Characteristics of Estuarine Sediments of the United States

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Estuarine Sediments of the United States Characteristics of Estuarine Sediments of The United States GEOLOGICAL SURVEY PROFESSIONAL PAPER 742 Prepared in cooperation with the U.S. Federal Water Pollution Control Administration Characteristics of Estuarine Sediments of The United States By DAVID W. FOLGER GEOLOGICAL SURVEY PROFESSIONAL PAPER 742 Prepared in cooperation with the U.S. Federal Water Pollution Control Administration A compilation of data, essentially an atlas, on texture and composition of bottom sediments, including geologic and hydro logic factors that influence them, in 4.5 estuaries UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 72-600206 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.25 (paper cover) Stock Number 2401-2112 CONTENTS Page Page Abstract_ ________________________ 1 Area summaries Continued Introduction _______________________ 1 St. Joseph Bay, Fla_______.- _. 44 Scope and purpose of the study_ 1 Pensacola Bay, Fla____--_-_-_--__-----------__- 46 Sources of information_________ 1 Mobile Bay, Ala___________________ _______ 48 Format______________________ 1 Mississippi Sound, Miss, and Ala_________________ 49 Setting.___________________ 3 Breton and Chandeleur Sounds, La_______________ 51 Sediment texture ___________ 3 Barataria Bay, La______________________________ 53 Sediment composition. ______ 3 Sabine Lake, Tex. and La______________________ 54 Acknowledgments__ ___________ 3 Trinity River Delta and Upper Trinity Bay, Tex___ 55 Area summaries.___________________ 3 Brazos River Delta, Tex___________-----------_ 57 Penobscot Bay, Maine._________ 3 Matagorda Bay, Tex_______-__-___--_--_-----__- 58 Boston Harbor, Mass__ _________ 5 San Antonio Bay, Tex_________________________ 60 Cape Cod Bay, Mass__________ 6 Aransas Bay, Tex ______ __ ____________ 62 Nantucket Bay, Mass-__________ 7 Laguna Madre, Tex __________________________ 63 Buzzards Bay, Mass___________- 9 Baffin Bay, Tex____ __- - - 65 Narragansett Bay, R.I__________ 10 San Francisco Bay, Calif_____________-_-_-----_- 67 Moriches Bay, N.Y_____________ 11 Yaquina Bay, Oreg_______-______----__--------- 69 New York Harbor, N.Y. and N.J. 14 Willapa Bay, Wash________ _ 70 Chesapeake Bay, Md. and Va_ 16 Grays Harbor, Wash_____________-_______---___- 72 Rappahannock River, Va__ ______ 18 Bellingham Bay, Wash______ 74 Albemarle Sound, N.C__________ 19 Puget Sound, Wash-_____________-_-----_-_--__- 78 Pamlico Sound, N.C____________ 22 Nisqually River Delta, Puget Sound, Wash___-____ 80 Core Sound, N.C_____________ 24 Deep Inlet, Alaska__________-____-_-_-------_- 82 Newport River Estuary, N.C____ 24 Summary of the characteristics of sediments in estuaries Bogue Sound, N.C-------_______ 26 and estuarine zones of the United States _________ 84 Charleston Harbor, S.C________ 28 Setting, ________ - 84 Biscayne Bay, Fla______________ 31 Geology and bathymetry._________-_--_-_--_ 84 Florida Bay, Fla____________ 33 Hydrology-_______-____-____---_-_--------- 86 Whitewater Bay, Fla__________ 35 Sediment texture._____________________---_--__- 87 Gullivan Bay, Fla______________ 36 Sediment composition_--_____-__---_--_--------- 88 Port Charlotte Harbor, Fla______ 38 Organic carbon._________________----------- 88 Tampa Bay, Fla______________ 40 Mineralogy.______-_______---_-_----------- 89 Apalachicola Bay, Fla___________ 41 References cited-___________________--_-_---_------_ 90 ILLUSTRATIONS Page FIGURE 1. Map of the United States showing the estuaries, lagoons, embayments, and deltas described in this report 2 2-4. Map of Penobscot Bay, Maine, showing 2. Bathymetry.________________________________-______----_---_-------------------------- 4 3. Texture and organic carbon content of bottom sediments___________-__-__----__-_--------- 4 4. Subbottom sediment texture______-___-------_---_-_-_-_-__------------------------------ 4 5-7. Map of Boston Harbor, Mass., showing 5. Bathymetry._______________________________________-___-_-_-----_-_------------------- 5 6. Texture of bottom sediments-_______________________------------------------------------ 6 7. Organic carbon content of bottom sediments__________________________--_-_-------------- 6 8, 9. Map of Cape Cod Bay, Mass., showing 8. Bathymetry______________________________-_____-_---__---__----_---------------------- 7 9. Texture and organic carbon content of bottom sediments _______________--_-_------------- 7 m IV CONTENTS Page FIGURES 10-12. Map of Nantucket Bay, Mass., showing 10. Bathymetry._________________________________________________________________________ 8 11. Texture of bottom sediments..