Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida's Estuaries

Total Page:16

File Type:pdf, Size:1020Kb

Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida's Estuaries Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida’s Estuaries, Coastal Waters, and Southern Inland Flowing Waters November 17, 2010 Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida’s Estuaries, Coastal Waters, and Southern Inland Flowing Waters Disclaimer This document is intended to provide technical support to EPA in developing and establishing numeric water quality criteria under the Clean Water Act (CWA) pursuant to Section 303(c)(4), in order to support the applicable designated uses in the State of Florida from effects of nitrogen/phosphorus pollution. The information provided herein does not substitute for the CWA or EPA’s regulations; nor is this document a regulation itself. Thus, this document cannot and does not impose any legally binding requirements on EPA, States, Authorized Tribes, the regulated community, or any other party, and might not apply to a particular situation or circumstance. 1 Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida’s Estuaries, Coastal Waters, and Southern Inland Flowing Waters Contributing Authors Jim Carleton, U.S. Environmental Protection Agency Tiffany Crawford, U.S. Environmental Protection Agency Ed Decker, U.S. Environmental Protection Agency Edward Dettman, U.S. Environmental Protection Agency Erica Fleisig, U.S. Environmental Protection Agency Richard Greene, U.S. Environmental Protection Agency James Hagy, U.S. Environmental Protection Agency Galen Kaufman, U.S. Environmental Protection Agency Jacques Oliver, U.S. Environmental Protection Agency Blake Schaeffer, U.S. Environmental Protection Agency Mario Sengco, U.S. Environmental Protection Agency Dana Thomas, U.S. Environmental Protection Agency Timothy Wool, U.S. Environmental Protection Agency Steven Davie, Tetra Tech Jeroen Gerritsen, Tetra Tech Jon Harcum, Tetra Tech John Hochheimer, Tetra Tech Michael Paul, Tetra Tech Steven Davie, Tetra Tech 2 Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida’s Estuaries, Coastal Waters, and Southern Inland Flowing Waters Contents Contributing Authors ...................................................................................................................... 2 Abbreviations and Acronyms ....................................................................................................... 15 Executive Summary ...................................................................................................................... 18 1 Introduction ........................................................................................................................... 21 1.1 Purpose of the Document ............................................................................................. 21 1.2 Document Organization ............................................................................................... 21 1.3 Background: Clean Water Act Requirements and Florida’s Current Water Quality Standard for Nitrogen/Phosphorus Pollution ............................................................... 22 1.4 Nature of the Chemical Stressor: Nitrogen/Phosphorus Pollution ............................... 24 1.4.1 Stressor Source and Distribution .......................................................................... 24 1.4.2 Aquatic Ecosystem Effects of Nitrogen/Phosphorus Pollution ............................ 24 1.5 Purpose of this Effort ................................................................................................... 27 2 Approach ............................................................................................................................... 29 2.1 Overview ...................................................................................................................... 29 2.1.1 Nutrient Criteria Development Guidance ............................................................. 30 2.1.2 General Approach ................................................................................................. 30 2.2 Conceptual Model ........................................................................................................ 31 2.3 Review of Scientific Basis and Selection of Potential Assessment Endpoints and Indicator Variables ....................................................................................................... 33 2.3.1 Selecting Assessment Endpoints and Water Quality Indicator Variables ............ 33 2.3.2 Selected Biological Assessment Endpoints .......................................................... 37 2.3.3 Water Quality Indicator Variables for Expressing Criteria .................................. 39 2.4 Potential Data Sources .................................................................................................. 40 3 Numeric Nutrient Criteria Development in Florida Estuaries .............................................. 45 3.1 Delineating Estuaries .................................................................................................... 46 3.2 Selection of Assessment Endpoints and Indicator Variables ....................................... 48 3.3 Numeric Criteria Approaches ....................................................................................... 49 3.3.1 Reference Condition Approaches ......................................................................... 51 3.3.2 Stressor Response Relationships ........................................................................... 52 3.3.3 Water Quality Simulation Models ........................................................................ 54 3.3.4 Evaluating Water Quality Simulation Models ...................................................... 