What Is a Particle Quanta Magazine.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

What Is a Particle Quanta Magazine.Pdf SE R IES H I D D E N S T R U C T U R E What Is a Particle? By N A T A L I E W O L C H O V E R November 12, 2020 It has been thought of as many things: a pointlike object, an excitation of a eld, a speck of pure math that has cut into reality. But never has physicists’ conception of a particle changed more than it is changing now. 50 Elementary particles are the basic stu of the universe. They are also deeply strange. Illustrations by Ashley Mackenzie for Quanta Magazine iven that everything in the universe reduces to particles, a question presents itself: What are G particles? The easy answer quickly shows itself to be unsatisfying. Namely, electrons, photons, quarks and other “fundamental” particles supposedly lack substructure or physical extent. “We basically think of a particle as a pointlike object,” said Mary Gaillard, a particle theorist at the University of California, Berkeley who predicted the masses of two types of quarks in the 1970s. And yet particles have distinct traits, such as charge and mass. How can a dimensionless point bear weight? “We say they are ‘fundamental,’” said Xiao-Gang Wen, a theoretical physicist at the Massachusetts Institute of Technology. “But that’s just a [way to say] to students, ‘Don’t ask! I don’t know the answer. It’s fundamental; don’t ask anymore.’” With any other object, the object’s properties depend on its physical makeup — ultimately, its constituent particles. But those particles’ properties derive not from constituents of their own but from mathematical patterns. As points of contact between mathematics and reality, particles straddle both worlds with an uncertain footing. When I recently asked a dozen particle physicists what a particle is, they gave remarkably diverse descriptions. They emphasized that their answers don’t conict so much as capture dierent facets of the truth. They also described two major research thrusts in fundamental physics today that are pursuing a more satisfying, all-encompassing picture of particles. “‘What is a particle?’ indeed is a very interesting question,” said Wen. “Nowadays there is progress in this direction. I should not say there’s a unied point of view, but there’s several dierent points of view, and all look interesting.” 1 A Particle Is a ‘Collapsed Wave Function’ The quest to understand nature’s fundamental building blocks began with the ancient Greek philosopher Democritus’s assertion that such things exist. Two millennia later, Isaac Newton and Christiaan Huygens debated whether light is made of particles or waves. The discovery of quantum mechanics some 250 years after that proved both luminaries right: Light comes in individual packets of energy known as photons, which behave as both particles and waves. Wave-particle duality turned out to be a symptom of a deep strangeness. Quantum mechanics revealed to its discoverers in the 1920s that photons and other quantum objects are best described not as particles or waves but by abstract “wave functions” — evolving mathematical functions that indicate a particle’s probability of having various properties. The wave function representing an electron, say, is spatially spread out, so that the electron has possible locations rather than a denite one. But somehow, strangely, when you stick a detector in the scene and measure the electron’s location, its wave function suddenly “collapses” to a point, and the particle clicks at that position in the detector. Samuel Velasco/Quanta Magazine A particle is thus a collapsed wave function. But what in the world does that mean? Why does observation cause a distended mathematical function to collapse and a concrete particle to appear? And what decides the measurement’s outcome? Nearly a century later, physicists have no idea. 2 A Particle Is a ‘Quantum Excitation of a Field’ The picture soon got even stranger. In the 1930s, physicists realized that the wave functions of many individual photons collectively behave like a single wave propagating through conjoined electric and magnetic elds — exactly the classical picture of light discovered in the 19th century by James Clerk Maxwell. These researchers found that they could “quantize” classical eld theory, restricting elds so that they could only oscillate in discrete amounts known as the “quanta” of the elds. In addition to photons — the quanta of light — Paul Dirac and others discovered that the idea could be extrapolated to electrons and everything else: According to quantum eld theory, particles are excitations of quantum elds that ll all of space. In positing the existence of these more fundamental elds, quantum eld theory stripped particles of status, characterizing them as mere bits of energy that set elds sloshing. Yet despite the ontological baggage of omnipresent elds, quantum eld theory became the lingua franca of particle physics because it allows researchers to calculate with extreme precision what happens when particles interact — particle interactions being, at base level, the way the world is put together. Helen Quinn proposed the still-hypothetical “axion eld” in the 1970s. Nicholas Bock/SLAC National Accelerator Laboratory As physicists discovered more of nature’s particles and their associated elds, a parallel perspective developed. The properties of these particles and elds appeared to follow numerical patterns. By extending these patterns, physicists were able to predict the existence of more particles. “Once you encode the patterns you observe into the mathematics, the mathematics is predictive; it tells you more things you might observe,” explained Helen Quinn, an emeritus particle physicist at Stanford University. The patterns also suggested a more abstract and potentially deeper perspective on what particles actually are. A