Reminiscences of My Work with Richard Lewis Arnowitt

Total Page:16

File Type:pdf, Size:1020Kb

Reminiscences of My Work with Richard Lewis Arnowitt Reminiscences of my work with Richard Lewis Arnowitt Pran Nath∗ Department of Physics, Northeastern University, Boston, MA 02115, USA This article contains reminiscences of the collaborative work that Richard Arnowitt and I did together which stretched over many years and encompasses several areas of particle theory. The article is an extended version of my talk at the Memorial Symposium in honor of Richard Arnowitt at Texas A&M, College Station, Texas, September 19-20, 2014. My collaboration with Richard Arnowitt (1928-2014)1 to constrain the parameters of the effective Lagrangian. started soon after I arrived at Northeastern University in The effective Lagrangian was a deduction from the fol- 1966 and continued for many years. In this brief article lowing set of conditions: (i) single particle saturation in on the reminiscences of my work with Dick I review some computation of T-products of currents, (ii) Lorentz in- of the more salient parts of our collaborative work which variance, (iii) “spectator” approximation, and (iv) local- includes effective Lagrangians, current algebra, scale in- ity which implies a smoothness assumption on the ver- variance and its breakdown, the U(1) problem, formu- tices. The above assumptions lead us to the conclusion lation of the first local supersymmetry and the develop- that the simplest way to achieve these constraints is via ment of supergravity grand unification in collaboration an effective Lagrangian which for T-products of three of Ali Chamseddine, and its applications to the search currents requires writing cubic interactions involving π,ρ for supersymmetry. and A1 fields and allowing for no derivatives in the first -order formalism and up to one-derivative in the second order formalism. The effective Lagrangian is to be used I. EFFECTIVE LAGRANGIANS AND to first order in the coupling constants for three point CURRENT ALGEBRA functions [5–7] and to second order in the coupling con- stants for 4-point functions and to N 2 order in the − In 1964 Gell-Mann [1] proposed that “quark-type” coupling constant for N point functions. The second step equal-time commutation relations for the vector and the consisted of the imposition of the constraints of current axial vector currents of weak interaction theory serve algebra, CVC and PCAC to determine the parameters as a basis for calculations involving strongly interacting appearing in the effective Lagrangian. Thus in addition particles. Combined with the conserved vector current to [5–7] several other applications of the effective La- (CVC), partially conserved vector current (PCAC) and grangian method were made [15–21]. Below we give some the soft pion approximation many successful results were further details of the effective Lagrangian construction. obtained (see, for example, [2]). However, around 1967 We begin by considering a T-product of three currents, an important issue arose which concerned the breakdown i.e. of the soft pion approximation in the analysis of ρ ππ F αµβ < 0 T (Aα(x)V µ(z)Aβ(y)) 0 > , (1) and A ρπ where the soft pion approximation→ gave a c b 1 → ≡ | | very poor results [3, 4]. This problem was overcome For the time ordering x0 > z0 > y0 Eq. (1) can be ex- in work with Dick and Marvin Friedman by giving up panded so that the soft pion approximation and using the effective La- grangian method to compute the mesonic vertices [5–7]. F αµβ = < 0 Aα n><n V µ m><m Aβ 0 > . (2) | a | | c | | b | A number of other techniques were being pursued at that Xn,m time such as Ward identities by Schnitzer and Weinberg [8], phenomenological Lagrangians by Schwinger[9], Wess Here the states n and m can only be either π or A1 and Zumino [10], and by Ben Lee and Nieh [11] and other mesons. It is clear that the matrix elements that are α µ arXiv:1502.00639v1 [physics.hist-ph] 2 Feb 2015 techniques [12–14]. involved are < 0 Aa πq1a1 >, < πq1a1 Vc πq2a2 > and β | | | | Here I describe briefly the approach that Dick < πq2a2 Ab 0 > and additional terms where π is replaced | | 0 0 0 Arnowitt, Marvin Friedman and I followed which first by A1. For another time ordering , i.e., y > x >z one of all involved developing an effective Lagrangian for the has πρA1 system but then using current algebra conditions F αµβ = < 0 Aβ n><n Aα m><m V µ 0 > , (3) | b | | a | | c | Xn,m ∗ Email: [email protected] 1 where the state n must be