64 3.4 Seagrass Depth Targets ................................................................................................ 65 3 Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida’s Estuaries, Coastal Waters, and Southern Inland Flowing Waters 3.5 Example Application: Pensacola Bay .......................................................................... 69 3.5.1 Selection of Assessment Endpoints ...................................................................... 70 3.5.2 Numeric Criteria Development ............................................................................. 71 3.5.3 Details on the Pensacola Bay Water Quality Model ............................................. 72 4 Numeric Nutrient Criteria Development for Florida Coastal Waters ................................... 77 4.1 Analysis Plan and Delineation of Coastal Areas .......................................................... 77 4.1.1 Use of Remote Sensing Data ................................................................................ 79 4.2 Deriving Numeric Criteria ............................................................................................ 81 4.2.1 Satellite Chlorophyll Data Evaluation .................................................................. 82 4.2.2 Comparison of Satellite Chlorophyll to Field Collected Chlorophyll .................. 83 4.2.3 ChlRS-a Criteria from Statistical Distributions ...................................................... 87 4.3 Uncertainties and Data Gaps ........................................................................................ 90 5 Numeric Nutrient Criteria Development in South Florida Marine and Inland Flowing Waters ................................................................................................................................... 91 5.1 Analysis Plan for South Florida ................................................................................... 91 5.1.1 Inland Flowing Waters .......................................................................................... 92 5.1.2 Marine Waters ....................................................................................................... 93 5.2 Inland Flowing Waters: Classification ......................................................................... 93 5.2.1 Existing TP Criterion for the EvPA ...................................................................... 97 5.3 Inland Flowing Waters: Inventory ............................................................................... 98 5.4 Inland Flowing Waters: Data Sources and Assessment Endpoints ............................ 102 5.4.1 Deriving Numeric Criteria .................................................................................. 104 5.5 Marine Waters: Classification and Data Sources ....................................................... 113 5.6 Marine Waters: Numeric Criteria Derivation ............................................................. 116 5.6.1 Reference Condition Approach—Least Disturbed Sites .................................... 116 5.7 Uncertainties and Data Gaps ...................................................................................... 120 6 Numeric Nutrient Criteria Development for the Protection of Downstream Estuaries ...... 122 6.1 Analysis Plan .............................................................................................................. 122 6.2 Estimating Protective TN and TP Loading ................................................................ 123 6.3 Computing DPVs for Terminal Reaches .................................................................... 123 6.4 Computing DPVs for Upstream Reaches
Recommended publications
  • Interrelationships Among Hydrological, Biodiversity and Land Use Features of the Pantanal and Everglades
    Interrelationships among hydrological, biodiversity and Land Use Features of the Pantanal and Everglades Biogeochemical Segmentation and Derivation of Numeric Nutrient Criteria for Coastal Everglades waters. FIU Henry Briceño. Joseph N. Boyer NPS Joffre Castro 100 years of hydrology intervention …urban development 1953 1999 Naples Bay impacted by drainage, channelization, and urban development FDEP 2010 SEGMENTATION METHOD Six basins, 350 stations POR 1991 (1995)-1998. NH4, NO2, TOC, TP, TN, NO3, TON, SRP, DO, Turbidity, Salinity, CHLa, Temperature Factor Analysis (PC extraction) Scores Mean, SD, Median, MAD Hierarchical Clustering NUMERIC NUTRIENT CRITERIA The USEPA recommends three types of approaches for setting numeric nutrient criteria: - reference condition approach - stressor-response analysis - mechanistic modeling. A Station’s Never to Exceed (NTE) Limit. This limit is the highest possible level that a station concentration can reach at any time A Segment’s Annual Geometric Mean (AGM) Limit. This limit is the highest possible level a segment’s average concentration of annual geometric means can reach in year A Segment’s 1-in-3 Years (1in3) Limit. This limit is the level that a segment average concentration of annual geometric means should be less than or equal to, at least, twice in three consecutive years. 1in3 AGM NTE 90% 80% 95% AGM : Annual Geometric Mean Not to be exceeded 1in3 : Annual Geometric Mean Not to exceed more than once in 3 yrs Biscayne Bay, Annual Geometric Means 0.7 AGMAGM Limit : Not to be exceeded 0.6 (Annual Geometric Mean not to be exceeded) 1in31in3 Limit : Not to exceed more 0.5 (Annualthan Geometric once Mean in not 3 to beyears exceeded more than once in 3 yrs) 0.4 0.3 Total Nitrogen, mg/LNitrogen, Total 0.2 Potentially Enriched 0.1 SCO NCO SNB NCI NNB CS SCM SCI MBS THRESHOLD ANALYSIS Regime Shift Detection methods (Rodionov 2004) Cumulative deviations from mean method CTZ CHLa Zcusum Threshold 20 0 -20 Cusum .