-....--..------------------------------------------------ 8 12. Calcium carbonate content of bottom sediments._________________________________________ 8 13, 14. Map of Buzzards Bay, Mass., showing 13. Bathymetry..___________________________________________ _____ __________ 9 14. Texture and organic carbon content of bottom sediments.__________________________________ 9 15. Bathymetric map and columnar sections of Narragansett Bay, R.I__________________________________ 10 16. Map of Narrangansett Bay, R.I., showing texture and organic carbon content of the bottom sediments.. 11 17-19. Map of Moriches Bay, N.Y., showing 17. Bathymetry,_____________________________________________________________ 12 18. Texture of the bottom sediments--...-------.------------------------------------------- 12 19. Total organic matter content of sediments _____________________________________________ 13 20-23. Map of New York Harbor, N.Y. and N.J., showing 20. Depth below sea level to crystalline rock or consolidated sediments._________________________ 14 21. Bathymetry________.____________________._-_____________-_---_--_---_-__-_-_----__.__ 14 22. Texture of the bottom sediments..______________________________________________________ 15 23. Total organic matter and organic carbon content of bottom sediments.______________________ 15 24-26. Map of Chesapeake Bay showing 24. Bathymetry---.-.----___________---_____-_______________-_-.____-_____---_----__-____ 17 25. Texture of the bottom sediments...____________-_-____---____-_-_----------------_--_-_- 17 26. Percentage of organic carbon content of bottom sediments-_______________-_----_-_--______ 18 27. Bathymetric map of the Rappahannock River Estuary, Va___________-____-_------__-___-__-__-_-_- 19 28. Map and cross section of the Rappahannock River Estuary showing texture of bottom sediments.________ 19 29. Map of the Rappahannock River Estuary showing organic carbon content of bottom sediments________ 20 30, 31. Map of Albemarle Sound, N.C., showing 30. Bathymetry.____________----___________________-___-_-___------_-_--__----__-___-_-_. 21 31. Texture and organic carbon content of the bottom sediments.______________________________ 21 32-35. Map of Pamlico Sound, N.C., showing 32. Bathymetry.__________---____---______.____.________-_-_--__-___--__-___-_-_----_.-_. 22 33. Texture of the bottom sediments.___________________-_--_____-------_--_--_----__-_-_-_- 22 34. Oxidizable organic matter and organic carbon content of the bottom sediments. ________ ______ 23 35. Calcium carbonate content of bottom sediments_________________________________________ 23 36-38. Map of Core Sound, N.C., showing 36. Bathymetry._____-_______---_.-___.___.___.___._.______--__________________________ 24 37. Texture of the bottom sediments______-------------------------------------------_-_--_- 25 38. Calcium carbonate content of bottom sediments..__-___-_-___-_-_-_-_-_-___-_-_-__----__-- 25 39-41. Map of Newport River Estuary, N.C., showing 39. Bathymetry-_______________________________-___-_-_______-__---_---_-----___- 26 40. Texture of the bottom sediments.____________________________________-_-_--_-_---_--_--- 27 41. Calcium carbonate content of bottom sediments_____-__-_-_-_-_----_-------_----_-----_-_- 27 42-45. Map of Bogue Sound, N.C., showing 42. Bathymetry._________________________________-____-_-___-_-_---_---_------------__- 28 43. Median diameter of bottom sediments-__________________-___,___-__----__-----_-------_- 29 44. Clay content of bottom sedlments_____------_----_-------------------------------------- 29 45. Oxidizable organic matter content of bottom sediments.