status of Samoan West Pacific" Polynesiab Records Based on Wilson and Taylor Species AI MCSNVF WSTNCFH (1967) Camponotus conithorax Emery ----v- -?----- = C. flavolimbatus Camp. flavoma1'ginatlls Mayr -?----- Doubtful Ca'mp. novaehollandiae Mayr A- --SN-- -?----- = C. chloroticus Camp. rlljifrons leucopus Emery ---N-- -?----- = C. flavolimbatus Ce1'apachys typhlus (Roger) ------ -?----- = C. biroi EUp1'e1Zolepis stigmatica (Mann) --S--- -?----- Doubtful Hypoponern convexiuscula (Forel) A- ------ -?----- = H. confinis b'idomyl'mex rllfoniger (Lowne) A- ------ -?----- Probably erroneous Monomol'ium nzonomonum Bolton ------ -?----- = M. liliuokalanii Odontomachus haematodus (L.) -?----- = O. simillimus Oecophylla smamgdina (Fabricius) AI --S--- -?----- Doubtful Pheidole teneriffana Forel ------ -?----- = P. megacephala Rhytidopone1'a metallica (Smith) A- ------ -?----- Probably erroneous Solenopsis ge1Zzinata (Fabricius) AI MCSN-F -ST-CFH Not considered Tapinoma wheelen (Mann) ------ -?----- Not from Samoa Tetranzorium lanuginosum Mayr AI MCS--- WST-CF- Ephemeral n A, Australia; I, Indomalaysia; M, Mariana Islands; C, Caroline Islands; S, Solomon Islands; N, New Caledonia; V, Vanuatu; F, Fiji. b W, Wallis and Futuna; S, Samoa; T, Tonga; N, Niue; C, Cook Islands; F, French Polynesia; H, Hawai'i. name Syscia silvestrii Fore! (now Cerapachys Neotropical O. haematodus." Santschi (1919) biroi) for specimens
Recommended publications
  • In Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis Geminata
    The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. By Rebecca L. Sandidge A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Neil D. Tsutsui, Chair Professor Brian Fisher Professor Rosemary Gillespie Professor Ellen Simms Fall 2018 The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. © 2018 By Rebecca L. Sandidge 1 Abstract The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. by Rebecca L. Sandidge Doctor of Philosophy in Environmental Science Policy and Management, Berkeley Professor Neil Tsutsui, Chair Invasive species and habitat destruction are considered to be the leading causes of biodiversity decline, signaling declining ecosystem health on a global scale. Ants (Formicidae) include some on the most widespread and impactful invasive species capable of establishing in high numbers in new habitats. The tropical grasslands of Indonesia are home to several invasive species of ants. Invasive ants are transported in shipped goods, causing many species to be of global concern. My dissertation explores ant communities in the grasslands of southeastern Indonesia. Communities are described for the first time with a special focus on the Tropical Fire Ant, Solenopsis geminata, which consumes grass seeds and can have negative ecological impacts in invaded areas. The first chapter describes grassland ant communities in both disturbed and undisturbed grasslands.
    [Show full text]
  • User's Guide Project: the Impact of Non-Native Predators On
    User’s Guide Project: The Impact of Non-Native Predators on Pollinators and Native Plant Reproduction in a Hawaiian Dryland Ecosystem SERDP project number: RC-2432 Principal Investigators: Christina T. Liang, USDA Forest Service Clare E. Aslan, Northern Arizona University William P. Haines, University of Hawaiʻi at Mānoa Aaron B. Shiels, USDA APHIS Contributor: Manette E. Sandor, Northern Arizona University Date: 30 October 2019 Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 10-30-2019 User’s Guide 01-02-2014 to 10-30-2019 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER User’s Guide. The Impact of Non-Native Predators on Pollinators and Native Plant Reproduction in a Hawaiian Dryland Ecosystem.
