Plates for Ants of Micronesia.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Plates for Ants of Micronesia.Pdf 276 Micronesica 39(2), 2007 Figure 1. A–Anochetus graeffei; B–Cryptopone butteli; C–Eurhopalothrix procera (not to relative scale). Clouse: Ants of Micronesia 277 Figure 2. Camponotus mesosoma lateral profiles (not to scale): A– sp. 121958, B–chloroticus, C– eperiamorum, D–erythrocephalus, E–marianensis, F–reticulatus. 278 Micronesica 39(2), 2007 Figure 3. A–Cardiocondyla obscurior lateral, B–Cerapachys 91952 lateral anterior, C–lateral posterior, D–Crematogaster biroi / emeryi propodeal spine; E–Crematogaster fritzi propodeal spine; F–Cryptopone butteli head side. Clouse: Ants of Micronesia 279 Figure 4. A–Cryptopone butteli node lateral; B– C. testacea node lateral; C–Hypoponera confinis head lateral; D–H. punctatissima node lateral; E–Monomorium chinense-group petiole and postpetiole lateral; F–M. floricola petiole and postpetiole lateral 280 Micronesica 39(2), 2007 Figure 5. A–Monomorium australicum lateral; B–M. sechellense lateral; C–Myrmecina sp. 7121952 head side, D–front; E–Paratrechina bourbonica lateral mesonotum; F–P. vaga lateral mesonotum. Clouse: Ants of Micronesia 281 Figure 6. A–Paratrechina clandestina lateral, B–front, C–propodeum, D–nozzle. 282 Micronesica 39(2), 2007 Figure 7. A–Pheidole sp. 24041958 lateral, B–front; C–P. fervens major front close-up, D–minor propodeum; E–P. oceanica major front close-up, F–minor propodeum. Clouse: Ants of Micronesia 283 Figure 8. A–Pheidole megacephala propodeum; B–Pheidole recondita minor; C–Platythyrea parallela tarsal claw; D–Polyrachis sp. 91952; E–Ponera sp. 10091995 dorsal; F–P. tenuis dorsal. 284 Micronesica 39(2), 2007 Figure 9. A–Ponera tenuis; B–Prionopelta opaca (not to relative scale). Clouse: Ants of Micronesia 285 Figure 10. A–Pristomyrmex largus; B–P. levigatus; C–P. quadridens (not to relative scale). 286 Micronesica 39(2), 2007 Figure 11. A–Pyramica karawajewi front; B–P. membranifera front; C–Strumigenys rogeri front; D–S. godeffroyi lateral close-up; E–S. szalayi lateral. Clouse: Ants of Micronesia 287 Figure 12. A–Rogeria sp. 25111995 front; B–Tetramorium sp. 14121952 front; C–T. bicarinatum frons; D–T. insolens frons; E–T. bicarinatum anterior pronotum; F–T. insolens anterior pronotum. 288 Micronesica 39(2), 2007 Figure 13. A–Tetramorium lanuginosum mesonotum, B–head; C–T. simillimum anterior pronotum; D–T. pacificum anterior pronotum; E–T. smithi dorsal; F–T. tonganum lateral. Clouse: Ants of Micronesia 289 Figure 14. A–Tetramorium smithi front; B–Vollenhovia sp. 23031948 front; C–V. kaselela head side, D–front. 290 Micronesica 39(2), 2007 Figure 15. A–Vollenhovia mwereka front; B–V. pwidikidika front, C–head side; D–V. kaselela lateral and dorsal. Figure 16 (facing page). Micronesia reference map (1-Bonin Islands (Japan), 2-Mariana Islands (commonwealth with and territory of U.S.), 3-Republic of the Marshall Islands, 4-Wake Atoll (U.S.), 5-Johnston Island (U.S.), 6-Republic of Palau, 7-Federated States of Micronesia (FSM), Yap State, 8-FSM, Chuuk State, 9-FSM, Pohnpei State, 10-FSM, Kosrae State, 11-Republic of Kiribati, Gilbert Islands, 12- Kiribati, Phoenix Islands, 13- Kiribati, Line Islands, 14- Howland Island (U.S.), Palmyra Island (U.S.)) and distribution maps for Anochetus graeffei through Cerapachys sp. 91952 (black = three or more collections seen, dark gray = one or two collections seen, light gray = collections known only from reports.) Clouse: Ants of Micronesia 291 (Caption on facing page.) 292 Micronesica 39(2), 2007 Figure 17. Distribution maps for species Crematogaster cf. biroi through Paratrechina bourbonica. Clouse: Ants of Micronesia 293 Figure 18. Distribution maps for species Paratrechina clandestina through Pristomyrmex largus. 294 Micronesica 39(2), 2007 Figure 19. Distribution maps for species Pristomyrmex levigatus through Technomyrmex albipes. Clouse: Ants of Micronesia 295 Figure 20. Distribution maps for species Technomyrmex kraepelini through Vollenhovia sp. 23031948. .