    [Show full text]
  • 11-1 335-6-11-.02 Use Classifications. (1) the ALABAMA RIVER BASIN Waterbody from to Classification ALABAMA RIVER MOBILE RIVER C
    335-6-11-.02 Use Classifications. (1) THE ALABAMA RIVER BASIN Waterbody From To Classification ALABAMA RIVER MOBILE RIVER Claiborne Lock and F&W Dam ALABAMA RIVER Claiborne Lock and Alabama and Gulf S/F&W (Claiborne Lake) Dam Coast Railway ALABAMA RIVER Alabama and Gulf River Mile 131 F&W (Claiborne Lake) Coast Railway ALABAMA RIVER River Mile 131 Millers Ferry Lock PWS (Claiborne Lake) and Dam ALABAMA RIVER Millers Ferry Sixmile Creek S/F&W (Dannelly Lake) Lock and Dam ALABAMA RIVER Sixmile Creek Robert F Henry Lock F&W (Dannelly Lake) and Dam ALABAMA RIVER Robert F Henry Lock Pintlala Creek S/F&W (Woodruff Lake) and Dam ALABAMA RIVER Pintlala Creek Its source F&W (Woodruff Lake) Little River ALABAMA RIVER Its source S/F&W Chitterling Creek Within Little River State Forest S/F&W (Little River Lake) Randons Creek Lovetts Creek Its source F&W Bear Creek Randons Creek Its source F&W Limestone Creek ALABAMA RIVER Its source F&W Double Bridges Limestone Creek Its source F&W Creek Hudson Branch Limestone Creek Its source F&W Big Flat Creek ALABAMA RIVER Its source S/F&W 11-1 Waterbody From To Classification Pursley Creek Claiborne Lake Its source F&W Beaver Creek ALABAMA RIVER Extent of reservoir F&W (Claiborne Lake) Beaver Creek Claiborne Lake Its source F&W Cub Creek Beaver Creek Its source F&W Turkey Creek Beaver Creek Its source F&W Rockwest Creek Claiborne Lake Its source F&W Pine Barren Creek Dannelly Lake Its source S/F&W Chilatchee Creek Dannelly Lake Its source S/F&W Bogue Chitto Creek Dannelly Lake Its source F&W Sand Creek Bogue
    [Show full text]
  • City of Jacksonville/Duval County Environmental Review Record CDBG-DR – Hurricane Matthew Housing Repair Program Contents Scope of Work
    City of Jacksonville/Duval County Environmental Review Record CDBG-DR – Hurricane Matthew Housing Repair Program Contents Scope of Work ................................................................................................................................ 1 Broad-Level Tiered Environmental Review ................................................................................... 3 Supporting Documentation ....................................................................................................... 11 Unmet Needs ......................................................................................................................... 11 Project Area ........................................................................................................................... 12 Airport Hazards ..................................................................................................................... 13 Coastal Barrier Resources ..................................................................................................... 17 Flood Insurance ..................................................................................................................... 19 Clean Air................................................................................................................................ 22 Coastal Zone Management .................................................................................................... 26 Endangered Species ..............................................................................................................