a π or A state. However, the Obituary: Richard Lewis Arnowitt, Physics Today 67(12), 68 1 (2014). Submitted by Stanley Deser (Brandeis and Caltech), state m must be a ρ state to have non-vanishing matrix Charles Misner (University of Maryland), Pran Nath (Northeast- elements. In addition to the above we must also include ern University), and Marlan Scully (Texas A&M and Princeton two particle intermediate states so that for the time or- University). dering x0 >y0 >z0 we have 2 In a similar way one has β F αµβ = < 0 Aα n,m >< n,m V µ k ><k A 0 > . Aµ(x)= g aµ(x)+ F ∂µφ (x) , (10) | a | | c | | b | a A a π a n,m,kX (4) It should be clear that Eqs. (9) and (10) are a conse- Here, for example, n must be either π or A1, and m quence of single particle saturation assumption and not must be a ρ and k a π or A1. This means that one of the meant to be fundamental postulates. Thus our approach particles in the matrix element < n,m V ν k > must be differs from the one by Lee, Weinberg and Zumino [22]. a “spectator”. Thus one has | | It should now be noted that Eqs. (9) and (10) are to be used in the following way: we solve the Heisenberg equa- µ 3 tions and then use them to first order in the coupling < πq1a1ρ,p1a3 Vc πq2a2 > = δa1a2 δ (~q1 ~q2) constant in the computation of T-product involving three | | µ− < ρp1a3 Vc 0 > . (5) currents. This is equivalent to the in-field expansion of × | | Eq. (7). However, due to the presence of the propagators Such contributions are required by Lorentz invariance µ µ ∆λ etc the locality of Vc (x) etc is not guaranteed. Thus and crossing symmetry. Indeed Eq. (5) is the cross µ µ if we demand that va (x), πa(x) and aa (x) be local field diagram contribution to Eq. (3). Now the vacuum operators, whose commutators for space-like separations to one particle matrix elements of currents define the vanish, then this condition can be guaranteed if we re- interpolating constants Fπ,gA,gρ so that one has < µ α α α ασ quire that the sources for the fields vc etc arise from a 0 Aa (0) πq1a1 >= Fπq , < 0 A (0) A1σ >= gAǫ and | µ | µσ | | Lagrangian with interactions that are cubic in the fields. < 0 V (0) ρσ >= gρǫ (where we have suppressed the Thus the arguments laid out above lead us to an effective normalizations| | and iso-spin factors). These results can µ µ µ µ Lagrangian of the form be simulated by writing Va = gρv˜a and Aa = gAa˜a + µ Fπ∂ φ˜a where the tilde fields are the in-fields. For the (3) matrix elements of a current between two particle states, eff = 0 + g 3 (11) µ L L L e.g., < πq1a Vc (0) πq2b> we write (suppressing normal- µ | | µ λ where 0 = 0π + 0ρ + 0A1 . We note that we arrived at ization factors) < πq1a Vc (0) πq2b >= ǫabc∆λΓ (q1, q2) L L L L µ | | λ Eq. (11) purely from the conditions of (i) single particle where ∆λ is a ρ propagator and the vertex Γ can be expanded in a power series saturation of T -products, (ii) spectator approximation, (iii) Lorentz invariance and crossing symmetry and , (iv) locality. The current algebra constraints, i.e., current Γλ(q , q ) = (qλ + qλ)(α + α k2 + ) , (6) algebra commutation relations, CVC and PCAC have 1 2 1 2 1 2 ··· λ λ λ played no role in the analysis thus far. where k = q1 q2 . Now the two particle matrix element µ − µ of V , i.e., < πq1a Vc (0) πq2b >, can be obtained if we µ | | The analysis above can be extended to higher point replace the vc field in terms of the bilinear product of functions. For instance, for the computation of the four two pion in-fields. Including the vacuum to one particle -point function, matrix element contribution this leads us to a following µ αβµν α β µ ν form for Vc . F (x,y,z,w) <T (A (x)A (y)V (z)V (ω)) > , ≡ (12) µ µ 4 µ the implementation of the single particle saturation re- V (x)= gρv˜ + ǫabc d y∆ (x y) c c Z λ − quires that we include the following set of contributions, and (i) diagrams where we have a cascade of three point α α 2 + φ˜ (y)∂λφ˜ (y)+ , (7) × 1 − 2 ··· a b ··· vertices, and (ii) diagrams where we have four point ver- where the dots at the end stand for other bilinear terms tices. The diagrams of type (i) arise from 3, and dia- grams of type (ii) arise from . The LagrangianL that are left out. The form above guarantees crossing L4 symmetry. A very similar analysis holds for the axial (4) = + g + g2 , (13) current. For further analysis it is useful to replace the Leff L0 L3 L4 in-fields by the Heisenberg field operators which obey the is to be used to the first non-vanishing order, i.e., order Heisenberg field equations.