Recommended publications
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • Taxonomic Studies on Ant Genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India
    ASIAN MYRMECOLOGY Volume 7, 37 – 51, 2015 ISSN 1985-1944 © HIMENDER BHARTI, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Taxonomic studies on ant genus Hypoponera (Hymenoptera: Formicidae: Ponerinae) from India HIMENDER BHARTI*, SHAHID ALI AKBAR, AIJAZ AHMAD WACHKOO AND JOGINDER SINGH Department of Zoology and Environmental Sciences, Punjabi University, Patiala – 147002, India *Corresponding author's e-mail: [email protected] ABSTRACT. The Indian species of the ant genus Hypoponera Santschi, 1938 are treated herewith. Eight species are recognized of which three are described as new and two infraspecific taxa are raised to species level. The eight Indian species are: H. aitkenii (Forel, 1900) stat. nov., H. assmuthi (Forel, 1905), H. confinis (Roger, 1860), H. kashmirensis sp. nov., H. shattucki sp. nov., H. ragusai (Emery, 1894), H. schmidti sp. nov. and H. wroughtonii (Forel, 1900) stat. nov. An identification key based on the worker caste of Indian species is provided. Keywords: New species, ants, Formicidae, Ponerinae, Hypoponera, India. INTRODUCTION genus with use of new taxonomic characters facilitating prompt identification. The taxonomy of Hypoponera has been in a From India, three species and two state of confusion and uncertainty for some infraspecific taxa ofHypoponera have been reported time. The small size of the ants, coupled with the to date (Bharti, 2011): Hypoponera assmuthi morphological monotony has led to the neglect (Forel, 1905), Hypoponera confinis (Roger, of this genus. The only noteworthy revisionary 1860), Hypoponera confinis aitkenii (Forel, 1900), work is that of Bolton and Fisher (2011) for Hypoponera confinis wroughtonii (Forel, 1900) and the Afrotropical and West Palearctic regions. Hypoponera ragusai (Emery, 1894).
    [Show full text]
  • Том 16. Вып. 2 Vol. 16. No. 2
    РОССИЙСКАЯ АКАДЕМИЯ НАУК Южный научный центр RUSSIAN ACADEMY OF SCIENCES Southern Scientific Centre CAUCASIAN ENTOMOLOGICAL BULLETIN Том 16. Вып. 2 Vol. 16. No. 2 Ростов-на-Дону 2020 Кавказский энтомологический бюллетень 16(2): 381–389 © Caucasian Entomological Bulletin 2020 Contribution of wet zone coconut plantations and non-agricultural lands to the conservation of ant communities (Hymenoptera: Formicidae) in Sri Lanka © R.K.S. Dias, W.P.S.P. Premadasa Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600 Sri Lanka. E-mails: [email protected], [email protected] Abstract. Agricultural practices are blamed for the reduction of ant diversity on earth. Contribution of four coconut plantations (CP) and four non-agricultural lands (NL) for sustaining diversity and relative abundance of ground-dwelling and ground-foraging ants was investigated by surveying them from May to October, 2018, in a CP and a NL in Minuwangoda, Mirigama, Katana and Veyangoda in Gampaha District that lies in the wet zone, Sri Lanka. Worker ants were surveyed by honey baiting and soil sifting along two transects at three, 50 m2 plots in each type of land. Workers were identified using standard methods and frequency of each ant species observed by each method was recorded. Percentage frequency of occurrence observed by each method, mean percentage frequency of occurrence of each ant species and proportional abundance of each species in each ant community were calculated. Species richness recorded by both methods at each CP was 14–19 whereas that recorded at each NL was 17–23. Shannon-Wiener Diversity Index values (Hʹ, CP: 2.06–2.36; NL: 2.11–2.56) and Shannon- Wiener Equitability Index values (Jʹ, CP: 0.73–0.87; NL: 0.7–0.88) showed a considerable diversity and evenness of ant communities at both types of lands.