    [Show full text]
  • Chapter 335-6-11 Water Use Classifications for Interstate and Intrastate Waters
    Environmental Management Chapter 335-6-11 DEPARTMENT OF ENVIRONMENTAL MANAGEMENT WATER DIVISION - WATER QUALITY PROGRAM ADMINISTRATIVE CODE CHAPTER 335-6-11 WATER USE CLASSIFICATIONS FOR INTERSTATE AND INTRASTATE WATERS TABLE OF CONTENTS 335-6-11-.01 The Use Classification System 335-6-11-.02 Use Classifications 335-6-11-.01 The Use Classification System. (1) Use classifications utilized by the State of Alabama are as follows: Outstanding Alabama Water ................... OAW Public Water Supply ......................... PWS Swimming and Other Whole Body Shellfish Harvesting ........................ SH Fish and Wildlife ........................... F&W Limited Warmwater Fishery ................... LWF Agricultural and Industrial Water Supply ................................ A&I (2) Use classifications apply water quality criteria adopted for particular uses based on existing utilization, uses reasonably expected in the future, and those uses not now possible because of correctable pollution but which could be made if the effects of pollution were controlled or eliminated. Of necessity, the assignment of use classifications must take into consideration the physical capability of waters to meet certain uses. (3) Those use classifications presently included in the standards are reviewed informally by the Department's staff as the need arises, and the entire standards package, to include the use classifications, receives a formal review at least once every three years. Efforts currently underway through local 201 planning projects will provide additional technical data on certain waterbodies in the State, information on treatment alternatives, and applicability of various management techniques, which, when available, will hopefully lead to new decisions regarding use classifications. Of particular interest are those segments which are currently classified for any usage which has an associated Supp.
    [Show full text]
  • Template for Hazard Mitigation Plan
    HAZARD MITIGATION PLAN FOR COVINGTON COUNTY, ALABAMA (2009 UPDATE DRAFT) Covington County Hazard Mitigation Plan Table of Contents Section 1 Hazard Mitigation Plan Background 1.1 Introduction 1.2 Authority 1.3 Funding 1.4 Scope 1.5 Purpose Section 2 Covington County Profile 2.1 Geology 2.2 Transportation 2.3 Economy 2.4 Utilities 2.5 Social and Economic Characteristics Section 3 Planning Process 3.1 Multi-Jurisdictional Plan Adoption 3.2 Multi-Jurisdictional Planning Participation 3.3 Hazard Mitigation Planning Process 3.4 Public and Other Stakeholder Involvement 3.5 Integration with Existing Plans Section 4 Risk Assessment 4.1 Hazard Identification 4.2 Susceptibility to Hazards by Jurisdiction 4.3 Extent of Hazards by Jurisdiction 4.4 Previous Occurrences 4.5 Past Occurrence Documentation 4.6 Probability of Future Occurrence by Jurisdiction 4.7 Vulnerability Overview 4.8 Population Vulnerable to Hazards by Jurisdiction 4.9 Socially Vulnerable Populations 4.10 County Building Stock 4.11 Critical Facilities/Infrastructure Identification 4.12 Critical Facilities/Infrastructure Identification by Jurisdiction 4.13 Repetitive Loss Properties 4.14 Analyzing Development Trends Section 5 Mitigation 5.1 Mitigation Planning Process 5.2 Mitigation Goals and Strategies by Jurisdiction Covington County City of Andalusia Town of Babbie Town of Carolina City of Florala Town of Gantt Town of Heath 2 Covington County Hazard Mitigation Plan Town of Horn Hill Town of Libertyville Town of Lockhart Town of Onycha City of Opp Town of Red Level Town of River
    [Show full text]
  • Turkey Point Units 6 & 7 COLA
    Turkey Point Units 6 & 7 COL Application Part 2 — FSAR SUBSECTION 2.4.1: HYDROLOGIC DESCRIPTION TABLE OF CONTENTS 2.4 HYDROLOGIC ENGINEERING ..................................................................2.4.1-1 2.4.1 HYDROLOGIC DESCRIPTION ............................................................2.4.1-1 2.4.1.1 Site and Facilities .....................................................................2.4.1-1 2.4.1.2 Hydrosphere .............................................................................2.4.1-3 2.4.1.3 References .............................................................................2.4.1-12 2.4.1-i Revision 6 Turkey Point Units 6 & 7 COL Application Part 2 — FSAR SUBSECTION 2.4.1 LIST OF TABLES Number Title 2.4.1-201 East Miami-Dade County Drainage Subbasin Areas and Outfall Structures 2.4.1-202 Summary of Data Records for Gage Stations at S-197, S-20, S-21A, and S-21 Flow Control Structures 2.4.1-203 Monthly Mean Flows at the Canal C-111 Structure S-197 2.4.1-204 Monthly Mean Water Level at the Canal C-111 Structure S-197 (Headwater) 2.4.1-205 Monthly Mean Flows in the Canal L-31E at Structure S-20 2.4.1-206 Monthly Mean Water Levels in the Canal L-31E at Structure S-20 (Headwaters) 2.4.1-207 Monthly Mean Flows in the Princeton Canal at Structure S-21A 2.4.1-208 Monthly Mean Water Levels in the Princeton Canal at Structure S-21A (Headwaters) 2.4.1-209 Monthly Mean Flows in the Black Creek Canal at Structure S-21 2.4.1-210 Monthly Mean Water Levels in the Black Creek Canal at Structure S-21 2.4.1-211 NOAA