Particle Is an ‘Irreducible Representation of a Group’3 Mark Van Raamsdonk remembers the beginning of the rst class he took on quantum eld theory as a Princeton University graduate student. The professor came in, looked out at the students, and asked, “What is a particle?” “An irreducible representation of the Poincaré group,” a precocious classmate answered. Taking the apparently correct denition to be general knowledge, the professor skipped any explanation and launched into an inscrutable series of lectures. “That entire semester I didn’t learn a single thing from the course,” said Van Raamsdonk, who’s now a respected theoretical physicist at the University of British Columbia. It’s the standard deep answer of people in the know: Particles are “representations” of “symmetry groups,” which are sets of transformations that can be done to objects. Take, for example, an equilateral triangle. Rotating it by 120 or 240 degrees, or reecting it across the line from each corner to the midpoint of the opposite side, or doing nothing, all leave the triangle looking the same as before. These six symmetries form a group. The group can be expressed as a set of mathematical matrices — arrays of numbers that, when multiplied by coordinates of an equilateral triangle, return the same coordinates. Such a set of matrices is a “representation” of the symmetry group. Samuel Velasco/Quanta Magazine Similarly, electrons, photons and other fundamental particles are objects that essentially stay the same when acted on by a certain group. Namely, particles are representations of the Poincaré group: the group of 10 ways of moving around in the space-time continuum. Objects can shift in three spatial directions or shift in time; they can also rotate in three directions or receive a boost in any of those directions. In 1939, the mathematical physicist Eugene Wigner identied particles as the simplest possible objects that can be shifted, rotated and boosted. For an object to transform nicely under these 10 Poincaré transformations, he realized, it must have a certain minimal set of properties, and particles have these properties. One is energy. Deep down, energy is simply the property that stays the same when the object shifts in time. Momentum is the property that stays the same as the object moves through space. A third property is needed to specify how particles change under combinations of spatial rotations and boosts (which, together, are rotations in space-time). This key property is “spin.” At the time of Wigner’s work, physicists already knew particles have spin, a kind of intrinsic angular momentum that determines many aspects of particle behavior, including whether they act like matter (as electrons do) or as a force (like photons). Wigner showed that, deep down, “spin is just a label that particles have because the world has rotations,” said Nima Arkani-Hamed, a particle physicist at the Institute for Advanced Study in Princeton, New Jersey. Dierent representations of the Poincaré group are particles with dierent numbers of spin labels, or degrees of freedom that are aected by rotations. There are, for example, particles with three spin degrees of freedom. These particles rotate in the same way as familiar 3D objects. All matter particles, meanwhile, have two spin degrees of freedom, nicknamed “spin-up” and “spin-down,” which rotate dierently. If you rotate an electron by 360 degrees, its state will be inverted, just as an arrow, when moved around a 2D Möbius strip, comes back around pointing the opposite way. Samuel Velasco/Quanta Magazine Elementary particles with one and ve spin labels also appear in nature. Only a representation of the Poincaré group with four spin labels seems to be missing. The correspondence between elementary particles and representations is so neat that some physicists — like Van Raamsdonk’s professor — equate them. Others see this as a conation. “The representation is not the particle; the representation is a way of describing certain properties of the particle,” said Sheldon Glashow, a Nobel Prize-winning particle theorist and professor emeritus at Harvard University and Boston University.
Recommended publications
  • Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’S Latest Target: Skin Cancer
    Excellence in education, research and service FEBRUARY 2010 VOL. 2, ISSUE 1 Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’s Latest Target: Skin Cancer By Bryce Hairston Kennard The hard streets of Buenaventura, Colombia, didn’t provide Raul Cuero with the usual range of toys available to children from more prosperous families—but there were plenty of lizards, cockroaches and insects. Humble as those amusements were, they ignited a lifelong interest in biology and NEW DISCOVERIES Dr. Theresa Fossum (left) and Dr. Matthew Miller review images in the cardiac nature that led to extensive research with Martian soil, plant catheterization laboratory at the new TIPS facility in College Station. organisms and cancer. If you have heard of Cuero recently, it is likely in connection with developing a breakthrough discovery in the labs at Prairie View A&M University that could lead to the prevention of skin cancer in humans and animals. Aided by funding from NASA, the professor of microbiology Building TIPS for Texas in the College of Agriculture and Human Sciences is seeking a patent for a natural compound that blocks cancer-inducing How Terry Fossum Advanced Texas A&M’s Leadership in Biotech Innovation ultra-violet radiation. He describes the discovery as a way to help researchers and scientists “elucidate an important scientific By Melissa Chessher quest about the way organisms were able to survive at the beginning of earth, when there was a great UV presence in the Terry Fossum’s journey to create the Texas A&M Institute for Preclinical Studies began in 1997 during a atmosphere.
