Roland E. Allen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’S Latest Target: Skin Cancer
Excellence in education, research and service FEBRUARY 2010 VOL. 2, ISSUE 1 Natural Cures and Complex Technologies PVAMU Microbiologist Raul Cuero’s Latest Target: Skin Cancer By Bryce Hairston Kennard The hard streets of Buenaventura, Colombia, didn’t provide Raul Cuero with the usual range of toys available to children from more prosperous families—but there were plenty of lizards, cockroaches and insects. Humble as those amusements were, they ignited a lifelong interest in biology and NEW DISCOVERIES Dr. Theresa Fossum (left) and Dr. Matthew Miller review images in the cardiac nature that led to extensive research with Martian soil, plant catheterization laboratory at the new TIPS facility in College Station. organisms and cancer. If you have heard of Cuero recently, it is likely in connection with developing a breakthrough discovery in the labs at Prairie View A&M University that could lead to the prevention of skin cancer in humans and animals. Aided by funding from NASA, the professor of microbiology Building TIPS for Texas in the College of Agriculture and Human Sciences is seeking a patent for a natural compound that blocks cancer-inducing How Terry Fossum Advanced Texas A&M’s Leadership in Biotech Innovation ultra-violet radiation. He describes the discovery as a way to help researchers and scientists “elucidate an important scientific By Melissa Chessher quest about the way organisms were able to survive at the beginning of earth, when there was a great UV presence in the Terry Fossum’s journey to create the Texas A&M Institute for Preclinical Studies began in 1997 during a atmosphere. -
2006 DISCOVERY Magazine Feature on Mitchell
MITCHELL: MAN ON A MISSION DISCOVERY, College of Science [COVER STORY] As a senior in high school, cusp of the cosmos where It all started with a telephone call George Mitchell couldn’t Mitchell’s support—not to mention between two old friends, Mitchell the resulting Texas A&M Physics and A&M physics professor Peter learn enough about phenomenon—is concerned. McIntyre. Mitchell had been physics. Voraciously he watching a PBS special featuring pored through textbooks, What began in 2002 as a simple Hawking, in which Hawking $800,000 verbal agreement revealed that one of his greatest novels and popular science between old friends intended to disappointments in physics was magazines, reading help bring one of Mitchell’s biggest the 1993 cancellation of the Texas everything he could get his heroes, Cambridge University Superconducting Super Collider theoretical physicist Stephen (SSC) project. hands on in an effort to Hawking, to the Texas A&M campus satisfy his curiosity about has mushroomed into nearly $45 Mitchell could identify—on several matter, energy and the million in support from the Houston levels. On top of common interest petroleum engineer/real estate in fundamental physics, he realized broader mysteries of the developer and his wife, Cynthia, he and Hawking also shared universe. He even tried his and spawned a supernova-like a universal disappointment—a hand at building his own legacy, both for the Department particularly painful one for Mitchell, and for the future of fundamental because he was directly involved. telescope. physics. Although he eventually followed his brother Johnny’s footsteps “HAVING TALENTED PHYSICISTS COME TO TEXAS to Texas A&M University and the field of petroleum engineering, A&M CREATES EXCITEMENT, WHICH ATTRACTS making a career out of finding STUDENTS NOT ONLY IN PHYSICS, BUT ALSO IN oil and gas where no one else could, Mitchell never outgrew ENGINEERING AND OTHER SUBJECTS.” his fascination for physics. -
History of Dark Matter
UvA-DARE (Digital Academic Repository) History of dark matter Bertone, G.; Hooper, D. DOI 10.1103/RevModPhys.90.045002 Publication date 2018 Document Version Final published version Published in Reviews of Modern Physics Link to publication Citation for published version (APA): Bertone, G., & Hooper, D. (2018). History of dark matter. Reviews of Modern Physics, 90(4), [045002]. https://doi.org/10.1103/RevModPhys.90.045002 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 REVIEWS OF MODERN PHYSICS, VOLUME 90, OCTOBER–DECEMBER 2018 History of dark matter Gianfranco Bertone GRAPPA, University of Amsterdam, Science Park 904 1098XH Amsterdam, Netherlands Dan Hooper Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA and Department of Astronomy and Astrophysics, The University of Chicago, Chicago, Illinois 60637, USA (published 15 October 2018) Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into an anecdotal account focused around the work of a few pioneering scientists. -
Probing Supergravity Grand Unification in the Brookhaven G-2 Experiment