    [Show full text]
  • A Preliminary Checklist of the Ants (Hymenoptera, Formicidae) of Everglades-National-Park
    University of Central Florida STARS Faculty Bibliography 1990s Faculty Bibliography 1-1-1994 A Preliminary Checklist Of The Ants (Hymenoptera, Formicidae) Of Everglades-National-Park Betty Ferster Zachary Prusak University of Central Florida Find similar works at: https://stars.library.ucf.edu/facultybib1990 University of Central Florida Libraries http://library.ucf.edu This Note is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 1990s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Ferster, Betty and Prusak, Zachary, "A Preliminary Checklist Of The Ants (Hymenoptera, Formicidae) Of Everglades-National-Park" (1994). Faculty Bibliography 1990s. 1041. https://stars.library.ucf.edu/facultybib1990/1041 508 Florida Entomologist 77(4) December, 1994 A PRELIMINARY CHECKLIST OF THE ANTS (HYMENOPTERA: FORMICIDAE) OF EVERGLADES NATIONAL PARK BETTY FERSTER1 AND ZACHARY PRUSAK2 1Boston University Biology Department, Boston, MA 02215 2University of Central Florida, Department of Biology, Orlando, FL 32816 Everglades National Park encompasses 602,616 ha within Dade, Monroe and Col- lier counties of southern, peninsular Florida. The Park contains varied habitat types including rockland pine, mangrove swamp, hardwood hammock, freshwater slough, freshwater marl prairie, cypress swamp, and coastal prairie as well as marine and es- tuarine habitats (Everglades National Park official map and guide 1993). The Everglades may function as a last refuge for rare and rapidly disappearing natural communities. It also includes areas that were once managed for such diverse uses as cattle ranching and sugar cane production. The ant fauna, therefore, is likely to be rich in indigenous species of natural habitats as well as species typical of dis- turbed sites, including exotics.
    [Show full text]
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • NEW TRAMP ANT SPECIES for TURKEY: Tetramorium Lanuginosum Mayr (HYMENOPTERA: FORMICIDAE)
    http://dergipark.gov.tr/trkjnat Trakya University Journal of Natural Sciences, 19(1): 51-54, 2018 ISSN 2147-0294, e-ISSN 2528-9691 Research Article DOI: 10.23902/trkjnat.340008 NEW TRAMP ANT SPECIES FOR TURKEY: Tetramorium lanuginosum Mayr (HYMENOPTERA: FORMICIDAE) Celal KARAMAN*, Kadri KIRAN Trakya University, Faculty of Science, Department of Biology, Balkan Campus, 22030, Edirne, TURKEY *Corresponding author: e-mail: [email protected] Cite this article as: Karaman C. & Kiran K. 2018. New Tramp Ant Species for Turkey: Tetramorium lanuginosum Mayr (Hymenoptera: Formicidae). Trakya Univ J Nat Sci, 19(1): 51-54, DOI: 10.23902/trkjnat.346537 Received: 26 September 2017, Accepted: 11 January 2018, Online First: 17 January 2018, Published: 15 April 2018 Abstract: Human activities such as tourism, developed transportation and increased trade lead to the introduction of faunal elements into non-native habitats and consequently affect native fauna. These introduced species are called as non-native, exotic, invasive or tramp species. Here we record the well-known tramp species Tetramorium lanuginosum Mayr, for the first time from Turkey (Antalya-Alanya), and present first locality records for Paratrechina longicornis (Latreille) from Antalya- Alanya and Adana. Thus, the number of tramp ant species of Turkey is increased to 19. Key words: Tramp species, new record, Northeastern Mediterranean, Antalya-Alanya. Özet: Turizm, gelişmiş ulaşım ve artan ticaret gibi insan faaliyetleri faunal elemanların dağılım alanları dışındaki habitatlara taşınmasına neden olmakta ve dolayısıyla yerli faunayı etkilemektedir. Bu faaliyetlerle taşınan organizmalar yerli olmayan, egzotik, istilacı veya tramp türler olarak adlandırılır. Bu çalışmada, çok iyi bilinen tramp karınca türü olan Tetramorium lanuginosum Mayr’u Türkiye’den (Antalya-Alanya) ilk defa kayıt edilmekte ve Paratrechina longicornis (Latreille)’e ait ilk lokalite kayıtları ise Antalya-Alanya ve Adana’dan verilmektedir.