    [Show full text]
  • 2006 DISCOVERY Magazine Feature on Mitchell
    MITCHELL: MAN ON A MISSION DISCOVERY, College of Science [COVER STORY] As a senior in high school, cusp of the cosmos where It all started with a telephone call George Mitchell couldn’t Mitchell’s support—not to mention between two old friends, Mitchell the resulting Texas A&M Physics and A&M physics professor Peter learn enough about phenomenon—is concerned. McIntyre. Mitchell had been physics. Voraciously he watching a PBS special featuring pored through textbooks, What began in 2002 as a simple Hawking, in which Hawking $800,000 verbal agreement revealed that one of his greatest novels and popular science between old friends intended to disappointments in physics was magazines, reading help bring one of Mitchell’s biggest the 1993 cancellation of the Texas everything he could get his heroes, Cambridge University Superconducting Super Collider theoretical physicist Stephen (SSC) project. hands on in an effort to Hawking, to the Texas A&M campus satisfy his curiosity about has mushroomed into nearly $45 Mitchell could identify—on several matter, energy and the million in support from the Houston levels. On top of common interest petroleum engineer/real estate in fundamental physics, he realized broader mysteries of the developer and his wife, Cynthia, he and Hawking also shared universe. He even tried his and spawned a supernova-like a universal disappointment—a hand at building his own legacy, both for the Department particularly painful one for Mitchell, and for the future of fundamental because he was directly involved. telescope. physics. Although he eventually followed his brother Johnny’s footsteps “HAVING TALENTED PHYSICISTS COME TO TEXAS to Texas A&M University and the field of petroleum engineering, A&M CREATES EXCITEMENT, WHICH ATTRACTS making a career out of finding STUDENTS NOT ONLY IN PHYSICS, BUT ALSO IN oil and gas where no one else could, Mitchell never outgrew ENGINEERING AND OTHER SUBJECTS.” his fascination for physics.
    [Show full text]
  • History of Dark Matter
    UvA-DARE (Digital Academic Repository) History of dark matter Bertone, G.; Hooper, D. DOI 10.1103/RevModPhys.90.045002 Publication date 2018 Document Version Final published version Published in Reviews of Modern Physics Link to publication Citation for published version (APA): Bertone, G., & Hooper, D. (2018). History of dark matter. Reviews of Modern Physics, 90(4), [045002]. https://doi.org/10.1103/RevModPhys.90.045002 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 REVIEWS OF MODERN PHYSICS, VOLUME 90, OCTOBER–DECEMBER 2018 History of dark matter Gianfranco Bertone GRAPPA, University of Amsterdam, Science Park 904 1098XH Amsterdam, Netherlands Dan Hooper Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA and Department of Astronomy and Astrophysics, The University of Chicago, Chicago, Illinois 60637, USA (published 15 October 2018) Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into an anecdotal account focused around the work of a few pioneering scientists.
    [Show full text]
  • Nanopoulos by Mcintyre
    Nanopoulos by McIntyre • Reprise of my laudation of Dimitri on the occasion of his Onassis Prize • Challenge to Dimitri for a fresh chapter of colliders A laudation of Dimitri Nanopoulus by Peter McIntyre I have known Dimitri Nanopoulos since 1975. At that time we were both at Harvard University. Dimitri was working with Steven Weinberg (Nobel 1979) and I with Carlo Rubbia (Nobel 1984). Dimitri and I entered the world of elementary particle physics at the time and the place of a true revolution in science - the advent of the gauge theories to describe the world of subatomic nature. The measure of a scientist is his choice of problems. Many scientists have keen intellects and mastery of the science of the day. But a challenging problem typically takes years of effort to master, and it is therefore imperative to choose those golden problems that have the potential to make a major breakthrough in how we view nature. By this highest of standards Dimitri has shown his mettle, not once but now several times over. • In 1990 Dimitri and his colleague John Ellis at CERN showed how one could use the newly conjectured gauge field of supersymmetry to unify the couplings of the three fields of nature that are at play within the nucleus: the strong field that binds the nucleus, the weak field that mediates radioactive decay, and the electromagnetic field that binds the atom and illuminates this picture. it had seemed that the strengths of these three corners of the subnuclear world behaved differently as they evolved from the Big Bang to our world of today.
