Interrelationships Among Hydrological, Biodiversity and Land Use Features of the Pantanal and Everglades

Total Page:16

File Type:pdf, Size:1020Kb

Interrelationships Among Hydrological, Biodiversity and Land Use Features of the Pantanal and Everglades Interrelationships among hydrological, biodiversity and Land Use Features of the Pantanal and Everglades Biogeochemical Segmentation and Derivation of Numeric Nutrient Criteria for Coastal Everglades waters. FIU Henry Briceño. Joseph N. Boyer NPS Joffre Castro 100 years of hydrology intervention …urban development 1953 1999 Naples Bay impacted by drainage, channelization, and urban development FDEP 2010 SEGMENTATION METHOD Six basins, 350 stations POR 1991 (1995)-1998. NH4, NO2, TOC, TP, TN, NO3, TON, SRP, DO, Turbidity, Salinity, CHLa, Temperature Factor Analysis (PC extraction) Scores Mean, SD, Median, MAD Hierarchical Clustering NUMERIC NUTRIENT CRITERIA The USEPA recommends three types of approaches for setting numeric nutrient criteria: - reference condition approach - stressor-response analysis - mechanistic modeling. A Station’s Never to Exceed (NTE) Limit. This limit is the highest possible level that a station concentration can reach at any time A Segment’s Annual Geometric Mean (AGM) Limit. This limit is the highest possible level a segment’s average concentration of annual geometric means can reach in year A Segment’s 1-in-3 Years (1in3) Limit. This limit is the level that a segment average concentration of annual geometric means should be less than or equal to, at least, twice in three consecutive years. 1in3 AGM NTE 90% 80% 95% AGM : Annual Geometric Mean Not to be exceeded 1in3 : Annual Geometric Mean Not to exceed more than once in 3 yrs Biscayne Bay, Annual Geometric Means 0.7 AGMAGM Limit : Not to be exceeded 0.6 (Annual Geometric Mean not to be exceeded) 1in31in3 Limit : Not to exceed more 0.5 (Annualthan Geometric once Mean in not 3 to beyears exceeded more than once in 3 yrs) 0.4 0.3 Total Nitrogen, mg/LNitrogen, Total 0.2 Potentially Enriched 0.1 SCO NCO SNB NCI NNB CS SCM SCI MBS THRESHOLD ANALYSIS Regime Shift Detection methods (Rodionov 2004) Cumulative deviations from mean method CTZ CHLa Zcusum Threshold 20 0 -20 Cusum . Cusum - -40 -60 CHLa Z CHLa -80 -100 -120 0.001 0.010 0.100 1.000 TP (mg/l) Main TP Threshold 0.06 0.05 0.04 0.03 mg/lTP 0.02 0.01 0.00 CI GI CL CL LK LK CS EB PD UK UK SCI IGS MK MK MR NCI CTZ CTZ SFB BLK CFB SCB BKS NPL NPL OFF BKB SCO NFB SNB OGS IWW NCO SCM NNB MBS SRM WFB PINE MGS ECFB MAR WWB WWB COCO MARC BB FB FK PIRB SHELF WWB-TTI Interrelationships among hydrological, biodiversity and Land Use Features of the Pantanal and Everglades Biogeochemical Segmentation and Derivation of Numeric Nutrient Criteria for Coastal Everglades waters. FIU Henry Briceño. Joseph N. Boyer NPS Joffre Castro Hydroperiod Whitewater Bay- Pine Island- Biscayne Bay Florida Bay Florida Keys Shelf 10,000 Islands Rookery Bay POR Jun/96 to Sep/08 Mar/91 to Dec/07 Mar/95-Oct/09 Sep/92-Sep/08 May/95-Sep/07 Jan/99-Sep/09 TN TN TN TN TP TN Input TP TP TP TP TN TP CHLA CHLA CHLA CHLA CHLA CHLA Variables TOC TOC TOC TOC NOX TOC SAL_S SAL SAL SAL NH4 SAL_S for DO_S DO DO DO TOC DO_S TURB TURB TURB TURB SAL_S TURB NOX TON TEMP NH4 DO_S NO3 Factor NO2 NO3 TURB NO2 NH4 NO2 NH4 SRP NH4 SRP Analysis SRP TEMP Stations 30 28 155 47 49 29 Factors 5 6 4 4 4 5 Acct Variance 73% 79% 66% 75% 63% 81% Clusters n=9 n=6 n=7 n=8 n=3 n=7 Card Sound (CS) Central Florida B. (CFB) Back Bay (BKB) Black River (BR) Inner (IGS) Collier Inshore (CI) North Central Inshore (NCI) Eastern-Central (ECFB) Back Shelf (BKS) Coastal Transition Z. (CTZ) Mid (MGS) Estero Bay (EB) North Central Outter (NCO) North Florida B. (NFB) Lower Keys (LK) Gulf Islands (GI) Outter (OGS) Marco Island (MARC) Northern North Bay (NNB) Coastal Lakes (CL) Middle Keys (MK) Internal Waterways (IWW) Naples Bay (NB) South Central Inshore (SCI) South Florida B. (SFB) Upper Keys (UK) Mangrove Rivers (MR) Pine Island S. (PINE) South Central Mid Bay (SCM) West Florida B. (WFB) Marquesas (MAR) Ponce de Leon (PD) San Carlos B. (SCB) South Central Outter (SCO) Offshore (OFF) Shark River Mouth (SRM) Cocohatchee (COCO) Southern North Bay (SNB) Whitewater Bay (WWB) Manatee-Barnes Sound (MBS).