    [Show full text]
  • Tapinoma Melanocephalum (Fabricius, 1793), a New Exotic Ant in Spain (Hymenoptera, Formicidae)
    Orsis17 07 Espadaler.qxd 17/12/02 07:45 Página 101 Orsis 17, 2002 101-104 Tapinoma melanocephalum (Fabricius, 1793), a new exotic ant in Spain (Hymenoptera, Formicidae) Xavier Espadaler Unitat d’Ecologia and CREAF. Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona). Spain Federico Espejo Killgerm. Enginy, 9 08840 Viladecans (Barcelona). Spain Manuscript received in April 2002 Several tramp ant species are found in the city of Barcelona (Espadaler & Co- llingwood 2001 and references): Lasius neglectus, Pheidole teneriffana, Para- trechina flavipes, Hypoponera punctatissima and Linepithema humile. Only the last species, the argentine ant, attains pest status in the city at present. To that small group we can now add a sixth species, the ghost ant, the first time it has been recorded in the Iberian Peninsula. Within the Iberian Tapinoma species, this ant is easily distinguished by its highly distinct bicoloured habitus (Fig. 1), with the yellowish gaster, legs and antennae, contrasting with the dark head and tho- rax. See Shattuck (1994): 147-148 for a complete historical taxonomic history and supplementary references. The ghost ant (Tapinoma melanocephalum) is a well known tramp species widely dispersed by human trade mainly throughout humid tropical regions (Wi- lliams 1994), although it has also been detected in the climatically much drier Arabic Peninsula (Collingwood & Agosti 1996; Collingwood et al. 1997). Its ori- gin is unknown (Wilson & Taylor 1967). Isolates have been found outside the tropics, probably carried with plant material or products from the tropics. Out- side this region, it seems to thrive only in heated buildings (DuBois & Danoff- Burg 1994) or inside structures (Klotz et al.
    [Show full text]
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • Notes on Ants (Hymenoptera: Formicidae) from Gambia (Western Africa)
    ANNALS OF THE UPPER SILESIAN MUSEUM IN BYTOM ENTOMOLOGY Vol. 26 (online 010): 1–13 ISSN 0867-1966, eISSN 2544-039X (online) Bytom, 08.05.2018 LECH BOROWIEC1, SEBASTIAN SALATA2 Notes on ants (Hymenoptera: Formicidae) from Gambia (Western Africa) http://doi.org/10.5281/zenodo.1243767 1 Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego 65, 51-148 Wrocław, Poland e-mail: [email protected], [email protected] Abstract: A list of 35 ant species or morphospecies collected in Gambia is presented, 9 of them are recorded for the first time from the country:Camponotus cf. vividus, Crematogaster cf. aegyptiaca, Dorylus nigricans burmeisteri SHUCKARD, 1840, Lepisiota canescens (EMERY, 1897), Monomorium cf. opacum, Monomorium cf. salomonis, Nylanderia jaegerskioeldi (MAYR, 1904), Technomyrmex pallipes (SMITH, 1876), and Trichomyrmex abyssinicus (FOREL, 1894). A checklist of 82 ant species recorded from Gambia is given. Key words: ants, faunistics, Gambia, new country records. INTRODUCTION Ants fauna of Gambia (West Africa) is poorly known. Literature data, AntWeb and other Internet resources recorded only 59 species from this country. For comparison from Senegal, which surrounds three sides of Gambia, 89 species have been recorded so far. Both of these records seem poor when compared with 654 species known from the whole western Africa (SHUCKARD 1840, ANDRÉ 1889, EMERY 1892, MENOZZI 1926, SANTSCHI 1939, LUSH 2007, ANTWIKI 2017, ANTWEB 2017, DIAMÉ et al. 2017, TAYLOR 2018). Most records from Gambia come from general web checklists of species. Unfortunately, they lack locality data, date of sampling, collector name, coordinates of the locality and notes on habitats.
