Dark Matter and Models

Richard Arnowitt, Bhaskar Dutta

Texas A&M University

1 Outline

. Understand in the context of models

. Consider models with grand unification motivated by

. Check the cosmological connections of these well motivated models

at direct, indirect detection and collider experiments

2 Dark Matter: Thermal Production of thermal non-relativistic DM:

1 Dark Matter content:  ~ DM v m freeze out  T ~ DM f 20 3 m/T 26 cm  v  310 Y becomes constant for T>T s f

2  a ~O(10-2) with m ~ O(100) GeV Assuming : v ~  c c f 2 leads to the correct relic abundance m 3 Anatomy of sann

Co-annihilation Process ~ 0 1 Griest, Seckel ’91 2 ΔM  M~  M ~0   1 1     + ~ ΔM / kT f   1  e   Arnowitt, Dutta, Santoso,   Nucl.Phys. B606 (2001) 59,   A near degeneracy occurs naturally for light stau in mSUGRA. 4 Models

5 mSUGRA Parameter

Focus point

Resonance

Narrow blue line is the dark matter allowed region

Coannihilation Region 1.3 TeV squark bound from the LHC Arnowitt, Dutta, Santoso, Phys.Rev. D64 (2001) 113010 , Arnowitt, Dutta, Hu, Santoso, Phys.Lett. B505 (2001) 177 6 mSUGRA Parameter space

Arnowitt, ICHEP’00, Arnowitt, Dutta, Santoso, Nucl.Phys. B606 (2001) 59, 7 Small DM at the LHC

(or l+l-, t+t) High PT jet [ difference is large] DM

The pT of jets and leptons depend on the sparticle which are given by Colored particles are models produced and they decay finally to the weakly interacting stable particle DM R-parity conserving (or l+l-, t+t) High PT jet The signal : jets + leptons+ t’s +W’s+Z’s+H’s + missing ET 8 Small DM via cascade Typical decay chain and final states at the LHC g~ Jets + t’s+ missing ~ u uL Low energy taus characterize

s the small mass gap e s s a However, one needs to measure M the model parameters to Y

S predict the dark matter 0 u

U ~ χ content in this scenario

S 2  Arnowitt, Dutta, Kamon, Kolev, Toback 0 ~ ~  1 Phys.Lett. B639 (2006) 46-53 χ1 (CDM)  Arnowitt, Aurisano, Dutta, 2 jets+2 ’s Kamon, Kolev, Simeon,Toback +missing Phys.Lett. B649 (2007) 73-82 energy 99 Small DM via cascade and DM Solved by inverting the following functions: peak m 0  210  5 M j  X1 (m1/ 2 ,m0 ) m  350  4 peak -1 1 / 2 M  X 2 (m1/ 2 ,m0 ,tan  , A0 ) 10 fb peak A 0  0  16 Meff  X 3 (m1/ 2 ,m0 ) (b) peak tan   40  1 Meff  X 4 (m1/ 2 , m0 ,tan  , A0 )

2 1  ~0 h  Z(m0 ,m1/ 2 tan  , A0 ) L  10 fb 1

50 fb 1

2 2   ~ 0 h /  ~ 0 h  6.2% (30 fb 1 1  4.1% (70 fb

Arnowitt, Dutta, Gurrola, Kamon, Krislock and Toback Phys.Rev.Lett. 100 (2008) 231802 10 +  Rare Decay Bs  m m How to understand particle physics models at the Tevatron

Rare Decay mode:

9 6 B SM  3.4  10 B SUSY  (tan )

Babu, Kolda, Phys.Rev.Lett. 84 (2000) 228

In the SUSY models (large tan), which are cosmologically consistent, the decay can be enhanced by up to 1,000.

11 Arnowitt, Dutta, Kamon, Tanaka, 02 CDF Physical Review Letter 107 (2011) 191801

223% o of ft hteh eU nUivneivrseer saet tahet tLhHeC LHC 12 Direct Detection of DM New physics/SUSY in the direct detection experiments:

DM DM

DAMA, CoGeNT: Signal for Low mass DM

LUX: No signal for Low or High DM mass

13 Direct Detection of DM

14 Direct Detection of DM

15 mSUGRA Parameter space

The minimal model: mSUGRA  4 parameters: m0, m1/2, A0, tanb and Sign(m)

Accomando, Arnowitt, Dutta, Santoso, Nucl.Phys. B585 (2000) 124-142 Accomando, Arnowitt, Dutta, Phys.Rev. D61 (2000) 075010

Coannihilation Region

16 SUGRA Parameter space

17 Models from String Theory

18 Models from String Theory

• Construction of Yukawa couplings with hierarchy (as observed) in the fermion masses in such attractive framework is possible Arnowitt, Dutta, Nucl.Phys. B592 (2001) 143-163

• Construction of neutrino masses and mixings(as observed in the experiments) in possible

Arnowitt, Dutta, Hu, Nucl.Phys. B682 (2004) 347-366 , Arnowitt, Dent, Dutta, Phys.Rev. D70 (2004) 126001 Highlights Highlights