    [Show full text]
  • Of 6 62-302.532 Estuary-Specific Numeric Interpretations of The
    FAC 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion Effective Date: 12/20/2012 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion. (1) Estuary-specific numeric interpretations of the narrative nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., are in the table below. The concentration-based estuary interpretations are open water, area-wide averages. The interpretations expressed as load per million cubic meters of freshwater inflow are the total load of that nutrient to the estuary divided by the total volume of freshwater inflow to that estuary. Page 1 of 6 FAC 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion Effective Date: 12/20/2012 Estuary Total Phosphorus Total Nitrogen Chlorophyll a (a) Clearwater Harbor/St. Joseph Sound Annual geometric mean values not to be exceeded more than once in a three year period. Nutrient and nutrient response values do not apply to tidally influenced areas that fluctuate between predominantly marine and predominantly fresh waters during typical climatic and hydrologic conditions. 1. St.Joseph Sound 0.05 mg/L 0.66 mg/L 3.1 µg/L 2. Clearwater North 0.05 mg/L 0.61 mg/L 5.4 µg/L 3. Clearwater South 0.06 mg/L 0.58 mg/L 7.6 µg/L (b) Tampa Bay Annual totals for nutrients and annual arithmetic means for chlorophyll a, not to be exceeded more than once in a three year period. Nutrient and nutrient response values do not apply to tidally influenced areas that fluctuate between predominantly marine and predominantly fresh waters during typical climatic and hydrologic conditions.
    [Show full text]
  • Influence of Net Freshwater Supply on Salinity in Florida
    WATER RESOURCES RESEARCH, VOL. 36, NO. 7, PAGES 1805–1822, JULY 2000 Influence of net freshwater supply on salinity in Florida Bay William K. Nuttle and James W. Fourqurean Southeast Environmental Research Center, Biological Sciences, Florida International University, Miami Bernard J. Cosby and Joseph C. Zieman Department of Environmental Sciences, University of Virginia, Charlottesville Michael B. Robblee Biological Resources Division, U.S. Geological Survey, Florida International University, Miami Abstract. An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long-term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean.
    [Show full text]
  • A Contribution to the Geologic History of the Floridian Plateau
    Jy ur.H A(Lic, n *^^. tJMr^./*>- . r A CONTRIBUTION TO THE GEOLOGIC HISTORY OF THE FLORIDIAN PLATEAU. BY THOMAS WAYLAND VAUGHAN, Geologist in Charge of Coastal Plain Investigation, U. S. Geological Survey, Custodian of Madreporaria, U. S. National IMuseum. 15 plates, 6 text figures. Extracted from Publication No. 133 of the Carnegie Institution of Washington, pages 99-185. 1910. v{cff« dl^^^^^^ .oV A CONTRIBUTION TO THE_^EOLOGIC HISTORY/ OF THE/PLORIDIANy PLATEAU. By THOMAS WAYLAND YAUGHAn/ Geologist in Charge of Coastal Plain Investigation, U. S. Ge6logical Survey, Custodian of Madreporaria, U. S. National Museum. 15 plates, 6 text figures. 99 CONTENTS. Introduction 105 Topography of the Floridian Plateau 107 Relation of the loo-fathom curve to the present land surface and to greater depths 107 The lo-fathom curve 108 The reefs -. 109 The Hawk Channel no The keys no Bays and sounds behind the keys in Relief of the mainland 112 Marine bottom deposits forming in the bays and sounds behind the keys 1 14 Biscayne Bay 116 Between Old Rhodes Bank and Carysfort Light 117 Card Sound 117 Barnes Sound 117 Blackwater Sound 117 Hoodoo Sound 117 Florida Bay 117 Gun and Cat Keys, Bahamas 119 Summary of data on the material of the deposits 119 Report on examination of material from the sea-bottom between Miami and Key West, by George Charlton Matson 120 Sources of material 126 Silica 126 Geologic distribution of siliceous sand in Florida 127 Calcium carbonate 129 Calcium carbonate of inorganic origin 130 Pleistocene limestone of southern Florida 130 Topography of southern Florida 131 Vegetation of southern Florida 131 Drainage and rainfall of southern Florida 132 Chemical denudation 133 Precipitation of chemically dissolved calcium carbonate.