__________-_-__--_-__--_-_---____-- 29 46-48. Map oT Charleston Harbor, S.C., showing 46. Bathymetry____-._.._-_____-__________________-__-__-__----___--------------_---_----- 30 47. Median diameter of sediments and distribution of shoals composed mostly of clay___________-_ 30 48. Organic carbon content of bottom sediments_______________________________-----_----_-- 31 49-52. Map of Biscayne Bay, Fla., showing 49. Bathymetry__-________________________________-___-__------___----------------------- 32 50. Texture of the bottom sediments.____________________________-_--_-__-_---_------------- 32 51. Quartz content of the bottom sediments________________-______----__-_----------------- 33 52. Calcium carbonate content of bottom sediments _______ ___________________---_----__-__ 33 53. Bathymetric map of Florida Bay, Fla___________________________-_--_-__----_----------------_- 34 54-56. Map of White water Bay, Fla., showing 54. Structure contours on the surface of the Miami Oolite.___________________-------------_--- 35 55. Ratios of sand to silt for the calcium carbonate and quartz fractions of bottom sediments._____ 35 56. Organic carbon
Recommended publications
  • Physical and Chemical Characteristics of the Yaquina Estuary, Oregon
    PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE YAQUINA ESTUARY, OREGON Richard J. Callaway MarPoiSol P.O. Box 57 Corvallis, OR 97339 David T. Specht, Project Officer Coastal Ecology Branch U.S. Environmental Protection Agency 2111 S.E. Marine Science Drive Newport, Oregon 97365-5260 2 (Purchase Order #8B06~NTT A) Submitted August 9, 1999 TABLE OF CONTENTS Introduction .................................................................................................................... 1 Area of Study .................................................................................................................. 1 Estuary Classification.............................................. .......................................... 1 Local Communities ............................................................................................... 7 Physical Setting .................................................................................................... 7 Climate ................................................................................................................. ? Winds ................................................................................................................... 8 Tides .................................................................................................................... 8 Currents .............................................................................................................. 9 Estuarine Dynamics and the Hansen-Rattray Classification Scheme ...............................
    [Show full text]
  • 2019 Preliminary Manatee Mortality Table with 5-Year Summary From: 01/01/2019 To: 11/22/2019
    FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION MARINE MAMMAL PATHOBIOLOGY LABORATORY 2019 Preliminary Manatee Mortality Table with 5-Year Summary From: 01/01/2019 To: 11/22/2019 County Date Field ID Sex Size Waterway City Probable Cause (cm) Nassau 01/01/2019 MNE19001 M 275 Nassau River Yulee Natural: Cold Stress Hillsborough 01/01/2019 MNW19001 M 221 Hillsborough Bay Apollo Beach Natural: Cold Stress Monroe 01/01/2019 MSW19001 M 275 Florida Bay Flamingo Undetermined: Other Lee 01/01/2019 MSW19002 M 170 Caloosahatchee River North Fort Myers Verified: Not Recovered Manatee 01/02/2019 MNW19002 M 213 Braden River Bradenton Natural: Cold Stress Putnam 01/03/2019 MNE19002 M 175 Lake Ocklawaha Palatka Undetermined: Too Decomposed Broward 01/03/2019 MSE19001 M 246 North Fork New River Fort Lauderdale Natural: Cold Stress Volusia 01/04/2019 MEC19002 U 275 Mosquito Lagoon Oak Hill Undetermined: Too Decomposed St. Lucie 01/04/2019 MSE19002 F 226 Indian River Fort Pierce Natural: Cold Stress Lee 01/04/2019 MSW19003 F 264 Whiskey Creek Fort Myers Human Related: Watercraft Collision Lee 01/04/2019 MSW19004 F 285 Mullock Creek Fort Myers Undetermined: Too Decomposed Citrus 01/07/2019 MNW19003 M 275 Gulf of Mexico Crystal River Verified: Not Recovered Collier 01/07/2019 MSW19005 M 270 Factory Bay Marco Island Natural: Other Lee 01/07/2019 MSW19006 U 245 Pine Island Sound Bokeelia Verified: Not Recovered Lee 01/08/2019 MSW19007 M 254 Matlacha Pass Matlacha Human Related: Watercraft Collision Citrus 01/09/2019 MNW19004 F 245 Homosassa River Homosassa