PHYSICAL REVIEW D VOLUME 53, NUMBER 3 1 FEBRUARY 1996 Probing supergravity grand unification in the Brookhaven 9 - 2 experiment Utpal Chattopadhyay Department of Physics, flovthe&tem University, Boston, Massachusetts 02115 Pran Nath Department of Physics, Northeastern University, Boston, Massachusetts 0211S and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (Received 24 July 1995) A quantitative analysis of a, 3 f(g - 2), within the framework of supergravity grand unification and radiative breaking of the electroweak symmetry is given. It is found that a;“sy is dominated by the chiial interference term from the light chargino exchange, and that this terni carries a signature which correlates strongly with the sign of p. Thus as a rule azusy > 0 for fl > 0 and I$“‘~ < 0 for ti < 0 with very few exceptions when tanp N 1. At the quantitative level it is shown that if the ES21 BNL experiment can reach the expected sensitivity of 4 x lo-” and there is a reduction in the hadronic error by a factor of 4 or more, then the experiment will explore a majority of the parameter space in the mo - mg plane in the region mo < 400 GeV, mg < 700 GeV for tanp > 10 assuming the experiment will not discard the standard model result within its 2~ uncertainty limit. For smaller tanp, the SUSY reach of ES21 will still be considerable. Further, if no effect within the 2~ limit of the standard model v&e is seen, then large tanp scenarios will he severely constrained within the current naturalness criterion, i.e , mo, mp < 1 TeV. -
Particles Meet Cosmology and Strings in Boston
PASCOS 2004 Particles meet cosmology and strings in Boston PASCOS 2004 is the latest in the symposium series that brings together disciplines from the frontier areas of modern physics. Participants at PASCOS 2004 and the Pran Nath Fest, which were held at Northeastern University, Boston. They include Howard Baer - front row sixth from left - then, moving right, Alfred Bartl, Michael Dine, Bruno Zumino, Pran Nath, Steven Weinberg, Paul Frampton, Mariano Quiros, Richard Arnowitt, MaryKGaillard, Peter Nilles and Michael Vaughn (chair, local organizing committee). The Tenth International Symposium on Particles, Strings and Cos redshift surveys suggests that the critical matter density of the uni mology took place at Northeastern University, Boston, on 16-22 verse is Qm ~ 0.3, direct dynamical measurements combined with August 2004. Two days of the symposium, 18-19 August, were the estimates of the luminosity density indicate Qm = 0.1-0.2. She devoted to the Pran Nath Fest in celebration of the 65th birthday of suggested that the apparent discrepancy may result from variations Matthews University Distinguished Professor Pran Nath. The PASCOS in the dark-matter fraction with mass and scale. She also suggested symposium is the largest interdisciplinary gathering on the interface that gravitational lensing maps combined with large redshift sur of the three disciplines of cosmology, particle physics and string veys promise to measure the dark-matter distribution in the uni theory, which have become increasingly entwined in recent years. verse. The microwave background can also provide clues to inflation Topics at PASCOS 2004 included the large-scale structure of the in the early universe. -
Susy 2018.Pdf
New ideas in Model Building Antonio Delgado University of Notre Dame SUSY2018 Barcelona, July 23-27, 2018 Internatonal Conference on Supersymmetry and Unification of Fundamental Interactons 2018 Internatonal Advisory Commitee Local Organising Commitee Ignatos Antoniadis, CERN Kaoru Hagiwara, KEK Martne Bosman, IFAE Lluïsa Mir, IFAE Csaba Balazs, Monash University Tao Han, Pitsburgh University Pilar Casado, UAB/IFAE Andrés Pacheco Pagés, IFAE/PIC Wim de Boer, KIT, Karlsruhe Gordon L. Kane, Michigan State University José Ramón Espinosa, ICREA/IFAE Alex Pomarol, UAB/IFAE Marcela Carena, Fermilab and Chicago University Dimitri Kazakov, JINR, Dubna Enrique Fernández, UAB/IFAE Oriol Pujolàs, IFAE Mirjam Cvetc, Pennsylvania State University Jihn E. Kim, Seoul Natonal University Sebastán Grinstein, ICREA/IFAE Mariano Quirós, IFAE, co-Chair Athanasios Dedes, Ioannina University Pyungwon Ko, KIAS, Seoul Aurelio Juste, ICREA/IFAE Javier Rico, IFAE Keith Dienes, Arizona State University Paul G. Langacker, IAS, Princeton Ilya Korolkov, IFAE Imma Riu, IFAE Herbi Dreiner, University of Bonn Joseph D. Lykken, Fermilab Mario Martnez, ICREA/IFAE, co-Chair Sebastán Grinschpun, IFAE John Ellis, King’s College UK & CERN Rabindra N. Mohapatra, University of Maryland Ramon Miquel, ICREA/IFAE Jonathan L. Feng, UC Irvine Pran Nath, Northeastern University Gian F. Giudice, CERN Apostolos Pilafsis, Manchester University Rohini M Godbole, CHEP, IISc, Bangalore Fernando Quevedo, ICTP Manoranjan Guchait, TIFR, Mumbai Graham G. Ross, University of Oxford John Gunion, UC Davis Sandip Trivedi, TIFR, Mumbai Pre-SUSY School July 17-20, 2018 susy2018.ifae.es Universitat Autònoma de Barcelona Organised by Supported by GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD Institut de Física d’Altes Energies Epicycles over epicycles Epicycles over epicycles Turtles over turtles • More seriously I am going to give my personal view on the status of Model Building. -