Recommended publications
  • 2019 Preliminary Manatee Mortality Table with 5-Year Summary From: 01/01/2019 To: 11/22/2019
    FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION MARINE MAMMAL PATHOBIOLOGY LABORATORY 2019 Preliminary Manatee Mortality Table with 5-Year Summary From: 01/01/2019 To: 11/22/2019 County Date Field ID Sex Size Waterway City Probable Cause (cm) Nassau 01/01/2019 MNE19001 M 275 Nassau River Yulee Natural: Cold Stress Hillsborough 01/01/2019 MNW19001 M 221 Hillsborough Bay Apollo Beach Natural: Cold Stress Monroe 01/01/2019 MSW19001 M 275 Florida Bay Flamingo Undetermined: Other Lee 01/01/2019 MSW19002 M 170 Caloosahatchee River North Fort Myers Verified: Not Recovered Manatee 01/02/2019 MNW19002 M 213 Braden River Bradenton Natural: Cold Stress Putnam 01/03/2019 MNE19002 M 175 Lake Ocklawaha Palatka Undetermined: Too Decomposed Broward 01/03/2019 MSE19001 M 246 North Fork New River Fort Lauderdale Natural: Cold Stress Volusia 01/04/2019 MEC19002 U 275 Mosquito Lagoon Oak Hill Undetermined: Too Decomposed St. Lucie 01/04/2019 MSE19002 F 226 Indian River Fort Pierce Natural: Cold Stress Lee 01/04/2019 MSW19003 F 264 Whiskey Creek Fort Myers Human Related: Watercraft Collision Lee 01/04/2019 MSW19004 F 285 Mullock Creek Fort Myers Undetermined: Too Decomposed Citrus 01/07/2019 MNW19003 M 275 Gulf of Mexico Crystal River Verified: Not Recovered Collier 01/07/2019 MSW19005 M 270 Factory Bay Marco Island Natural: Other Lee 01/07/2019 MSW19006 U 245 Pine Island Sound Bokeelia Verified: Not Recovered Lee 01/08/2019 MSW19007 M 254 Matlacha Pass Matlacha Human Related: Watercraft Collision Citrus 01/09/2019 MNW19004 F 245 Homosassa River Homosassa
    [Show full text]
  • Watercraft Access Facilities in the State of Florida Biological Assessment
    Watercraft Access Facilities in the State of Florida Biological Assessment Introduction The U.S. Army Corps of Engineers (Corps) issues numerous permits for watercraft access facilities in Florida manatee (Trichechus manatus latirostris) habitat within Florida. Permitting actions that involve the rehabilitation of existing facilities and the construction of new facilities that include 4 slips or less in manatee habitat are currently evaluated using a programmatic approach that meets the consultation requirements of the Endangered Species Act. The purpose of this action is to develop and implement a programmatic framework to encompass the majority of proposals (with the exception of proposals that involve the rehabilitation of existing facilities and the construction of new facilities that include 4 slips or less in manatee habitat), regardless of size or extent, in order to streamline the formal consultation process and ensure that adequate measures are in place to avoid and minimize impacts to manatees, as well as any adverse modification(s) of critical habitat. Project Description / Area of Analysis The actions addressed by this Biological Opinion include all new watercraft access facilities (i.e., docks, boat ramps, and marinas and any dredging, pipes and culverts included in project plans and build out) which are likely to adversely affect manatees as determined via the 2011 Manatee Key. This analysis is intended to assist biologists in assessing the potential impacts of watercraft access facilities on the Florida manatee (Trichechus manatus latirostris) in the State of Florida. Manatee Occurrence Florida manatees are found throughout the southeastern United States. As a subspecies of the West Indian manatee, their presence here represents the northern limit of this species range (Lefebvre et al.