Recommended publications
  • Full Program, with Speakers
    Frontiers of Fundamental Physics 14 Marseille, July 15–18, 2014 Program and Speakers Updated on January 8, 2015 1 Program, July, 15 08h00 – 08h45 Conference Registration, Room “Salle de Conférences” 08h45 – 10h30 Plenary session Plenary Session (broadcast) Chairman: Eric Kajfasz Amphi “Sciences Naturelles” 08h45 – 09h00 Roland Triay (CPT) Opening 09h00 – 09h30 Gabriele Veneziano (CdF) Personal reflections on two success stories 09h30 – 10h00 Paraskevas Sphicas (CERN and Athens) Status of HEP after the LHC Run 1 10h00 – 10h30 Subir Sarkar (UOXF & NBI) Program Discovering dark matter 10h30 – 11h00 Coffee break July, 15 11h00 – 12h30 Morning parallel plenary sessions Plenary Session 1 The visible universe (broadcast) Chairman: François Bouchet Amphi “Sciences Naturelles” 11h00 – 11h30 Enrique Gaztañaga (ICE, IEEC-CSIC) LSS with angular cross-correlations: Combining Spectroscopic and Photometric Surveys 11h30 – 12h00 Adi Nusser (IIT) Dynamics of the Cosmic Web 12h00 – 12h30 Pierre Astier (LPNHE) Distances to supernovae: an efficient probe of dark energy Plenary Session 2 New Geometries for Physics Chairman: Fedele Lizzi Amphi “Massiani” 11h00 – 11h45 Ali Chamseddine (AUB and IHES) Geometric Unification 11h45 – 12h30 Pierre Bieliavsky (UCLouvain) Geometrical aspects of deformation quantization Plenary Session 3 Gravitation and the Quantum Chairman: Jerzy Lewandowski Amphi “Charve” 11h00 – 11h45 Walter Greiner (FIAS) There are no black holes: Pseudo-Complex General Relativity From Einstein to Zweistein 11h45 – 12h30 Eugenio Bianchi (Penn State)
    [Show full text]
  • Coll055-Endmatter.Pdf
    http://dx.doi.org/10.1090/coll/055 America n Mathematica l Societ y Colloquiu m Publication s Volum e 55 Noncommutativ e Geometry , Quantu m Field s an d Motive s Alai n Conne s Matild e Marcoll i »AMS AMERICAN MATHEMATICA L SOCIET Y öUöi HINDUSTA N SJU BOOKAGENC Y Editorial Boar d Paul J . Sally , Jr., Chai r Yuri Mani n Peter Sarna k 2000 Mathematics Subject Classification. Primar y 58B34 , 11G35 , 11M06 , 11M26 , 11G09 , 81T15, 14G35 , 14F42 , 34M50 , 81V25 . This editio n i s published b y th e America n Mathematica l Societ y under licens e fro m Hindusta n Boo k Agency . For additiona l informatio n an d Update s o n thi s book , visi t www.ams.org/bookpages/coll-55 Library o f Congres s Cataloging-in-Publicatio n Dat a Connes, Alain . Noncommutative geometry , quantu m fields an d motive s / Alai n Connes , Matild e Marcolli , p. cm . — (Colloquiu m publication s (America n Mathematica l Society) , ISS N 0065-925 8 ; v. 55 ) Includes bibliographica l reference s an d index . ISBN 978-0-8218-4210- 2 (alk . paper ) 1. Noncommutativ e differentia l geometry . 2 . Quantu m field theory , I . Marcolli , Matilde . IL Title . QC20.7.D52C66 200 7 512/.55—dc22 200706084 3 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapte r fo r us e in teachin g o r research .
