Dark Matter and Supersymmetry Models Richard Arnowitt, Bhaskar Dutta Texas A&M University 1 Outline . Understand dark matter in the context of particle physics models . Consider models with grand unification motivated by string theory . Check the cosmological connections of these well motivated models at direct, indirect detection and collider experiments 2 Dark Matter: Thermal Production of thermal non-relativistic DM: 1 Dark Matter content: ~ DM v m freeze out T ~ DM f 20 3 m/T 26 cm v 310 Y becomes constant for T>T s f 2 a ~O(10-2) with m ~ O(100) GeV Assuming : v ~ c c f 2 leads to the correct relic abundance m 3 Anatomy of sann Co-annihilation Process ~ 0 1 Griest, Seckel ’91 2 ΔM M~ M ~0 1 1 + ~ ΔM / kT f 1 e Arnowitt, Dutta, Santoso, Nucl.Phys. B606 (2001) 59, A near degeneracy occurs naturally for light stau in mSUGRA. 4 Models 5 mSUGRA Parameter space Focus point Resonance Narrow blue line is the dark matter allowed region Coannihilation Region 1.3 TeV squark bound from the LHC Arnowitt, Dutta, Santoso, Phys.Rev. D64 (2001) 113010 , Arnowitt, Dutta, Hu, Santoso, Phys.Lett. B505 (2001) 177 6 mSUGRA Parameter space Arnowitt, ICHEP’00, Arnowitt, Dutta, Santoso, Nucl.Phys. B606 (2001) 59, 7 Small DM at the LHC (or l+l-, t+t) High PT jet [mass difference is large] DM The pT of jets and leptons depend on the sparticle masses which are given by Colored particles are models produced and they decay finally to the weakly interacting stable particle DM R-parity conserving (or l+l-, t+t) High PT jet The signal : jets + leptons+ t’s +W’s+Z’s+H’s + missing ET 8 Small DM via cascade Typical decay chain and final states at the LHC g~ Jets + t’s+ missing energy ~ u uL Low energy taus characterize s the small mass gap e s s a However, one needs to measure M the model parameters to Y S predict the dark matter 0 u U ~ χ content in this scenario S 2 Arnowitt, Dutta, Kamon, Kolev, Toback 0 ~ ~ 1 Phys.Lett. B639 (2006) 46-53 χ1 (CDM) Arnowitt, Aurisano, Dutta, 2 jets+2 ’s Kamon, Kolev, Simeon,Toback +missing Phys.Lett. B649 (2007) 73-82 energy 99 Small DM via cascade and DM Solved by inverting the following functions: peak m 0 210 5 M j X1 (m1/ 2 ,m0 ) m 350 4 peak -1 1 / 2 M X 2 (m1/ 2 ,m0 ,tan , A0 ) 10 fb peak A 0 0 16 Meff X 3 (m1/ 2 ,m0 ) (b) peak tan 40 1 Meff X 4 (m1/ 2 , m0 ,tan , A0 ) 2 1 ~0 h Z(m0 ,m1/ 2 tan , A0 ) L 10 fb 1 50 fb 1 2 2 ~ 0 h / ~ 0 h 6.2% (30 fb 1 1 4.1% (70 fb Arnowitt, Dutta, Gurrola, Kamon, Krislock and Toback Phys.Rev.Lett. 100 (2008) 231802 10 + Rare Decay Bs m m How to understand particle physics models at the Tevatron Rare Decay mode: 9 6 B SM 3.4 10 B SUSY (tan ) Babu, Kolda, Phys.Rev.Lett. 84 (2000) 228 In the SUSY models (large tan), which are cosmologically consistent, the decay can be enhanced by up to 1,000. 11 Arnowitt, Dutta, Kamon, Tanaka, 02 CDF Physical Review Letter 107 (2011) 191801 223% o of ft hteh eU nUivneivrseer saet tahet tLhHeC LHC 12 Direct Detection of DM New physics/SUSY in the direct detection experiments: DM DM DAMA, CoGeNT: Signal for Low mass DM LUX: No signal for Low or High DM mass 13 Direct Detection of DM 14 Direct Detection of DM 15 mSUGRA Parameter space The minimal model: mSUGRA 4 parameters: m0, m1/2, A0, tanb and Sign(m) Accomando, Arnowitt, Dutta, Santoso, Nucl.Phys. B585 (2000) 124-142 Accomando, Arnowitt, Dutta, Phys.Rev. D61 (2000) 075010 Coannihilation Region 16 SUGRA Parameter space 17 Models from String Theory 18 Models from String Theory • Construction of Yukawa couplings with hierarchy (as observed) in the fermion masses in such attractive framework is possible Arnowitt, Dutta, Nucl.Phys. B592 (2001) 143-163 • Construction of neutrino masses and mixings(as observed in the experiments) in possible Arnowitt, Dutta, Hu, Nucl.Phys. B682 (2004) 347-366 , Arnowitt, Dent, Dutta, Phys.Rev. D70 (2004) 126001 Highlights Highlights.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages21 Page
-
File Size-