    [Show full text]
  • Interrelationships Among Hydrological, Biodiversity and Land Use Features of the Pantanal and Everglades
    Interrelationships among hydrological, biodiversity and Land Use Features of the Pantanal and Everglades Biogeochemical Segmentation and Derivation of Numeric Nutrient Criteria for Coastal Everglades waters. FIU Henry Briceño. Joseph N. Boyer NPS Joffre Castro 100 years of hydrology intervention …urban development 1953 1999 Naples Bay impacted by drainage, channelization, and urban development FDEP 2010 SEGMENTATION METHOD Six basins, 350 stations POR 1991 (1995)-1998. NH4, NO2, TOC, TP, TN, NO3, TON, SRP, DO, Turbidity, Salinity, CHLa, Temperature Factor Analysis (PC extraction) Scores Mean, SD, Median, MAD Hierarchical Clustering NUMERIC NUTRIENT CRITERIA The USEPA recommends three types of approaches for setting numeric nutrient criteria: - reference condition approach - stressor-response analysis - mechanistic modeling. A Station’s Never to Exceed (NTE) Limit. This limit is the highest possible level that a station concentration can reach at any time A Segment’s Annual Geometric Mean (AGM) Limit. This limit is the highest possible level a segment’s average concentration of annual geometric means can reach in year A Segment’s 1-in-3 Years (1in3) Limit. This limit is the level that a segment average concentration of annual geometric means should be less than or equal to, at least, twice in three consecutive years. 1in3 AGM NTE 90% 80% 95% AGM : Annual Geometric Mean Not to be exceeded 1in3 : Annual Geometric Mean Not to exceed more than once in 3 yrs Biscayne Bay, Annual Geometric Means 0.7 AGMAGM Limit : Not to be exceeded 0.6 (Annual Geometric Mean not to be exceeded) 1in31in3 Limit : Not to exceed more 0.5 (Annualthan Geometric once Mean in not 3 to beyears exceeded more than once in 3 yrs) 0.4 0.3 Total Nitrogen, mg/LNitrogen, Total 0.2 Potentially Enriched 0.1 SCO NCO SNB NCI NNB CS SCM SCI MBS THRESHOLD ANALYSIS Regime Shift Detection methods (Rodionov 2004) Cumulative deviations from mean method CTZ CHLa Zcusum Threshold 20 0 -20 Cusum .
    [Show full text]
  • Watercraft Access Facilities in the State of Florida Biological Assessment
    Watercraft Access Facilities in the State of Florida Biological Assessment Introduction The U.S. Army Corps of Engineers (Corps) issues numerous permits for watercraft access facilities in Florida manatee (Trichechus manatus latirostris) habitat within Florida. Permitting actions that involve the rehabilitation of existing facilities and the construction of new facilities that include 4 slips or less in manatee habitat are currently evaluated using a programmatic approach that meets the consultation requirements of the Endangered Species Act. The purpose of this action is to develop and implement a programmatic framework to encompass the majority of proposals (with the exception of proposals that involve the rehabilitation of existing facilities and the construction of new facilities that include 4 slips or less in manatee habitat), regardless of size or extent, in order to streamline the formal consultation process and ensure that adequate measures are in place to avoid and minimize impacts to manatees, as well as any adverse modification(s) of critical habitat. Project Description / Area of Analysis The actions addressed by this Biological Opinion include all new watercraft access facilities (i.e., docks, boat ramps, and marinas and any dredging, pipes and culverts included in project plans and build out) which are likely to adversely affect manatees as determined via the 2011 Manatee Key. This analysis is intended to assist biologists in assessing the potential impacts of watercraft access facilities on the Florida manatee (Trichechus manatus latirostris) in the State of Florida. Manatee Occurrence Florida manatees are found throughout the southeastern United States. As a subspecies of the West Indian manatee, their presence here represents the northern limit of this species range (Lefebvre et al.