    [Show full text]
  • Veterans-Ride-Program-VA-Map.Pdf
    Chatuge L. 59 Stevenson 76 Florence Athens 11 19 L. Burton Muscle Shoals 76 27 75 Scottsboro 123 129 Decatur Moulton 23 Hartselle Fort Payne 85 41 575 441 29 Albertville 19 129 Cullman Allatoona L. Hamilton Gadsden Kennesaw Mountain NBP Guin 278 Oneonta 29 27 Chattahoochee River NRA Sulligent Jasper 378 78 Sumiton Saks 20 Center Point Anniston 278 78 20 Mountain Brook 27A 29 129 278 Hueytown Talladega Reform VA Sunshine HealthcareSouth Augusta Network (VISN 8) Jackson L. 221 Alabaster 140 Fountain Parkway • St. Petersburg, Florida 33716 • www.visn8.va.gov Sylacauga 41 Calera Roanoke 75 1 23 27A BIBB Alexander City Brent West Point L. 25 COOSA UPSON WASHINGTON SCREVEN 441 Lafayette NORTHMONROE FLORIDA/SOUTH GEORGIA Eutaw TALLAPOOSA Macon Clanton CHAMBERS HARRIS BIBB Flint R. 80 JENKINS 19 319 TALBOT CHILTON 27 PERRY WILKINSON CRAWFORD JOHNSON 301 1. Lecanto CBOC 7. AuburnValdosta CBOC 9. St. Marys CBOC 11.LAUREN JacksonvilleS 2 VA Clinic 13. St. Augustine VA Clinic 15. Perry VA Clinic Malcom Randall VAMC 341 TAYLOR L. Harding 23 Oconee R. PEACH LEE TWIGGS 80 Demopolis 2804 W Marc Knighton Ct, SteELMORE A 2841 N Patterson St MUSCOGEE 2603 Osbourne Rd Ste E 3901 UniversityEMANUEL Blvd S (new interim address) 1224 N Peacock Ave 1601 SW Archer Rd 129 AUTAUGA Prattville HOUSTON BLECKLEY Selma Phenix City 16 Lecanto, FL 34461 Valdosta, GA 31601 Columbus St. Marys, GA 31558 Jacksonville, FL 32216 CANDLER 195EFFINGHAM Southpark Blvd Perry, FL 32347 Gainesville, FL 32608 MACON TREUTLEN CHATAHOOCHEE MACON BULLOCH 80 Linden (352)Montgomery 746-8000 (229) 293-0132;RUSSELL (877) 303-8387MARION (912) 510-3420 PULASKI (904) 732-6300 St Augustine, FL 32086 (850) 223-8387 (352) 376-1611; (800) 324-8387 221 SCHLEY 341 25 BULLOCK Andersonville NHS 41 95 LOWNDES Union Springs MONT- (904) 829-0814; (866) 401-8387 2.