Probing Supergravity Unified Theories at the Large Hadron Collider
PROBING SUPERGRAVITY UNIFIED THEORIES AT THE LARGE HADRON COLLIDER A dissertation presented by Zuowei Liu to The Department of Physics In partial fulfilment of the requirements for the degree of Doctor of Philosophy in the field of arXiv:0808.3157v1 [hep-ph] 22 Aug 2008 Physics Northeastern University Boston, Massachusetts August, 2008 1 c Zuowei Liu, 2008 ALL RIGHTS RESERVED 2 PROBING SUPERGRAVITY UNIFIED THEORIES AT THE LARGE HADRON COLLIDER by Zuowei Liu ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Physics in the Graduate School of Arts and Sciences of Northeastern University, August, 2008 3 Abstract The discovery of supersymmetry is one of the major goals of the current exper- iments at the Tevatron and in proposed experiments at the Large Hadron Collider (LHC). However when sparticles are produced the signatures of their production will to a significant degree depend on their hierarchical mass patterns. Here we investigate hierarchical mass patterns for the four lightest sparticles within one of the leading candidate theories - the SUGRA model. Specifically we analyze the hierarchies for the four lightest sparticles for the mSUGRA as well as for a general class of super- gravity unified models including nonuniversalities in the soft breaking sector. It is shown that out of nearly 104 possibilities of sparticle mass hierarchies, only a small number survives the rigorous constraints of radiative electroweak symmetry break- ing, relic density and other experimental constraints. The signature space of these mass patterns at the LHC is investigated using a large set of final states including multi-leptonic states, hadronically decaying τs, tagged b jets and other hadronic jets. -
Nanopoulos by Mcintyre
Nanopoulos by McIntyre • Reprise of my laudation of Dimitri on the occasion of his Onassis Prize • Challenge to Dimitri for a fresh chapter of colliders A laudation of Dimitri Nanopoulus by Peter McIntyre I have known Dimitri Nanopoulos since 1975. At that time we were both at Harvard University. Dimitri was working with Steven Weinberg (Nobel 1979) and I with Carlo Rubbia (Nobel 1984). Dimitri and I entered the world of elementary particle physics at the time and the place of a true revolution in science - the advent of the gauge theories to describe the world of subatomic nature. The measure of a scientist is his choice of problems. Many scientists have keen intellects and mastery of the science of the day. But a challenging problem typically takes years of effort to master, and it is therefore imperative to choose those golden problems that have the potential to make a major breakthrough in how we view nature. By this highest of standards Dimitri has shown his mettle, not once but now several times over. • In 1990 Dimitri and his colleague John Ellis at CERN showed how one could use the newly conjectured gauge field of supersymmetry to unify the couplings of the three fields of nature that are at play within the nucleus: the strong field that binds the nucleus, the weak field that mediates radioactive decay, and the electromagnetic field that binds the atom and illuminates this picture. it had seemed that the strengths of these three corners of the subnuclear world behaved differently as they evolved from the Big Bang to our world of today. -
Springer Proceedings in Physics
Springer Proceedings in Physics Volume 148 For further volumes: http://www.springer.com/series/361 David Cline Editor Sources and Detection of Dark Matter and Dark Energy in the Universe Proceedings of the 10th UCLA Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe, February 22-24, 2012, Marina del Rey, California Editor David Cline UCLA Physics & Astronomy Los Angeles , USA ISSN 0930-8989 ISSN 1867-4941 (electronic) ISBN 978-94-007-7240-3 ISBN 978-94-007-7241-0 (eBook) DOI 10.1007/978-94-007-7241-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013955385 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. -
Detecting Hidden Sector Dark Matter at HL-LHC and HE-LHC Via Long-Lived Stau Decays