    [Show full text]
  • Noncommutative Geometry Models for Particle Physics and Cosmology, Lecture I
    Noncommutative Geometry models for Particle Physics and Cosmology, Lecture I Matilde Marcolli Villa de Leyva school, July 2011 Matilde Marcolli NCG models for particles and cosmology, I Plan of lectures 1 Noncommutative geometry approach to elementary particle physics; Noncommutative Riemannian geometry; finite noncommutative geometries; moduli spaces; the finite geometry of the Standard Model 2 The product geometry; the spectral action functional and its asymptotic expansion; bosons and fermions; the Standard Model Lagrangian; renormalization group flow, geometric constraints and low energy limits 3 Parameters: relations at unification and running; running of the gravitational terms; the RGE flow with right handed neutrinos; cosmological timeline and the inflation epoch; effective gravitational and cosmological constants and models of inflation 4 The spectral action and the problem of cosmic topology; cosmic topology and the CMB; slow-roll inflation; Poisson summation formula and the nonperturbative spectral action; spherical and flat space forms Matilde Marcolli NCG models for particles and cosmology, I Geometrization of physics Kaluza-Klein theory: electromagnetism described by circle bundle over spacetime manifold, connection = EM potential; Yang{Mills gauge theories: bundle geometry over spacetime, connections = gauge potentials, sections = fermions; String theory: 6 extra dimensions (Calabi-Yau) over spacetime, strings vibrations = types of particles NCG models: extra dimensions are NC spaces, pure gravity on product space becomes gravity
    [Show full text]
  • 3+1 Formalism and Bases of Numerical Relativity
    3+1 Formalism and Bases of Numerical Relativity Lecture notes Eric´ Gourgoulhon Laboratoire Univers et Th´eories, UMR 8102 du C.N.R.S., Observatoire de Paris, Universit´eParis 7 arXiv:gr-qc/0703035v1 6 Mar 2007 F-92195 Meudon Cedex, France [email protected] 6 March 2007 2 Contents 1 Introduction 11 2 Geometry of hypersurfaces 15 2.1 Introduction.................................... 15 2.2 Frameworkandnotations . .... 15 2.2.1 Spacetimeandtensorfields . 15 2.2.2 Scalar products and metric duality . ...... 16 2.2.3 Curvaturetensor ............................... 18 2.3 Hypersurfaceembeddedinspacetime . ........ 19 2.3.1 Definition .................................... 19 2.3.2 Normalvector ................................. 21 2.3.3 Intrinsiccurvature . 22 2.3.4 Extrinsiccurvature. 23 2.3.5 Examples: surfaces embedded in the Euclidean space R3 .......... 24 2.4 Spacelikehypersurface . ...... 28 2.4.1 Theorthogonalprojector . 29 2.4.2 Relation between K and n ......................... 31 ∇ 2.4.3 Links between the and D connections. .. .. .. .. .. 32 ∇ 2.5 Gauss-Codazzirelations . ...... 34 2.5.1 Gaussrelation ................................. 34 2.5.2 Codazzirelation ............................... 36 3 Geometry of foliations 39 3.1 Introduction.................................... 39 3.2 Globally hyperbolic spacetimes and foliations . ............. 39 3.2.1 Globally hyperbolic spacetimes . ...... 39 3.2.2 Definition of a foliation . 40 3.3 Foliationkinematics .. .. .. .. .. .. .. .. ..... 41 3.3.1 Lapsefunction ................................. 41 3.3.2 Normal evolution vector . 42 3.3.3 Eulerianobservers ............................. 42 3.3.4 Gradients of n and m ............................. 44 3.3.5 Evolution of the 3-metric . 45 4 CONTENTS 3.3.6 Evolution of the orthogonal projector . ....... 46 3.4 Last part of the 3+1 decomposition of the Riemann tensor .