    [Show full text]
  • Veterans-Ride-Program-VA-Map.Pdf
    Chatuge L. 59 Stevenson 76 Florence Athens 11 19 L. Burton Muscle Shoals 76 27 75 Scottsboro 123 129 Decatur Moulton 23 Hartselle Fort Payne 85 41 575 441 29 Albertville 19 129 Cullman Allatoona L. Hamilton Gadsden Kennesaw Mountain NBP Guin 278 Oneonta 29 27 Chattahoochee River NRA Sulligent Jasper 378 78 Sumiton Saks 20 Center Point Anniston 278 78 20 Mountain Brook 27A 29 129 278 Hueytown Talladega Reform VA Sunshine HealthcareSouth Augusta Network (VISN 8) Jackson L. 221 Alabaster 140 Fountain Parkway • St. Petersburg, Florida 33716 • www.visn8.va.gov Sylacauga 41 Calera Roanoke 75 1 23 27A BIBB Alexander City Brent West Point L. 25 COOSA UPSON WASHINGTON SCREVEN 441 Lafayette NORTHMONROE FLORIDA/SOUTH GEORGIA Eutaw TALLAPOOSA Macon Clanton CHAMBERS HARRIS BIBB Flint R. 80 JENKINS 19 319 TALBOT CHILTON 27 PERRY WILKINSON CRAWFORD JOHNSON 301 1. Lecanto CBOC 7. AuburnValdosta CBOC 9. St. Marys CBOC 11.LAUREN JacksonvilleS 2 VA Clinic 13. St. Augustine VA Clinic 15. Perry VA Clinic Malcom Randall VAMC 341 TAYLOR L. Harding 23 Oconee R. PEACH LEE TWIGGS 80 Demopolis 2804 W Marc Knighton Ct, SteELMORE A 2841 N Patterson St MUSCOGEE 2603 Osbourne Rd Ste E 3901 UniversityEMANUEL Blvd S (new interim address) 1224 N Peacock Ave 1601 SW Archer Rd 129 AUTAUGA Prattville HOUSTON BLECKLEY Selma Phenix City 16 Lecanto, FL 34461 Valdosta, GA 31601 Columbus St. Marys, GA 31558 Jacksonville, FL 32216 CANDLER 195EFFINGHAM Southpark Blvd Perry, FL 32347 Gainesville, FL 32608 MACON TREUTLEN CHATAHOOCHEE MACON BULLOCH 80 Linden (352)Montgomery 746-8000 (229) 293-0132;RUSSELL (877) 303-8387MARION (912) 510-3420 PULASKI (904) 732-6300 St Augustine, FL 32086 (850) 223-8387 (352) 376-1611; (800) 324-8387 221 SCHLEY 341 25 BULLOCK Andersonville NHS 41 95 LOWNDES Union Springs MONT- (904) 829-0814; (866) 401-8387 2.
    [Show full text]
  • Oregon Parks & Recreation Department
    Case File: 4-CP-1$ Date Filed: December 17, 2018 Hearing Date: February 25, 2019/Planning Commission PLANNING STAFF REPORT File No. 4-CP-18 A. APPLICANT: Oregon Parks & Recreation Department (OPRD) (Ian Matthews, Authorized Representative) B. REQUEST: The request is to amend the Parks and Recreation Section of the Newport Comprehensive Plan to approve and adopt the master plans for the Agate Beach State Recreation Site, Yaquina Bay State Recreation Site, and South Beach State Park, as outlined in the OPRD South Beach and Beverly Beach Management Units Plan, dated January 201$. C. LOCATION: 3040 NW Oceanview Drive (Agate Beach State Recreation Site), $42 and $46 SW Government Street (Yaquina Bay State Recreation Site), and 5400 South Coast Highway (South Beach State Park). A list of tax lots associated with each park is included in the application materials. D. LOT SIZE: 1 8.5 acres (Agate Beach State Recreation Site), 32.0 acres (Yaquina Bay State Recreation Site), and 498.3 acres (South Beach State Park). E. STAFF REPORT: 1. Report of Fact a. Plan Designations: Public and Shoreland b. Zone Designations: P-2/”Public Parks” c. Surrounding Land Uses: The Agate Beach State Recreation Site is bordered on the north by a condominium development, on the south by the Best Western Agate Beach Inn, to the east by US 101, and by the ocean on the west. It is bisected by Big Creek and Oceanview Drive. The Yaquina Bay State Recreation Site is located on the bluff at the north end of the Yaquina Bay Bridge. It is bordered by single-family residential and commercial development to the north, US 101 to the east, Yaquina Bay to the south and the ocean to the west.