PHYSICAL REVIEW D 99, 055037 (2019) Detecting hidden sector dark matter at HL-LHC and HE-LHC via long-lived stau decays † Amin Aboubrahim* and Pran Nath Department of Physics, Northeastern University, Boston, Massachusetts 02115-5000, USA (Received 14 February 2019; published 27 March 2019) We investigate a class of models where the supergravity model with the standard model gauge group is ð1Þ extended by a hidden sector U X gauge group and where the lightest supersymmetric particle is the neutralino in the hidden sector. We investigate this possibility in a class of models where the stau is the lightest supersymmetric particle in the minimal supersymmetric standard model sector and the next-to- ð1Þ lightest supersymmetric particle of the U X-extended supergravity model. In this case the stau will decay into the neutralino of the hidden sector. For the case when the mass gap between the stau and the hidden ð1Þ ð1Þ sector neutralino is small and the mixing between the U Y and U X is also small, the stau can decay into the hidden sector neutralino and a tau which may be reconstructed as a displaced track coming from a high-pT track of the charged stau. Simulations for this possibility are carried out for HL-LHC and HE-LHC. The discovery of such a displaced track from a stau will indicate the presence of hidden sector dark matter. DOI: 10.1103/PhysRevD.99.055037 I. INTRODUCTION highly suppressed couplings to the visible sector. Let us suppose that one of the two neutralinos which lie in the Most of the searches for dark matter (DM) are focused on hidden sector is the lightest supersymmetric particle (LSP) dark matter being a particle interacting weakly with the of the extended model and further the next-to-lightest standard model (SM) particles and having a cross section in supersymmetric particle (NLSP) is a stau which lies close a range accessible to direct detection and indirect detection to the hidden sector neutralino. -
String Unification of Particle Physics and Cosmology
String unification of particle physics and cosmology I. Antoniadis Albert Einstein Center, University of Bern LPTHE, Sorbonne Universit´e,CNRS Paris Session in Honor of Dimitri Nanopoulos' Retirement Texas A&M University, College Station, 15 May 2019 I. Antoniadis (TexasA&M, 15 May 2019) 1 / 16 I. Antoniadis (TexasA&M, 15 May 2019) 2 / 16 I. Antoniadis (TexasA&M, 15 May 2019) 3 / 16 I. Antoniadis (TexasA&M, 15 May 2019) 4 / 16 A pleasant and fruitful collaboration Met in California in 1985 one paper in collaboration with Costas Kounnas Intensive collaboration while fellow at CERN 1986-88 Phenomenology of four-dimensional strings effective action, model building, finite temperature string cosmology and non-critical strings Continued a few years after my return in Paris Ongoing again recently ··· Here: Flipped SU(5) and linear dilaton background [10] I. Antoniadis (TexasA&M, 15 May 2019) 5 / 16 Welcome to INSPIRE, the High Energy Physics information system. Please direct questions, comments or concerns to [email protected]. HEP :: HEPNAMES :: INSTITUTIONS :: CONFERENCES :: JOBS :: EXPERIMENTS :: JOURNALS :: HELP Easy Search au antoniadis and au nanopoulos Citesummary Search Advanced Search find j "Phys.Rev.Lett.,105*" :: more Sort by: Display results: earliest date desc. - or rank by - 25 results single list Citations summary Generated on 2019-05-03 15 papers found, 15 of them citeable (published or arXiv) Citation summary results Citeable papers Published only Total number of papers analyzed: 15 15 Total number of citations: 2,681 2,681 Average citations per paper: 178.7 178.7 Breakdown of papers by citations: Renowned papers (500+) 2 2 Famous papers (250-499) 2 2 Very well-known papers (100-249) 5 5 Well-known papers (50-99) 2 2 Known papers (10-49) 3 3 Less known papers (1-9) 1 1 Unknown papers (0) 0 0 hHEP index [?] 14 14 I. -
ASPECTS of GRAND UNIFIED and STRING PHENOMENOLOGY a Dissertation by JOEL W. WALKER Submitted to the Office of Graduate Studies O
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University ASPECTS OF GRAND UNIFIED AND STRING PHENOMENOLOGY A Dissertation by JOEL W. WALKER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2005 Major Subject: Physics ASPECTS OF GRAND UNIFIED AND STRING PHENOMENOLOGY A Dissertation by JOEL W. WALKER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Dimitri Nanopoulos Committee Members, Richard Arnowitt Robert Webb Stephen Fulling Head of Department, Edward Fry August 2005 Major Subject: Physics iii ABSTRACT Aspects of Grand Unified and String Phenomenology. (August 2005) Joel W. Walker, B.S., Harding University Chair of Advisory Committee: Dr. Dimitri Nanopoulos Explored in this report is the essential interconnectedness of Grand Unified and String Theoretic Phenomenology. In order to extract a modeled connection to low-energy physics from the context of superstring theory, it is presently necessary to input some preferred region of parameter space in which to search. This need may be well filled by a parallel study of Grand Unification, which is by contrast in immediate proximity to a wealth of experimental data. The favored GUT so isolated may then reasonably transfer this phenomenological correlation to a string embedding, receiving back by way of trade a greater sense of primary motivation, and potentially enhanced predictability for parameters taken as input in a particle physics context.