    [Show full text]
  • Dirac Operators: Yesterday and Today
    Dirac Operators: Yesterday and Today Dirac Operators: Yesterday and Today Proceedings of the Summer School & Workshop Center for Advanced Mathematical Sciences American University of Beirut, Lebanon August 27 to September 7, 2001 edited by Jean-Pierre Bourguignon Thomas Branson Ali Chamseddine Oussama Hijazi Robert J. Stanton International Press www.intlpress.com Dirac Operators: Yesterday and Today Editors: Jean-Pierre Bourguignon Thomas Branson Ali Chamseddine Oussama Hijazi Robert J. Stanton Copyright © 2005, 2010 by International Press Somerville, Massachusetts, U.S.A. All rights reserved. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given. Republication, systematic copying, or mass reproduction of any material in this publication is permitted only under license from International Press. ISBN 978-1-57146-184-1 Paperback reissue 2010. Previously published in 2005 under ISBN 1-57146-175-2 (clothbound). Typeset using the LaTeX system. v Preface The Summer School ”Dirac Operators: Yesterday and Today” was an ambitious endeavour to show to a public of advanced students a tableau of modern mathematics. The idea was to make available a topic, of considerable importance for mathematics itself because of its deep impact on many mathematical questions, but also for its interactions with one of mathematics historic partners, physics. The Dirac operator was undoubtedly created by Paul Adrien Maurice Dirac to deal with an important physical question.
    [Show full text]
  • M-Theory Solutions and Intersecting D-Brane Systems
    M-Theory Solutions and Intersecting D-Brane Systems A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Physics and Engineering Physics University of Saskatchewan Saskatoon By Rahim Oraji ©Rahim Oraji, December/2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgrad- uate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics and Engineering Physics 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 i Abstract It is believed that fundamental M-theory in the low-energy limit can be described effectively by D=11 supergravity.
    [Show full text]
  • Foundations of Mathematics and Physics One Century After Hilbert: New Perspectives Edited by Joseph Kouneiher
    FOUNDATIONS OF MATHEMATICS AND PHYSICS ONE CENTURY AFTER HILBERT: NEW PERSPECTIVES EDITED BY JOSEPH KOUNEIHER JOHN C. BAEZ The title of this book recalls Hilbert's attempts to provide foundations for mathe- matics and physics, and raises the question of how far we have come since then|and what we should do now. This is a good time to think about those questions. The foundations of mathematics are growing happily. Higher category the- ory and homotopy type theory are boldly expanding the scope of traditional set- theoretic foundations. The connection between logic and computation is growing ever deeper, and significant proofs are starting to be fully formalized using software. There is a lot of ferment, but there are clear payoffs in sight and a clear strategy to achieve them, so the mood is optimistic. This volume, however, focuses mainly on the foundations of physics. In recent decades fundamental physics has entered a winter of discontent. The great triumphs of the 20th century|general relativity and the Standard Model of particle physics| continue to fit almost all data from terrestrial experiments, except perhaps some anomalies here and there. On the other hand, nobody knows how to reconcile these theories, nor do we know if the Standard Model is mathematically consistent. Worse, these theories are insufficient to explain what we see in the heavens: for example, we need something new to account for the formation and structure of galaxies. But the problem is not that physics is unfinished: it has always been that way. The problem is that progress, extremely rapid during most of the 20th century, has greatly slowed since the 1970s.