    [Show full text]
  • Springer Proceedings in Physics
    Springer Proceedings in Physics Volume 148 For further volumes: http://www.springer.com/series/361 David Cline Editor Sources and Detection of Dark Matter and Dark Energy in the Universe Proceedings of the 10th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, February 22-24, 2012, Marina del Rey, California Editor David Cline UCLA Physics & Astronomy Los Angeles , USA ISSN 0930-8989 ISSN 1867-4941 (electronic) ISBN 978-94-007-7240-3 ISBN 978-94-007-7241-0 (eBook) DOI 10.1007/978-94-007-7241-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013955385 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
    [Show full text]
  • String Unification of Particle Physics and Cosmology
    String unification of particle physics and cosmology I. Antoniadis Albert Einstein Center, University of Bern LPTHE, Sorbonne Universit´e,CNRS Paris Session in Honor of Dimitri Nanopoulos' Retirement Texas A&M University, College Station, 15 May 2019 I. Antoniadis (TexasA&M, 15 May 2019) 1 / 16 I. Antoniadis (TexasA&M, 15 May 2019) 2 / 16 I. Antoniadis (TexasA&M, 15 May 2019) 3 / 16 I. Antoniadis (TexasA&M, 15 May 2019) 4 / 16 A pleasant and fruitful collaboration Met in California in 1985 one paper in collaboration with Costas Kounnas Intensive collaboration while fellow at CERN 1986-88 Phenomenology of four-dimensional strings effective action, model building, finite temperature string cosmology and non-critical strings Continued a few years after my return in Paris Ongoing again recently ··· Here: Flipped SU(5) and linear dilaton background [10] I. Antoniadis (TexasA&M, 15 May 2019) 5 / 16 Welcome to INSPIRE, the High Energy Physics information system. Please direct questions, comments or concerns to [email protected]. HEP :: HEPNAMES :: INSTITUTIONS :: CONFERENCES :: JOBS :: EXPERIMENTS :: JOURNALS :: HELP Easy Search au antoniadis and au nanopoulos Citesummary Search Advanced Search find j "Phys.Rev.Lett.,105*" :: more Sort by: Display results: earliest date desc. - or rank by - 25 results single list Citations summary Generated on 2019-05-03 15 papers found, 15 of them citeable (published or arXiv) Citation summary results Citeable papers Published only Total number of papers analyzed: 15 15 Total number of citations: 2,681 2,681 Average citations per paper: 178.7 178.7 Breakdown of papers by citations: Renowned papers (500+) 2 2 Famous papers (250-499) 2 2 Very well-known papers (100-249) 5 5 Well-known papers (50-99) 2 2 Known papers (10-49) 3 3 Less known papers (1-9) 1 1 Unknown papers (0) 0 0 hHEP index [?] 14 14 I.
    [Show full text]
  • ASPECTS of GRAND UNIFIED and STRING PHENOMENOLOGY a Dissertation by JOEL W. WALKER Submitted to the Office of Graduate Studies O
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University ASPECTS OF GRAND UNIFIED AND STRING PHENOMENOLOGY A Dissertation by JOEL W. WALKER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2005 Major Subject: Physics ASPECTS OF GRAND UNIFIED AND STRING PHENOMENOLOGY A Dissertation by JOEL W. WALKER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Dimitri Nanopoulos Committee Members, Richard Arnowitt Robert Webb Stephen Fulling Head of Department, Edward Fry August 2005 Major Subject: Physics iii ABSTRACT Aspects of Grand Unified and String Phenomenology. (August 2005) Joel W. Walker, B.S., Harding University Chair of Advisory Committee: Dr. Dimitri Nanopoulos Explored in this report is the essential interconnectedness of Grand Unified and String Theoretic Phenomenology. In order to extract a modeled connection to low-energy physics from the context of superstring theory, it is presently necessary to input some preferred region of parameter space in which to search. This need may be well filled by a parallel study of Grand Unification, which is by contrast in immediate proximity to a wealth of experimental data. The favored GUT so isolated may then reasonably transfer this phenomenological correlation to a string embedding, receiving back by way of trade a greater sense of primary motivation, and potentially enhanced predictability for parameters taken as input in a particle physics context.