    [Show full text]
  • Ants (Hymenoptera: Fonnicidae) of Samoa!
    Ants (Hymenoptera: Fonnicidae) of Samoa! James K Wetterer 2 and Donald L. Vargo 3 Abstract: The ants of Samoa have been well studied compared with those of other Pacific island groups. Using Wilson and Taylor's (1967) specimen records and taxonomic analyses and Wilson and Hunt's (1967) list of 61 ant species with reliable records from Samoa as a starting point, we added published, unpublished, and new records ofants collected in Samoa and updated taxonomy. We increased the list of ants from Samoa to 68 species. Of these 68 ant species, 12 species are known only from Samoa or from Samoa and one neighboring island group, 30 species appear to be broader-ranged Pacific natives, and 26 appear to be exotic to the Pacific region. The seven-species increase in the Samoan ant list resulted from the split of Pacific Tetramorium guineense into the exotic T. bicarinatum and the native T. insolens, new records of four exotic species (Cardiocondyla obscurior, Hypoponera opaciceps, Solenopsis geminata, and Tetramorium lanuginosum), and new records of two species of uncertain status (Tetramorium cf. grassii, tentatively considered a native Pacific species, and Monomorium sp., tentatively considered an endemic Samoan form). SAMOA IS AN ISLAND CHAIN in western island groups, prompting Wilson and Taylor Polynesia with nine inhabited islands and (1967 :4) to feel "confident that a nearly numerous smaller, uninhabited islands. The complete faunal list could be made for the western four inhabited islands, Savai'i, Apo­ Samoan Islands." Samoa is of particular in­ lima, Manono, and 'Upolu, are part of the terest because it is one of the easternmost independent country of Samoa (formerly Pacific island groups with a substantial en­ Western Samoa).
    [Show full text]
  • Of Christmas Island (Indian Ocean): Identification and Distribution
    DOI: 10.18195/issn.0312-3162.25(1).2008.045-085 Records of the Western Australian Museum 25: 45-85 (2008). Ants (Hymenoptera: Formicidae) of Christmas Island (Indian Ocean): identification and distribution Volker w. Framenau1,2 andMelissa 1. Thomas2,3,* 1 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. E-mail: [email protected] 2 School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia. 3 Parks Australia North, PO Box 867, Christmas Island, Indian Ocean 6798, Australia. Abstract - The composition of the Christmas Island (Indian Ocean) ant fauna is reviewed, leading to the recognition of 52 species in 24 genera and 7 subfamilies. This account amalgamates previously published records and recent extensive surveys of Christmas Island's ant fauna. Eight species represent new records for Christmas Island: Technomyrmex vitiensis, Camponotus sp. (novaehollandiae group), Cardiocondyla kagutsuchi, Monomorium orientale, M. cf. subcoecum, Tetramorium cf. simillimum, T. smithi and T. walshi. Although some of these new species records represent recent taxonomic advances rather than new introductions, we consider four species to be true new records to Christmas Island. These include Camponotus sp. (novaehollandiae group), M. orientale, T. smithi and T. walshi. None of the 52 species reported here are considered endemic. In general, the Christmas Island ant fauna is composed of species that are regarded as worldwide tramps, or that are widespread in the Indo-Australian region. However, Christmas Island may fall within the native range of some of these species. We provide a key to the ant species of Christmas Island (based on the worker caste), supplemented by comprehensive distribution maps of these ants on Christmas Island and a short synopsis of each species in relation to their ecology and world-wide distribution.