    [Show full text]
  • JHEP08(2020)001 Springer July 7, 2020 May 29, 2020
    Published for SISSA by Springer Received: March 10, 2019 Revised: May 29, 2020 Accepted: July 7, 2020 Published: August 4, 2020 Four-dimensional gravity on a covariant noncommutative space JHEP08(2020)001 G. Manolakos,a P. Manousselisa and G. Zoupanosa;b;c;d aPhysics Department, National Technical University, Zografou Campus 9, Iroon Polytechniou str, GR-15780 Athens, Greece bInstitute of Theoretical Physics, D-69120 Heidelberg, Germany cMax-Planck Institut f¨urPhysik, Fohringer Ring 6, D-80805 Munich, Germany dLaboratoire d' Annecy de Physique Theorique, Annecy, France E-mail: [email protected], [email protected], [email protected] Abstract: We formulate a model of noncommutative four-dimensional gravity on a co- variant fuzzy space based on SO(1,4), that is the fuzzy version of the dS4. The latter requires the employment of a wider symmetry group, the SO(1,5), for reasons of covari- ance. Addressing along the lines of formulating four-dimensional gravity as a gauge theory of the Poincar´egroup, spontaneously broken to the Lorentz, we attempt to construct a four-dimensional gravitational model on the fuzzy de Sitter spacetime. In turn, first we consider the SO(1,4) subgroup of the SO(1,5) algebra, in which we were led to, as we want to gauge the isometry part of the full symmetry. Then, the construction of a gauge theory on such a noncommutative space directs us to use an extension of the gauge group, the SO(1,5)×U(1), and fix its representation. Moreover, a 2-form dynamic gauge field is included in the theory for reasons of covariance of the transformation of the field strength tensor.
    [Show full text]
  • Richard Arnowitt, Bhaskar Dutta Texas A&M University Dark Matter And
    Dark Matter and Supersymmetry Models Richard Arnowitt, Bhaskar Dutta Texas A&M University 1 Outline . Understand dark matter in the context of particle physics models . Consider models with grand unification motivated by string theory . Check the cosmological connections of these well motivated models at direct, indirect detection and collider experiments 2 Dark Matter: Thermal Production of thermal non-relativistic DM: 1 Dark Matter content: ~ DM v m freeze out T ~ DM f 20 3 m/T 26 cm v 310 Y becomes constant for T>T s f 2 a ~O(10-2) with m ~ O(100) GeV Assuming : v ~ c c f 2 leads to the correct relic abundance m 3 Anatomy of sann Co-annihilation Process ~ 0 1 Griest, Seckel ’91 2 ΔM M~ M ~0 1 1 + ~ ΔM / kT f 1 e Arnowitt, Dutta, Santoso, Nucl.Phys. B606 (2001) 59, A near degeneracy occurs naturally for light stau in mSUGRA. 4 Models 5 mSUGRA Parameter space Focus point Resonance Narrow blue line is the dark matter allowed region Coannihilation Region 1.3 TeV squark bound from the LHC Arnowitt, Dutta, Santoso, Phys.Rev. D64 (2001) 113010 , Arnowitt, Dutta, Hu, Santoso, Phys.Lett. B505 (2001) 177 6 mSUGRA Parameter space Arnowitt, ICHEP’00, Arnowitt, Dutta, Santoso, Nucl.Phys. B606 (2001) 59, 7 Small DM at the LHC (or l+l-, t+t) High PT jet [mass difference is large] DM The pT of jets and leptons depend on the sparticle masses which are given by Colored particles are models produced and they decay finally to the weakly interacting stable particle DM R-parity conserving (or l+l-, t+t) High PT jet The signal : jets + leptons+ t’s +W’s+Z’s+H’s + missing ET 8 Small DM via cascade Typical decay chain and final states at the LHC g~ Jets + t’s+ missing energy ~ u uL Low energy taus characterize s the small mass gap e s s a However, one needs to measure M the model parameters to Y S predict the dark matter 0 u U ~ χ content in this scenario S 2 Arnowitt, Dutta, Kamon, Kolev, Toback 0 ~ ~ 1 Phys.Lett.