    [Show full text]
  • Bookletchart™ Florida Everglades National Park – Whitewater Bay NOAA Chart 11433
    BookletChart™ Florida Everglades National Park – Whitewater Bay NOAA Chart 11433 A reduced-scale NOAA nautical chart for small boaters When possible, use the full-size NOAA chart for navigation. Included Area Published by the to Coot Bay and Whitewater Bay. A highway bridge, about 0.5 mile above the mouth of the canal, has a reported 45-foot fixed span and a National Oceanic and Atmospheric Administration clearance of 10 feet. A marina on the W side of the canal just below the National Ocean Service dam at Flamingo has berths with electricity, water, ice, and limited Office of Coast Survey marine supplies. Gasoline, diesel fuel, and launching ramps are available on either side of the dam. A 5-mph no-wake speed limit is enforced in www.NauticalCharts.NOAA.gov the canal. 888-990-NOAA Small craft can traverse the system of tidal bays, creeks, and canals from Flamingo Visitors Center to the Gulf of Mexico, 6 miles N of Northwest What are Nautical Charts? Cape. The route through Buttonwood Canal, Coot Bay, Tarpon Creek, Whitewater Bay, Cormorant Pass, Oyster Bay, and Little Shark River is Nautical charts are a fundamental tool of marine navigation. They show marked by daybeacons. The controlling depth is about 3½ feet. water depths, obstructions, buoys, other aids to navigation, and much The route from Flamingo to Daybeacon 48, near the W end of more. The information is shown in a way that promotes safe and Cormorant Pass, is part of the Wilderness Waterway. efficient navigation. Chart carriage is mandatory on the commercial Wilderness Waterway is a 100-mile inside passage winding through the ships that carry America’s commerce.
    [Show full text]
  • Turkey Point Units 6 & 7 COLA
    Turkey Point Units 6 & 7 COL Application Part 2 — FSAR SUBSECTION 2.4.1: HYDROLOGIC DESCRIPTION TABLE OF CONTENTS 2.4 HYDROLOGIC ENGINEERING ..................................................................2.4.1-1 2.4.1 HYDROLOGIC DESCRIPTION ............................................................2.4.1-1 2.4.1.1 Site and Facilities .....................................................................2.4.1-1 2.4.1.2 Hydrosphere .............................................................................2.4.1-3 2.4.1.3 References .............................................................................2.4.1-12 2.4.1-i Revision 6 Turkey Point Units 6 & 7 COL Application Part 2 — FSAR SUBSECTION 2.4.1 LIST OF TABLES Number Title 2.4.1-201 East Miami-Dade County Drainage Subbasin Areas and Outfall Structures 2.4.1-202 Summary of Data Records for Gage Stations at S-197, S-20, S-21A, and S-21 Flow Control Structures 2.4.1-203 Monthly Mean Flows at the Canal C-111 Structure S-197 2.4.1-204 Monthly Mean Water Level at the Canal C-111 Structure S-197 (Headwater) 2.4.1-205 Monthly Mean Flows in the Canal L-31E at Structure S-20 2.4.1-206 Monthly Mean Water Levels in the Canal L-31E at Structure S-20 (Headwaters) 2.4.1-207 Monthly Mean Flows in the Princeton Canal at Structure S-21A 2.4.1-208 Monthly Mean Water Levels in the Princeton Canal at Structure S-21A (Headwaters) 2.4.1-209 Monthly Mean Flows in the Black Creek Canal at Structure S-21 2.4.1-210 Monthly Mean Water Levels in the Black Creek Canal at Structure S-21 2.4.1-211 NOAA
    [Show full text]
  • Of 6 62-302.532 Estuary-Specific Numeric Interpretations of The
    FAC 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion Effective Date: 12/20/2012 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion. (1) Estuary-specific numeric interpretations of the narrative nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., are in the table below. The concentration-based estuary interpretations are open water, area-wide averages. The interpretations expressed as load per million cubic meters of freshwater inflow are the total load of that nutrient to the estuary divided by the total volume of freshwater inflow to that estuary. Page 1 of 6 FAC 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion Effective Date: 12/20/2012 Estuary Total Phosphorus Total Nitrogen Chlorophyll a (a) Clearwater Harbor/St. Joseph Sound Annual geometric mean values not to be exceeded more than once in a three year period. Nutrient and nutrient response values do not apply to tidally influenced areas that fluctuate between predominantly marine and predominantly fresh waters during typical climatic and hydrologic conditions. 1. St.Joseph Sound 0.05 mg/L 0.66 mg/L 3.1 µg/L 2. Clearwater North 0.05 mg/L 0.61 mg/L 5.4 µg/L 3. Clearwater South 0.06 mg/L 0.58 mg/L 7.6 µg/L (b) Tampa Bay Annual totals for nutrients and annual arithmetic means for chlorophyll a, not to be exceeded more than once in a three year period. Nutrient and nutrient response values do not apply to tidally influenced areas that fluctuate between predominantly marine and predominantly fresh waters during typical climatic and hydrologic conditions.