    [Show full text]
  • Bookletchart™ Florida Everglades National Park – Whitewater Bay NOAA Chart 11433
    BookletChart™ Florida Everglades National Park – Whitewater Bay NOAA Chart 11433 A reduced-scale NOAA nautical chart for small boaters When possible, use the full-size NOAA chart for navigation. Included Area Published by the to Coot Bay and Whitewater Bay. A highway bridge, about 0.5 mile above the mouth of the canal, has a reported 45-foot fixed span and a National Oceanic and Atmospheric Administration clearance of 10 feet. A marina on the W side of the canal just below the National Ocean Service dam at Flamingo has berths with electricity, water, ice, and limited Office of Coast Survey marine supplies. Gasoline, diesel fuel, and launching ramps are available on either side of the dam. A 5-mph no-wake speed limit is enforced in www.NauticalCharts.NOAA.gov the canal. 888-990-NOAA Small craft can traverse the system of tidal bays, creeks, and canals from Flamingo Visitors Center to the Gulf of Mexico, 6 miles N of Northwest What are Nautical Charts? Cape. The route through Buttonwood Canal, Coot Bay, Tarpon Creek, Whitewater Bay, Cormorant Pass, Oyster Bay, and Little Shark River is Nautical charts are a fundamental tool of marine navigation. They show marked by daybeacons. The controlling depth is about 3½ feet. water depths, obstructions, buoys, other aids to navigation, and much The route from Flamingo to Daybeacon 48, near the W end of more. The information is shown in a way that promotes safe and Cormorant Pass, is part of the Wilderness Waterway. efficient navigation. Chart carriage is mandatory on the commercial Wilderness Waterway is a 100-mile inside passage winding through the ships that carry America’s commerce.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Of 6 62-302.532 Estuary-Specific Numeric Interpretations of The
    FAC 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion Effective Date: 12/20/2012 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion. (1) Estuary-specific numeric interpretations of the narrative nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., are in the table below. The concentration-based estuary interpretations are open water, area-wide averages. The interpretations expressed as load per million cubic meters of freshwater inflow are the total load of that nutrient to the estuary divided by the total volume of freshwater inflow to that estuary. Page 1 of 6 FAC 62-302.532 Estuary-Specific Numeric Interpretations of the Narrative Nutrient Criterion Effective Date: 12/20/2012 Estuary Total Phosphorus Total Nitrogen Chlorophyll a (a) Clearwater Harbor/St. Joseph Sound Annual geometric mean values not to be exceeded more than once in a three year period. Nutrient and nutrient response values do not apply to tidally influenced areas that fluctuate between predominantly marine and predominantly fresh waters during typical climatic and hydrologic conditions. 1. St.Joseph Sound 0.05 mg/L 0.66 mg/L 3.1 µg/L 2. Clearwater North 0.05 mg/L 0.61 mg/L 5.4 µg/L 3. Clearwater South 0.06 mg/L 0.58 mg/L 7.6 µg/L (b) Tampa Bay Annual totals for nutrients and annual arithmetic means for chlorophyll a, not to be exceeded more than once in a three year period. Nutrient and nutrient response values do not apply to tidally influenced areas that fluctuate between predominantly marine and predominantly fresh waters during typical climatic and hydrologic conditions.
    [Show full text]
  • PHYTOPLANKTON Grass of The
    S. G. No. 9 Oregon State University Extension Service Rev. December 1973 FIGURE 6: Oregon State Univer- sity's Marine Science Center in MARINE ADVISORY PROGRAM Newport, Oregon, is engaged in re- search, teaching, marine extension, and related activities under the Sea Grant Program of the National Oceanic and Atmospheric Adminis- tration. Located on Yaquina Bay, the center attracts thousands of visitors yearly to view the exhibits PHYTOPLANKTON of oceanographic phenomena and the aquaria of most of Oregon's marine fishes and invertebrates. Scientists studying the charac- grass of the sea teristics of life in the ocean (in- cluding phytoplankton) and in estu- aries work in various laboratories at the center. The Marine Science Center is home port for OSU School of Ocea- nography vessels, ranging in size from 180 to 33 feet (the 180-foot BY HERBERT CURL, JR. Yaquina and the 80-foot Cayuse PROFESSOR OF OCEANOGRAPHY are shown at the right). OREGON STATE UNIVERSITY Anyone taking a trip at sea or walking on the beach Want to Know More About Phytoplankton? Press, 1943—out of print; reprinted Ann Arbor: notices that nearshore water along coasts is frequently University Microfilms, Inc., University of Michigan). For the student or teacher who wishes to learn green or brown and sometimes even red. Often these more about phytoplankton, the following publications colors signify the presence of mud or silt carried into offer detailed information about phytoplankton and Want Other Marine Information? the sea by rivers or stirred up from the bottom if the their relationship to the ocean and mankind. Oregon State University's Extension Marine Advis- water is sufficiently shallow.