    [Show full text]
  • Taxonomic Studies on Ant Genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India
    ASIAN MYRMECOLOGY Volume 7, 37 – 51, 2015 ISSN 1985-1944 © HIMENDER BHARTI, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Taxonomic studies on ant genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India HIMENDER BHARTI*, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Department of Zoology and Environmental Sciences, Punjabi University, Patiala – 147002, India *Corresponding author's e-mail: [email protected] ABSTRACT. The Indian species of the ant genus Hypoponera Santschi, 1938 are treated herewith. Eight species are recognized of which three are described as new and two infraspecific taxa are raised to species level. The eight Indian species are: H. aitkenii (Forel, 1900) stat. nov., H. assmuthi (Forel, 1905), H. confinis (Roger, 1860), H. kashmirensis sp. nov., H. shattucki sp. nov., H. ragusai (Emery, 1894), H. schmidti sp. nov. and H. wroughtonii (Forel, 1900) stat. nov. An identification key based on the worker caste of Indian species is provided. Keywords: New species, ants, Formicidae, Ponerinae, Hypoponera, India. INTRODUCTION genus with use of new taxonomic characters facilitating prompt identification. The taxonomy of Hypoponera has been in a From India, three species and two state of confusion and uncertainty for some infraspecific taxa ofHypoponera have been reported time. The small size of the ants, coupled with the to date (Bharti, 2011): Hypoponera assmuthi morphological monotony has led to the neglect (Forel, 1905), Hypoponera confinis (Roger, of this genus. The only noteworthy revisionary 1860), Hypoponera confinis aitkenii (Forel, 1900), work is that of Bolton and Fisher (2011) for Hypoponera confinis wroughtonii (Forel, 1900) and the Afrotropical and West Palearctic regions. Hypoponera ragusai (Emery, 1894).
    [Show full text]
  • Ants (Hymenoptera: Formicidae) of Bermuda
    212 Florida Entomologist 87(2) June 2004 ANTS (HYMENOPTERA: FORMICIDAE) OF BERMUDA JAMES K. WETTERER1 AND ANDREA L. WETTERER2 1Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 2Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027 ABSTRACT For more than 50 years, two exotic ant species, Linepithema humile (Mayr) and Pheidole megacephala (F.), have been battling for ecological supremacy in Bermuda. Here we summa- rize known ant records from Bermuda, provide an update on the conflict between the domi- nant ant species, and evaluate the possible impact of the dominant species on the other ants in Bermuda. We examined ant specimens from Bermuda representing 20 species: Brachy- myrmex heeri Forel, B. obscurior Forel, Camponotus pennsylvanicus (De Geer), Cardio- condyla emeryi Forel, C. obscurior Wheeler, Crematogaster sp., Hypoponera opaciceps (Mayr), H. punctatissima (Roger), L. humile, Monomorium monomorium Bolton, Odontomachus rug- inodis Smith, Paratrechina longicornis (Latreille), P. vividula (Nylander), P. megacephala, Plagiolepis alluaudi Forel, Solenopsis (Diplorhoptrum) sp., Tetramorium caldarium Roger, T. simillimum (Smith), Wasmannia auropunctata (Roger), and an undetermined Dacetini. Records for all but three (H. punctatissima, P. vividula, W. auropunctata) include specimens from 1987 or later. We found no specimens to confirm records of several other ant species, in- cluding Monomorium pharaonis (L.) and Tetramorium caespitum (L.). Currently, L. humile dominates most of Bermuda, while P. megacephala appear to be at its lowest population lev- els recorded. Though inconspicuous, B. obscurior is common and coexists with both dominant species. Paratrechina longicornis has conspicuous populations in two urban areas. Three other ant species are well established, but inconspicuous due to small size (B.