    [Show full text]
  • Influence of Net Freshwater Supply on Salinity in Florida
    WATER RESOURCES RESEARCH, VOL. 36, NO. 7, PAGES 1805–1822, JULY 2000 Influence of net freshwater supply on salinity in Florida Bay William K. Nuttle and James W. Fourqurean Southeast Environmental Research Center, Biological Sciences, Florida International University, Miami Bernard J. Cosby and Joseph C. Zieman Department of Environmental Sciences, University of Virginia, Charlottesville Michael B. Robblee Biological Resources Division, U.S. Geological Survey, Florida International University, Miami Abstract. An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long-term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean.
    [Show full text]
  • A Contribution to the Geologic History of the Floridian Plateau
    Jy ur.H A(Lic, n *^^. tJMr^./*>- . r A CONTRIBUTION TO THE GEOLOGIC HISTORY OF THE FLORIDIAN PLATEAU. BY THOMAS WAYLAND VAUGHAN, Geologist in Charge of Coastal Plain Investigation, U. S. Geological Survey, Custodian of Madreporaria, U. S. National IMuseum. 15 plates, 6 text figures. Extracted from Publication No. 133 of the Carnegie Institution of Washington, pages 99-185. 1910. v{cff« dl^^^^^^ .oV A CONTRIBUTION TO THE_^EOLOGIC HISTORY/ OF THE/PLORIDIANy PLATEAU. By THOMAS WAYLAND YAUGHAn/ Geologist in Charge of Coastal Plain Investigation, U. S. Ge6logical Survey, Custodian of Madreporaria, U. S. National Museum. 15 plates, 6 text figures. 99 CONTENTS. Introduction 105 Topography of the Floridian Plateau 107 Relation of the loo-fathom curve to the present land surface and to greater depths 107 The lo-fathom curve 108 The reefs -. 109 The Hawk Channel no The keys no Bays and sounds behind the keys in Relief of the mainland 112 Marine bottom deposits forming in the bays and sounds behind the keys 1 14 Biscayne Bay 116 Between Old Rhodes Bank and Carysfort Light 117 Card Sound 117 Barnes Sound 117 Blackwater Sound 117 Hoodoo Sound 117 Florida Bay 117 Gun and Cat Keys, Bahamas 119 Summary of data on the material of the deposits 119 Report on examination of material from the sea-bottom between Miami and Key West, by George Charlton Matson 120 Sources of material 126 Silica 126 Geologic distribution of siliceous sand in Florida 127 Calcium carbonate 129 Calcium carbonate of inorganic origin 130 Pleistocene limestone of southern Florida 130 Topography of southern Florida 131 Vegetation of southern Florida 131 Drainage and rainfall of southern Florida 132 Chemical denudation 133 Precipitation of chemically dissolved calcium carbonate.
    [Show full text]
  • Seagrass Integrated Mapping and Monitoring for the State of Florida Mapping and Monitoring Report No. 1
    Yarbro and Carlson, Editors SIMM Report #1 Seagrass Integrated Mapping and Monitoring for the State of Florida Mapping and Monitoring Report No. 1 Edited by Laura A. Yarbro and Paul R. Carlson Jr. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute St. Petersburg, Florida March 2011 Yarbro and Carlson, Editors SIMM Report #1 Yarbro and Carlson, Editors SIMM Report #1 Table of Contents Authors, Contributors, and SIMM Team Members .................................................................. 3 Acknowledgments .................................................................................................................... 4 Abstract ..................................................................................................................................... 5 Executive Summary .................................................................................................................. 7 Introduction ............................................................................................................................. 31 How this report was put together ........................................................................................... 36 Chapter Reports ...................................................................................................................... 41 Perdido Bay ........................................................................................................................... 41 Pensacola Bay .....................................................................................................................