    [Show full text]
  • Roland E. Allen
    Roland E. Allen Department of Physics and Astronomy Texas A&M University College Station, Texas 77843-4242 [email protected] , http://people.physics.tamu.edu/allen/ Education: B.A., Physics, Rice University, 1963 Ph.D., Physics, University of Texas at Austin, 1968 Research: Theoretical Physics Positions: Research Associate, University of Texas at Austin, 1969 - 1970 Resident Associate, Argonne National Laboratory, summers of 1967 - 69 Assistant Professor of Physics, Texas A&M University, 1970 - 1976 Associate Professor of Physics, Texas A&M University, 1976 - 1983 Sabbatical Scientist, Solar Energy Research Institute, 1979 - 1980 Visiting Associate Professor of Physics, University of Illinois, 1980 - 1981 Professor of Physics, Texas A&M University, 1983 – Present Honors and Research Activities Honors Program Teacher/Scholar Award, 2005 University Teaching Award, 2004 College of Science Teaching Award, 2003 Deputy Editor, Physica Scripta (published for Royal Swedish Academy of Sciences), 2013-2016 Service on NSF, DOE, and university program evaluation panels, 1988-present Co-organizer of Richard Arnowitt Symposium (September 19-20, 2014) Organizer of Second Mitchell Symposium on Astronomy, Cosmology, and Fundamental Physics (April 10-14, 2006) Organizing Committee, Fifth Conference on Dark Matter in Astroparticle Physics (October 3-9, 2004) Organizer of Mitchell Symposium on Observational Cosmology (April 11-16, 2004) Organizer of Institute for Quantum Studies Research for Undergraduates Program (Summer, 2003) Organizer of Richard Arnowitt
    [Show full text]
  • Probing Supergravity Grand Unification in the Brookhaven G-2 Experiment
    PHYSICAL REVIEW D VOLUME 53, NUMBER 3 1 FEBRUARY 1996 Probing supergravity grand unification in the Brookhaven 9 - 2 experiment Utpal Chattopadhyay Department of Physics, flovthe&tem University, Boston, Massachusetts 02115 Pran Nath Department of Physics, Northeastern University, Boston, Massachusetts 0211S and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030 (Received 24 July 1995) A quantitative analysis of a, 3 f(g - 2), within the framework of supergravity grand unification and radiative breaking of the electroweak symmetry is given. It is found that a;“sy is dominated by the chiial interference term from the light chargino exchange, and that this terni carries a signature which correlates strongly with the sign of p. Thus as a rule azusy > 0 for fl > 0 and I$“‘~ < 0 for ti < 0 with very few exceptions when tanp N 1. At the quantitative level it is shown that if the ES21 BNL experiment can reach the expected sensitivity of 4 x lo-” and there is a reduction in the hadronic error by a factor of 4 or more, then the experiment will explore a majority of the parameter space in the mo - mg plane in the region mo < 400 GeV, mg < 700 GeV for tanp > 10 assuming the experiment will not discard the standard model result within its 2~ uncertainty limit. For smaller tanp, the SUSY reach of ES21 will still be considerable. Further, if no effect within the 2~ limit of the standard model v&e is seen, then large tanp scenarios will he severely constrained within the current naturalness criterion, i.e , mo, mp < 1 TeV.
    [Show full text]
  • Mimetic Gravity
    Mimetic Gravity Ali Chamseddine American University of Beirut, Lebanon & Radboud University Excellence Professor Modern Trends in Particle Physics, Nathfest 80, May 17 2019, Northeastern University, Boston, MA. Modified Gravity • Modifications of gravity in most cases involve adding new fields. • Modifications of GR or adding new fields are needs to solve well known problems in cosmology, such as adding an inflaton, curvaton, quintessence, or F( R) gravity (equivalent to φR+ f(φ) ) or as in Hordinski model using scalar with higher safe derivatives. • In some modified theories utilize breaking diffeomorphism invariance such as in unimodular gravity, or Horava‐Lifschitz gravity Dark Matter • Various new particles and interactions are proposed to account for the missing mostly non‐baryonic matter in the universe. • Examples: Supersymmetric neutralino, axions, WIMP, dilaton, • Lack of direct evidence for dark matter made some physicists to propose modification of GR at large scales. • Most modifications of GR are made to solve one problem at a time, and do not address solving the problems simultaneously. Scale factor for metric • GR is not invariant under scale transformations of the metric • Newton constant will be redefined. If we take Ω(x) then it will get kinetic term. It is related to determinant of metric. • Unimodular gravity assumes |det(g)|=1 breaking diffeomorphism Invariance. Scale factor • In string theory the metric is accompanied by a dilaton and axionin the form of antisymmetric tensor. New degrees of freedom. • How can one isolate physics of scaling factor? • Let Then it is scale invariant under This imply Mimetic gravity (with S. Mukhanov) • The system ( has 11 components subject to the constraint leaving 10 degrees, same as GR.
    [Show full text]