    [Show full text]
  • Physics Monitor
    Physics monitor The temperature of the incandescent gas Electromagnetic energy (photons) from nu­ (mainly hydrogen) ball of the Sun ranges clear reactions deep inside the Sun can take from 6000 degrees at the surface to 15 mil­ millions of years to migrate to the surface lion degrees at its centre, where proton and escape. Neutrinos on the other hand nuclei fuse together into deuterium, liberat­ give a unique glimpse deep into the Sun's in­ ing a positron and a neutrino. Subsequently terior, but the interpretation requires a repre­ other reactions produce additional neutrinos, sentative sample of these elusive particles. but most solar neutrinos emanate from the central fusion process. NEUTRINOS Moriond spotlight The regular 'Rencontres de Mo­ riond' meetings in the French Alps, which celebrate their 25th anniver­ sary this year, have a strong tradi­ tion of reflecting new trends in physics thinking and January's ses­ sion on Tests of Fundamental Laws in Physics' was no exception. The spotlight this time fell on the neutrino sector, a branch of phy­ sics frequently in evolution, if not controversial. Currently the solar neutrino problem is still a preoccu­ pation, while a wave of new heavy neutrino results also awaits clarifi­ cation. The Moriond neutrino sessions began with a review by D.Vignaud of the status of the 'solar neutrino problem' - the discrepancy be­ tween theoretical predictions (based on solar model calculations) and the experimentally observed chemical method had to be devel­ mately 6 x 1010 per sq cm per s. fluxes of neutrinos from the Sun. oped to extract and detect the pre­ The predicted value of the bor­ So far solar neutrinos have been cious few unstable argon-37 atoms on-8 neutrino flux is extremely sen­ detected in two experiments: the (half-life 35 days) produced by the sitive to the temperature in the pioneer study led by Ray Davis, solar neutrinos during exposures Sun's core where these neutrinos which began data-taking in 1970 ranging typically from 35 to 60 are thought to be produced.
    [Show full text]
  • Democracy and Values
    Democracy and Values A Global Ethics Network Conference Philanthropy and Positive Change 2016 Change and Positive Philanthropy In partnership with Athens, Greece April 25, 2015 GLOBAL THINKERS FORUM 2015 In Partnership with CONTENTS • Interview with Lucian J. Hudson, Director of Communications, The Open • Introductory Article, Elizabeth Filippouli, University & GTF Advisory Board Member Founder & CEO, Global Thinkers Forum • Democracy: A Continuous Idea and • Interview with Joel H. Rosenthal, Process by Rodi Kratsa, President, Carnegie Council President, Institute for Democracy Konstantinos Karamanlis, former MEP • Challenges for Democratic Leadership by Dr. Bartolomiej E. Nowak, • Strengthening Democratic Accountability Global Ethics Fellow, Carnegie Council by Kei Hiruta, Global Ethics Fellow, Carnegie Council • Interview with Ananya Vajpeyi, Global Ethics Fellow, Carnegie Council • Interview with Roger Hayes, Senior Counsellor, APCO Worldwide & GTF • A Kite Runner Approach to Understanding Advisory Board Member Corruption by Devin T. Stewart, Senior Program Director & Senior Fellow, • All-Inclusive Entrepreneurship is a Carnegie Council Democratic Value by Olga Stavropoulou-Salamouri, • Interview with Areti Georgili, President & Managing Partner, Militos Founder Free Thinking Zone Emerging Technologies & Services; and • Business & Ethics: What is It All About? by Kyriakos Lingas, Michael Economakis, Knowledge Manager & Researcher, Militos Executive Vice Chairman, A.G. Leventis Emerging Technologies & Services Group, Plc. & GTF Advisory
    [Show full text]
  • ESFRI Regional Issues Working Group Report, 2008