    [Show full text]
  • A Nutrient-Phytoplankton-Zooplankton Model for Classifying Estuaries Based on Susceptibility to Nitrogen Loads
    A NUTRIENT-PHYTOPLANKTON-ZOOPLANKTON MODEL FOR CLASSIFYING ESTUARIES BASED ON SUSCEPTIBILITY TO NITROGEN LOADS By Yuntao Zhou A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Natural Resources and Environment) in the University of Michigan April 18, 2006 Thesis Committee: Professor Donald Scavia, Chair Professor J. David Allan Abstract Estuarine responses to nutrient loads can be remarkably different. Many driving variables including light, water residence time, physical stratification, and temperature are responsible for the diversity of the response. To classify estuaries based on their susceptibility to nutrient loads, a nutrient- phytoplankton- zooplankton (NPZ) model was developed and applied to river-dominated, well-mixed estuaries. Estuaries are classified as having low, medium, high and hyper eutrophic conditions by the model. The result of the model suggests that water residence time is an important controlling variable in the process of achieving a steady-state response to nutrient loads. Although phytoplankton responses to residence time vary under different loads, they have the same positive trend. Phytoplankton responses are almost linear with water residence time initially, then decrease, and eventually plateau. i Table of Contents Part1. Introduction……………………………………………………………………1 Light availability………………………………………………………………………………..2 Water residence time……………………………………………………………………………3 Physical Stratification…………………………………………………………………………..3 Temperature…………………………………………………………………………………….4 Part 2. Modeling Approaches…………………………………………………………5 A simple plankton model (Steele and Henderson, 1981)……………………………………...7 Coastal ecosystem sensitivity to light and nutrient enrichment (Cloern 1999)……………..8 A model for partially mixed estuary (Peterson and Festa, 1984)………………………….....9 CSTT (Comprehensive Studies Task Team) model (Tett, 2003)…………………………….10 ASSETS (Assessment of Estuarine Trophic Status) model (Bricker, 2003) ………………..11 Part 3.
    [Show full text]
  • Water Column Primary Production in the Columbia River Estuary
    WATER COLUMN PRIMARY PRODUCTION IN THE COLUMBIA RIVER ESTUARY I a.~ ~~~~~~~~ 9 Final Report on the Water Column Primary Production Work Unit of the Columbia River Estuary Data Development Program WATER COLUMNNPRIMARY PRODUCTION IN THE COLUMBIA RIVER ESTUARY Contractor: Oregon State University College of Oceanography Principal Investigators: Lawrence F. Small and Bruce E. Frey College of Oceanography Oregon State University Corvallis, Oregon 97331 February 1984 OSU PROJECT TEAM PRINCIPAL INVESTIGATORS Dr. Bruce E. Frey Dr. Lawrence F. Small GRADUATE RESEARCH ASSISTANT Dr. Ruben Lara-Lara TECHNICAL STAFF Ms. RaeDeane Leatham Mr. Stanley Moore Final Report Prepared by Bruce E. Frey, Ruben Lara-Lara and Lawrence F. Small PREFACE The Columbia River Estuarv Data Development Program This document is one of a set of publications and other materials produced by the Columbia River Estuary Data Development Program (CREDDP). CREDDP has two purposes: to increase understanding of the ecology of the Columbia River Estuary and to provide information useful in making land and water use decisions. The program was initiated by local governments and citizens who saw a need for a better information base for use in managing natural resources and in planning for development. In response to these concerns, the Governors of the states of Oregon and Washington requested in 1974 that the Pacific Northwest River Basins Commission (PNRBC) undertake an interdisciplinary ecological study of the estuary. At approximately the same time, local governments and port districts formed the Columbia River Estuary Study Taskforce (CREST) to develop a regional management plan for the estuary. PNRBC produced a Plan of Study for a six-year, $6.2 million program which was authorized by the U.S.
    [Show full text]