Noncommutative Gauge Theories and Gravity G. Manolakos∗ Physics Department, National Technical University, GR-15780 Athens, Greece E-mail:
[email protected] P. Manousselis Physics Department, National Technical University, GR-15780 Athens, Greece E-mail:
[email protected] G. Zoupanos Physics Department, National Technical University, GR-15780 Athens, Greece Institute of Theoretical Physics, D-69120 Heidelberg, Germany Max-Planck Institut für Physik, Fohringer Ring 6, D-80805 Munchen, Germany Laboratoire d’ Annecy de Physique Theorique, Annecy, France E-mail:
[email protected] First, we briefly review the description of gravity theories as gauge theories in three and four dimensions. Specifically, we recall the procedure in which the results of General Relativity in three and four dimensions are recovered in a gauge-theoretic approach. Also, the procedure is applied for the case of the Weyl gravity, too. Then, after reminding briefly the formulation of gauge theories on noncommutative spaces, we review our most recent works in which gravity models are constructed as gauge theories on noncommutative spaces. arXiv:1907.06280v1 [hep-th] 14 Jul 2019 Corfu Summer Institute 2018 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2018) 31 August - 28 September, 2018 Corfu, Greece ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Noncommutatve gravity G. Manolakos 1. Introduction Three out of four interactions of nature are grouped together under a common description by the Standard Model in which they are described by gauge theories.