    [Show full text]
  • Of Sri Lanka: a Taxonomic Research Summary and Updated Checklist
    ZooKeys 967: 1–142 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.967.54432 CHECKLIST https://zookeys.pensoft.net Launched to accelerate biodiversity research The Ants (Hymenoptera, Formicidae) of Sri Lanka: a taxonomic research summary and updated checklist Ratnayake Kaluarachchige Sriyani Dias1, Benoit Guénard2, Shahid Ali Akbar3, Evan P. Economo4, Warnakulasuriyage Sudesh Udayakantha1, Aijaz Ahmad Wachkoo5 1 Department of Zoology and Environmental Management, University of Kelaniya, Sri Lanka 2 School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China3 Central Institute of Temperate Horticulture, Srinagar, Jammu and Kashmir, 191132, India 4 Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 5 Department of Zoology, Government Degree College, Shopian, Jammu and Kashmir, 190006, India Corresponding author: Aijaz Ahmad Wachkoo ([email protected]) Academic editor: Marek Borowiec | Received 18 May 2020 | Accepted 16 July 2020 | Published 14 September 2020 http://zoobank.org/61FBCC3D-10F3-496E-B26E-2483F5A508CD Citation: Dias RKS, Guénard B, Akbar SA, Economo EP, Udayakantha WS, Wachkoo AA (2020) The Ants (Hymenoptera, Formicidae) of Sri Lanka: a taxonomic research summary and updated checklist. ZooKeys 967: 1–142. https://doi.org/10.3897/zookeys.967.54432 Abstract An updated checklist of the ants (Hymenoptera: Formicidae) of Sri Lanka is presented. These include representatives of eleven of the 17 known extant subfamilies with 341 valid ant species in 79 genera. Lio- ponera longitarsus Mayr, 1879 is reported as a new species country record for Sri Lanka. Notes about type localities, depositories, and relevant references to each species record are given.
    [Show full text]
  • RONALD M. CLOUSE Department of Organismic & Evolutionary Biology, and Museum of Comparative Zoology, Dept
    Micronesica 39(2): 171-295, 2007 The ants of Micronesia (Hymenoptera: Formicidae) RONALD M. CLOUSE Department of Organismic & Evolutionary Biology, and Museum of Comparative Zoology, Dept. of Invertebrates, Harvard University 16 Divinity Avenue, Cambridge, MA 02138, USA [email protected] Abstract—The ant fauna of Micronesia as determined from museum specimens and from collections mainly on Pohnpei Island is presented here. Around 111 species are found in the region, many of which appear to be island endemics. Palau, Pohnpei, and the Marianas rank the highest in species diversity, with Pohnpei and Palau being especially rich in apparent endemics. The Bonin Islands and Kiribati are poorly sampled, and our understanding of the ant fauna in the whole of Micronesia could benefit greatly from additional collections. Many new and interesting species are known from single collections or single specimens, even on Pohnpei, which is perhaps now the most thoroughly sampled large island in the region. The Marshall Islands contain mostly pan-Pacific and pantropical tramp species, but there do exist collections from the Marshalls (such as a series of Pheidole minors) that can only be clarified through further fieldwork. All data on specimens examined, collected, and reported, as well as a key to their identification and maps of their distributions are provided. Introduction and Methods This study began for me as a few informal collections on the island of Pohnpei. When I discovered that the Insects of Micronesia series (introduction by Gressitt 1954) was still missing a study of the formicids, I attempted to construct a study of just Pohnpei using Wilson and Taylor’s Ants of Polynesia (1967) as a model.
    [Show full text]
  • List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
    List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone
    [Show full text]
  • Hymenoptera: Formicidae)1
    Patterns of Nestedness in Remote Polynesian Ant Faunas (Hymenoptera: Formicidae)1 Lloyd W. Morrison2 Abstract: The entire ant faunas of remote Polynesian islands consist of intro- duced species. An important question concerning the assembly of Pacific island ant faunas is whether these species are a random assortment of the available spe- cies pool, or whether they exhibit highly ordered occurrence patterns (i.e., nested subsets of species). I evaluated nestedness for the ant faunas of two island groups in remote Polynesia: (1) the Hawaiian Islands, and (2) French Polynesia and the Cook Islands. Wilcoxon two-sample tests were used to analyze nested- ness patterns for individual species and islands; the degree of nestedness for species assemblages and archipelagos was determined by combining tail proba- bilities of individual species and islands. Both island groups revealed highly sig- nificant nestedness at the level of the assemblage (a per-species approach) as well as the archipelago (a per-island approach). Considered individually, most species (73–95%) and most islands (89–100%) demonstrated significant nested- ness. Instances of nonsignificant nestedness were frequently associated with low statistical power. These results reveal a strong deterministic element in the as- semblage of remote Polynesian ant faunas. Dispersal opportunities along with presence of appropriate habitat type are likely the most important mechanisms underlying the observed patterns. The entire ant faunas of the more distribution patterns (Wilson and Taylor remote Polynesian islands (east of Rotuma, 1967b); this remained the conventional wis- Samoa, and Tonga) consist of introduced dom for many years (Ho¨lldobler and Wilson species. Although most introductions have 1990).