    [Show full text]
  • Seagrass Integrated Mapping and Monitoring for the State of Florida Mapping and Monitoring Report No. 1
    Yarbro and Carlson, Editors SIMM Report #1 Seagrass Integrated Mapping and Monitoring for the State of Florida Mapping and Monitoring Report No. 1 Edited by Laura A. Yarbro and Paul R. Carlson Jr. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute St. Petersburg, Florida March 2011 Yarbro and Carlson, Editors SIMM Report #1 Yarbro and Carlson, Editors SIMM Report #1 Table of Contents Authors, Contributors, and SIMM Team Members .................................................................. 3 Acknowledgments .................................................................................................................... 4 Abstract ..................................................................................................................................... 5 Executive Summary .................................................................................................................. 7 Introduction ............................................................................................................................. 31 How this report was put together ........................................................................................... 36 Chapter Reports ...................................................................................................................... 41 Perdido Bay ........................................................................................................................... 41 Pensacola Bay .....................................................................................................................
    [Show full text]
  • Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida
    Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Prepared as part of the U.S. GEOLOGICAL SURVEY PLACE-BASED STUDIES PROGRAM and in cooperation with the U.S. ARMY CORPS OF ENGINEERS Rainfall Surface water in Everglades Biscayne Evapotranspiration Recharge Bay Submarine ground-water Canal Canal discharge Water table Water table Lateral BISCAYNE boundary AQUIFER flow Freshwater Municipal Municipal well field well field Brackish water Seawater Water-Resources Investigations Report 00-4251 Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida By Christian D. Langevin U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4251 Prepared as part of the U.S. GEOLOGICAL SURVEY Place-Based Studies Program and in cooperation with the U.S. ARMY CORPS OF ENGINEERS Tallahassee, Florida 2001 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services Suite 3015 Box 25286 227 N. Bronough Street Denver, CO 80225-0286 Tallahassee, FL 32301 888-ASK-USGS Additional information about water resources in Florida is available on the World Wide Web at http://fl.water.usgs.gov CONTENTS
    [Show full text]
  • A Bibliography of the Hydrology of the Everglades and the Big Cypress Swamp, Florida
    Report T-501 . A Bibliogra h of the an the Ig Cypress wamp, Florida Evp-rg ades National Park South Florala Research Gen er. PO. Box 279. Homesll~ad, Florida 33030 A Bibliography of the Hydrology of the Everglades and the Big Cypress Swamp, Florida Report T-501 Linda S. ReMauro South Florida Research Center Everglades National Park Homestead, Florida 33030 September, 1977 EV'2rglades N.3tional Park n Refe re0· ::; Library Homes ad, Fl rida 33030 DeMauro, Linda S. 1977. A Bibliography of the Hydrology of the Everglades and the Big Cypress Swamp, Florida. South Florida Research Center Report T -501. 43 pp. Contents Introduction 1 Purpose 1 Methods 1 Discussion 6 References 9 -• I [ f . I,. ll1ustrations l. Map 2 2. Everglades National Park and the Conservation Areas 3 of 4 1 Introduction The of is to provide a bibliography hydrologic literature, both historic and current, concerning the which includes the Conservation Areas and Everglades National Park, and the Big Cypress Swamp, which includes the Big National Preserve (Figure 1 2). areas the southern portIon of the mmee Rl ver Lake Okeechobee Watershed, with Conservation Areas and the Big Cypress providing the bulk of the flow into Park (Figure 3). The hydrology of the basin is a of complex relationships, and determines the unique ecological environment of area. Through manipulations efforts to Florida, he has altered the historic flow regime of the area. This turn affected the biological environment in a chain reaction attendant to such a sensitive, interdependent Purpose It is this report will provide a useful tool for water management planning in these cri areas.
    [Show full text]