    • • • European Strategy Forum on Research Infrastructures ESFRI • • • • • • • • • • • • 2008 REPOR • • • • • • • • • OF T • • • • ES FRI R EGIO N • • • ISS UES WORKI • • • • • • • • • GROU • • • • • • • • • • • • • • • • • Research Infrastructures in – and for – • the regions; their role within ERA; • • • • • • • • • • • • • • • • • • • • • • • • • • • • • European Strategy Forum on Research Infrastructures ESFRI • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2008 REPOR • • • • • • • • • • • • • • • • • • • • • OF T • • • • • • • • • • • • • • • • • • • ES FRI R EGIO N • • • • • • • • • • • • • • • ISS UES WORKI • • • • • • • • • • • • • • • • • • • • • GROU • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Research Infrastructures in – and for – • • • • • • • • • • • • • • the regions; their role within ERA; 2008 REPORT of the ESFRI Regional Issues Working Group & @3>=@ B =4B 633A 4@7@ 357= </: 7AA C3A E=@97 <55 @=C > @SaSO`QV7\T`Oab`cQbc`SaW\µO\RT]`µbVS`SUW]\a) bVSW``]ZSeWbVW\3@/)Q]]^S`ObW]\PSbeSS\abObSa) `SQ][[S\RObW]\aT]`bVS\Sfb#gSO`a Table of Contents 1. Introduction . 3 2. Large Research Infrastructures: Their Role as Training Grounds and Natural Knowledge Triangles and Their Socio Economic Impacts . 5 3. Large Research Infrastructures and Their Role in the Motivation of Researchers . 6 4. The Ljubljana Process, RIs and
    [Show full text]
  • ASTROPARTICLE PHYSICS New Synergy
    * The June issue will include an Dimitri Nanopoulos - strengthening links article on the COBE results. between particle physics and cosmology Also reported at the Workshop ing Supercollider Laboratory. It at­ were new results from cosmic ray tracted many distinguished speak­ studies; searches for dark matter, ers in this rapidly evolving field, re­ deviations from Newtonian gravita­ sulting in a wide-ranging and stimu­ tion, time-reversal violation in beta lating scientific programme. decay, the electric dipole moment CERN's John Ellis discussed the of the neutron, and neutron-anti- Standard Model of Particle Physics neutron oscillations; strong field and beyond, and the implications tests of gravitational theories and of recent LEP data (April, page 1). other subjects. Rocky Kolb of Fermilab gave an in­ For the first time the session had troduction to the Standard Big an interdisciplinary character, with Bang, while School Director Dimitri an invited lecture by Ed Fredkin on Nanopoulos of Texas A&M and 'Digital Mechanics: the Universe as HARC presented a unified view of a Computer'. The improvised even­ the two fields. ing concert of classical music, David Schramm of Chicago dis­ given by attending physicists Mi­ cussed the important issue of pri­ chael and Myriam Treichel, Jim mordial nucleosynthesis, with the ports on 17 keV neutrinos (see Faller, Elisabeth Ribs and Tibault observational basis covered by page 21). John Bahcall of Princeton Damour added to the pleasant in­ Greg Shields of Texas (Austin). Ro­ was among the neutrino speakers formal atmosphere which is one of bert Wagoner of Stanford exam­ at the Texas meeting.
    [Show full text]
  • ASTROPARTICLE PHYSICS New Synergy
    * The June issue will include an Dimitri Nanopoulos - strengthening links article on the COBE results. between particle physics and cosmology Also reported at the Workshop ing Supercollider Laboratory. It at­ were new results from cosmic ray tracted many distinguished speak­ studies; searches for dark matter, ers in this rapidly evolving field, re­ deviations from Newtonian gravita­ sulting in a wide-ranging and stimu­ tion, time-reversal violation in beta lating scientific programme. decay, the electric dipole moment CERN's John Ellis discussed the of the neutron, and neutron-anti- Standard Model of Particle Physics neutron oscillations; strong field and beyond, and the implications tests of gravitational theories and of recent LEP data (April, page 1). other subjects. Rocky Kolb of Fermilab gave an in­ For the first time the session had troduction to the Standard Big an interdisciplinary character, with Bang, while School Director Dimitri an invited lecture by Ed Fredkin on Nanopoulos of Texas A&M and 'Digital Mechanics: the Universe as HARC presented a unified view of a Computer'. The improvised even­ the two fields. ing concert of classical music, David Schramm of Chicago dis­ given by attending physicists Mi­ cussed the important issue of pri­ chael and Myriam Treichel, Jim mordial nucleosynthesis, with the ports on 17 keV neutrinos (see Faller, Elisabeth Ribs and Tibault observational basis covered by page 21). John Bahcall of Princeton Damour added to the pleasant in­ Greg Shields of Texas (Austin). Ro­ was among the neutrino speakers formal atmosphere which is one of bert Wagoner of Stanford exam­ at the Texas meeting.
    [Show full text]