    [Show full text]
  • Occasional Papers
    NUMBER 85, 47 pages 28 February 2006 BISHOP MUSEUM OCCASIONAL PAPERS FIJI ARTHROPODS III NEAL L. EVENHUIS AND DANIEL J. BICKEL, EDITORS 3 BISHOP MUSEUM PRESS HONOLULU Bishop Museum Press has been publishing scholarly books on the natu- RESEARCH ral and cultural history of Hawai‘i and the Pacific since 1892. The Bernice P. Bishop Museum Bulletin series (ISSN 0005-9439) was begun PUBLICATIONS OF in 1922 as a series of monographs presenting the results of research in many scientific fields throughout the Pacific. In 1987, the Bulletin series BISHOP MUSEUM was superceded by the Museum’s five current monographic series, issued irregularly: Bishop Museum Bulletins in Anthropology (ISSN 0893-3111) Bishop Museum Bulletins in Botany (ISSN 0893-3138) Bishop Museum Bulletins in Entomology (ISSN 0893-3146) Bishop Museum Bulletins in Zoology (ISSN 0893-312X) Bishop Museum Bulletins in Cultural and Environmental Studies (ISSN 1548-9620) Bishop Museum Press also publishes Bishop Museum Occasional Papers (ISSN 0893-1348), a series of short papers describing original research in the natural and cultural sciences. To subscribe to any of the above series, or to purchase individual publi- cations, please write to: Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-2704, USA. Phone: (808) 848-4135. Email: [email protected]. Institutional libraries interested in exchang- ing publications may also contact the Bishop Museum Press for more information. BISHOP MUSEUM The State Museum of Natural and Cultural History ISSN 0893-1348 1525 Bernice Street Copyright © 2006 by Bishop Museum Honolulu, Hawai‘i 96817-2704, USA FIJI ARTHROPODS Editors’ Preface We are pleased to present the third issue of Fiji Arthropods, a series offering rapid publi- cation and devoted to studies of terrestrial arthropods of the Fiji Group and nearby Pacific archipelagos.
    [Show full text]
  • Evolução Cariotípica Em Diferentes Grupos De Formicidae
    CLÉA DOS SANTOS FERREIRA MARIANO EVOLUÇÃO CARIOTÍPICA EM DIFERENTES GRUPOS DE FORMICIDAE Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Entomologia, para obtenção do título de Doutor Scientiae. VIÇOSA MINAS GERAIS – BRASIL 2004 CLÉA DOS SANTOS FERREIRA MARIANO EVOLUÇÃO CARIOTÍPICA EM DIFERENTES GRUPOS DE FORMICIDAE Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós- Graduação em Entomologia, para obtenção do título de Doutor Scientiae. APROVADA: 17 de fevereiro de 2004. ________________________________ ________________________________ Dr. Jacques H. C. Delabie Prof. Lucio A. O. Campos (Conselheiro) (Conselheiro) ________________________________ ________________________________ Prof. Jorge Abdala Dergam dos Santos Prof. Marla Piumbini Rocha _______________________________ Profa Silvia das Graças Pompolo (Orientadora) "Há duas formas de viver a sua vida: Uma é acreditar que não existe milagre. A outra é acreditar que todas as coisas são um milagre" Albert Einstein Aos meus pais Roberto e Gislene, Às minhas irmãs Fátima, Rosilene e Patrícia, A Jacques Com todo amor, Dedico. ii AGRADECIMENTOS Ao CNPq, pela concessão da bolsa de estudos e apoio financeiro. À Universidade Federal de Viçosa, pela realização deste curso. À minha orientadora, Profa Dra Silvia das Graças Pompolo, pela confiança, amizade e apoio dados. A Jacques Delabie, por tudo o que representa no meu trabalho. Ao professor Lucio Campos, pela amizade, sugestões, e confiança. Aos membros da banca, professores Jorge Dergam e Marla Rocha. A D. Paula, pela gentileza e por seu respeito a todos os alunos do curso de Entomologia. Ao José Estevão, pelo auxílio no laboratório. Aos colegas do Laboratório de Citogenética: Marla, André, Cíntia, Anderson, Davy, Elaine e Hilton.
    [Show full text]