    [Show full text]
  • Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida
    Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Prepared as part of the U.S. GEOLOGICAL SURVEY PLACE-BASED STUDIES PROGRAM and in cooperation with the U.S. ARMY CORPS OF ENGINEERS Rainfall Surface water in Everglades Biscayne Evapotranspiration Recharge Bay Submarine ground-water Canal Canal discharge Water table Water table Lateral BISCAYNE boundary AQUIFER flow Freshwater Municipal Municipal well field well field Brackish water Seawater Water-Resources Investigations Report 00-4251 Simulation of Ground-Water Discharge to Biscayne Bay, Southeastern Florida By Christian D. Langevin U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4251 Prepared as part of the U.S. GEOLOGICAL SURVEY Place-Based Studies Program and in cooperation with the U.S. ARMY CORPS OF ENGINEERS Tallahassee, Florida 2001 U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director Use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services Suite 3015 Box 25286 227 N. Bronough Street Denver, CO 80225-0286 Tallahassee, FL 32301 888-ASK-USGS Additional information about water resources in Florida is available on the World Wide Web at http://fl.water.usgs.gov CONTENTS
    [Show full text]
  • 25 June 2005 Kim Hanes SFWMD 8894 Belvedere Road West Palm Beach, FL 33411
    Southeast Environmental Research Center OE-148 Florida International University, Miami, FL 33199 305-348-3095, 305-348-4096 fax, http://serc.fiu.edu 25 June 2005 Kim Hanes SFWMD 8894 Belvedere Road West Palm Beach, FL 33411 Re: South Florida Coastal Water Quality Monitoring Network – 1-3/05 Quarterly Report (C-15397) Dear Mr. Hanes: This letter serves to transmit the South Florida Coastal Water Quality Monitoring Network Quarterly Report as per our SFWMD/SERC Cooperative Agreement #C-15397. This report consists of this letter along with corresponding tables and figures. Project Background This report includes water quality data collected monthly during the annual period of record (POR) Jan. – Mar. 2005 from 28 stations in Florida Bay, 22 stations in Whitewater Bay, 25 stations in Ten Thousand Islands, 25 stations in Biscayne Bay, and 28 stations in Cape Romano-Rookery Bay-Pine Island Sound. A total of 49 stations were also collected on the SW Florida Shelf on a quarterly basis. Figure 1 shows the location of the fixed sampling stations. Water quality parameters monitored at each station include the dissolved nutrients nitrate + nitrite (NOx), nitrite (NO2), nitrate (NO3), ammonium (NH4), inorganic nitrogen (DIN), and soluble reactive phosphorus (SRP). Silicate (Si(OH)4) was analyzed at all stations on a quarterly basis in conjunction with SW Shelf sampling. Total concentrations of nitrogen (TN), organic nitrogen (TON), phosphorus (TP), and organic carbon (TOC) were also measured. All concentrations for each of these parameters are reported as parts per million (ppm) except where noted. Biological parameters monitored included chlorophyll a (µg l-1) and alkaline phosphatase activity (APA; µM hr-1).
    [Show full text]
  • A Bibliography of the Hydrology of the Everglades and the Big Cypress Swamp, Florida
    Report T-501 . A Bibliogra h of the an the Ig Cypress wamp, Florida Evp-rg ades National Park South Florala Research Gen er. PO. Box 279. Homesll~ad, Florida 33030 A Bibliography of the Hydrology of the Everglades and the Big Cypress Swamp, Florida Report T-501 Linda S. ReMauro South Florida Research Center Everglades National Park Homestead, Florida 33030 September, 1977 EV'2rglades N.3tional Park n Refe re0· ::; Library Homes ad, Fl rida 33030 DeMauro, Linda S. 1977. A Bibliography of the Hydrology of the Everglades and the Big Cypress Swamp, Florida. South Florida Research Center Report T -501. 43 pp. Contents Introduction 1 Purpose 1 Methods 1 Discussion 6 References 9 -• I [ f . I,. ll1ustrations l. Map 2 2. Everglades National Park and the Conservation Areas 3 of 4 1 Introduction The of is to provide a bibliography hydrologic literature, both historic and current, concerning the which includes the Conservation Areas and Everglades National Park, and the Big Cypress Swamp, which includes the Big National Preserve (Figure 1 2). areas the southern portIon of the mmee Rl ver Lake Okeechobee Watershed, with Conservation Areas and the Big Cypress providing the bulk of the flow into Park (Figure 3). The hydrology of the basin is a of complex relationships, and determines the unique ecological environment of area. Through manipulations efforts to Florida, he has altered the historic flow regime of the area. This turn affected the biological environment in a chain reaction attendant to such a sensitive, interdependent Purpose It is this report will provide a useful tool for water management planning in these cri areas.
    [Show full text]