    [Show full text]
  • Diversity and Organization of the Ground Foraging Ant Faunas of Forest, Grassland and Tree Crops in Papua New Guinea
    - - -- Aust. J. Zool., 1975, 23, 71-89 Diversity and Organization of the Ground Foraging Ant Faunas of Forest, Grassland and Tree Crops in Papua New Guinea P. M. Room Department of Agriculture, Stock and Fisheries, Papua New Guinea; present address: Cotton Research Unit, CSIRO, P.M.B. Myallvale Mail Run, Narrabri, N.S.W. 2390. Abstract Thirty samples of ants were taken in each of seven habitats: primary forest, rubber plantation, coffee plantation, oilpalm plantation, kunai grassland, eucalypt savannah and urban grassland. Sixty samples were taken in cocoa plantations. A total of 156 species was taken, and the frequency of occurrence of each in each habitat is given. Eight stenoecious species are suggested as habitat indicators. Habitats fell into a series according to the similarity of their ant faunas: forest, rubber and coffee, cocoa and oilpalm, kunai and savannah, urban. This series represents an artificial, discontinuous succession from a complex stable ecosystem to a simple unstable one. Availability of species suitably preadapted to occupy habitats did not appear to limit species richness. Habitat heterogeneity and stability as affected by human interference did seem to account for inter-habitat variability in species richness. Species diversity was compared between habitats using four indices: Fisher et al.; Margalef; Shannon; Brillouin. Correlation of diversity index with habitat hetero- geneity plus stability was good for the first two, moderate for Shannon, and poor for Brillouin. Greatest diversity was found in rubber, the penultimate in the series of habitats according to hetero- geneity plus stability ('maturity'). Equitability exceeded the presumed maximum in rubber, and was close to the maximum in all habitats.
    [Show full text]
  • Том 16. Вып. 2 Vol. 16. No. 2
    РОССИЙСКАЯ АКАДЕМИЯ НАУК Южный научный центр RUSSIAN ACADEMY OF SCIENCES Southern Scientific Centre CAUCASIAN ENTOMOLOGICAL BULLETIN Том 16. Вып. 2 Vol. 16. No. 2 Ростов-на-Дону 2020 Кавказский энтомологический бюллетень 16(2): 381–389 © Caucasian Entomological Bulletin 2020 Contribution of wet zone coconut plantations and non-agricultural lands to the conservation of ant communities (Hymenoptera: Formicidae) in Sri Lanka © R.K.S. Dias, W.P.S.P. Premadasa Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600 Sri Lanka. E-mails: [email protected], [email protected] Abstract. Agricultural practices are blamed for the reduction of ant diversity on earth. Contribution of four coconut plantations (CP) and four non-agricultural lands (NL) for sustaining diversity and relative abundance of ground-dwelling and ground-foraging ants was investigated by surveying them from May to October, 2018, in a CP and a NL in Minuwangoda, Mirigama, Katana and Veyangoda in Gampaha District that lies in the wet zone, Sri Lanka. Worker ants were surveyed by honey baiting and soil sifting along two transects at three, 50 m2 plots in each type of land. Workers were identified using standard methods and frequency of each ant species observed by each method was recorded. Percentage frequency of occurrence observed by each method, mean percentage frequency of occurrence of each ant species and proportional abundance of each species in each ant community were calculated. Species richness recorded by both methods at each CP was 14–19 whereas that recorded at each NL was 17–23. Shannon-Wiener Diversity Index values (Hʹ, CP: 2.06–2.36; NL: 2.11–2.56) and Shannon- Wiener Equitability Index values (Jʹ, CP: 0.73–0.87; NL: 0.7–0.88) showed a considerable diversity and evenness of ant communities at both types of lands.
    [Show full text]