Distinctions in the Diets and Distributions of Larval Tunas and the Important Role of Appendicularians

Total Page:16

File Type:pdf, Size:1020Kb

Distinctions in the Diets and Distributions of Larval Tunas and the Important Role of Appendicularians Limnol. Oceanogr., 55(3), 2010, 983–996 E 2010, by the American Society of Limnology and Oceanography, Inc. doi:10.4319/lo.2010.55.3.0983 Distinctions in the diets and distributions of larval tunas and the important role of appendicularians Joel K. Llopiz,* David E. Richardson,1 Akihiro Shiroza,2 Sharon L. Smith, and Robert K. Cowen Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida Abstract Monthly plankton sampling across the Straits of Florida (SOF) allowed for a thorough investigation of the feeding ecologies of four taxa of larval tunas (family Scombridae, tribe Thunnini) and the horizontal and vertical distributions of tuna larvae and their dominant prey. Before piscivory, Thunnus spp. larvae had a mixed diet of crustaceans and appendicularians, whereas skipjack tuna (Katsuwonus pelamis), little tunny (Euthynnus alletteratus), and Auxis spp. displayed highly selective and nearly exclusive feeding on appendicularians. The availability of both appendicularians and larval fish prey declined from west to east across the SOF, and appendicularians were notably patchy. In the western SOF where prey was more abundant, all taxa of tuna larvae co-occurred, indicating the sharing of resources by the larvae, in addition to the adults of these taxa using similar spawning habitat upstream in the Florida Current. In the central and eastern SOF, where prey was less abundant, only Thunnus spp. and skipjack tuna co-occurred, and these two taxa exhibited significantly different vertical distributions. Prey removal rates (estimated from gut evacuation rates and daily rations) occurring in the western SOF where tuna taxa co-occurred are likely to be sustainable by appendicularian levels within this region but would potentially not be by levels in the east. The spatial and trophic characteristics of these four abundant larval taxa highlight the potential influence of feeding-related processes on larval and adult behavior, while also illustrating a critical trophic link to the microbial food web provided by appendicularians in this oligotrophic environment. Introduction to extremely high mortality rates of the planktotrophic, altricial larvae that must survive in potentially food-limited The planktonic organisms of the open ocean occupy waters. Although larval and adult fishes have remarkably some of the largest and, yet, most poorly understood different ecological roles, selective forces governing the ecosystems. Additionally, we know less about plankton survival of larvae operate during both the larval and adult dynamics in the tropical oceans than in higher latitudes. In stages. For example, many larvae possess specific feeding, the low-latitude open ocean, characteristics of planktonic swimming, and vertical distribution behaviors (Cowen organisms such as species distributions and trophic 2002; Leis and Carson-Ewart 2003; Llopiz and Cowen interactions are often observed, but sampling limitations 2009) that presumably enhance survival, whereas the often preclude placing such results into a broader spawning behavior of adults, including specific spawning ecosystem context. Thus, the potential influence of any times and locations (Iles and Sinclair 1982), can place differences between high- and low-latitude pelagic environ- offspring in an environment optimal for survival. For fishes ments, including differences in diversity and productivity such as tunas, the swimming capabilities and highly patterns, are difficult to understand. Although some large- migratory nature of the adults have been hypothesized to scale ecological patterns and processes have been revealed allow for the placement of offspring in favorable larval in the oceanic plankton, especially for phytoplankton and habitats despite the potentially long distances between such crustacean zooplankton (McGowan and Walker 1979; regions and those best suited for the feeding and growth of Murphy and Haugen 1985; San Martin et al. 2006), such adults during nonspawning periods (Bakun 1996; Block et work is notably limited for planktonic larval fishes, al. 2001). especially in lower latitudes. Our current understanding of larval fish ecologies in The planktonic larval stage of most marine teleost fishes lower latitudes, although relatively limited, suggests there is a characteristic of the reproductive strategy of releasing might be substantial differences between the tropics and thousands to millions of eggs into the planktonic environ- higher latitudes, especially regarding larval fish trophody- ment (Elgar 1990; Winemiller and Rose 1993), which leads namics (Sampey et al. 2007; Llopiz and Cowen 2009). Larvae of high-latitude fishes often exhibit broad diets that * Corresponding author: [email protected] appear to be regulated more by prey size than prey type, resulting in little resource partitioning (Economou 1991; Present addresses: Pepin and Penney 1997, but see Last 1978). This could be 1 Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, because of a lower diversity of both fish larvae and their Narragansett, Rhode Island prey or to an abundance of food (and associated reduction 2 Cooperative Institute for Marine and Atmospheric Studies, in competition) since spawning seasons in higher latitudes Rosenstiel School of Marine and Atmospheric Science, University are often temporally contracted to correspond to brief of Miami, Miami, Florida periods of high secondary productivity (Cushing 1990). In 983 984 Llopiz et al. Fig. 1. (A) Map of the Gulf of Mexico and Straits of Florida region, including the transect (black bar) of 17 stations that was sampled monthly in 2003 and 2004 between the Florida shelf break and the Great Bahama Bank. The dominant physical feature of this region is the rapid (, 2ms21) Florida Current, which is the upstream outflow either from the Gulf of Mexico or the Caribbean Sea directly via the Yucatan Channel. (B) The morphologically similar four taxa of ‘‘true’’ tunas (tribe Thunnini) that occur in the Straits of Florida. Body lengths are ca. 6 mm for all taxa except Auxis spp., which is ca. 5 mm. Drawings are from Collette et al. (1984); used with permission from the American Society of Ichthyologists and Herpetologists. contrast, most regions of the low-latitude open ocean are tuna larvae in the SOF, we address the following questions: characterized by low secondary productivity that exhibits (1) Is feeding by larval tunas selective, resulting in taxon- little and less predictable seasonal variability (Longhurst specific diets? (2) Do the horizontal and vertical distribu- and Pauly 1987). As such, most fishes in these regions tions of larval tunas correspond to the availability of their exhibit frequent spawning over protracted reproductive prey? (3) Could larval tuna consumption result in limited seasons, hypothesized to be a bet-hedging strategy for an prey availability? (4) Do tuna larvae have taxon-specific unpredictable environment (den Boer 1968; Johannes horizontal or vertical distributions, or both, that would 1978). Such an environment, coupled with a higher reduce the potential for inter- and intraspecific competition diversity of both fish larvae and planktonic prey, might or resource depletion? Answers to these questions will help result in highly selective larval feeding behaviors. Spatially, us better understand the potential influence of feeding and the vertical distributions of fish larvae and the spawning prey availability on the distributions and behavior of these locations of the adults (influencing the horizontal dis- co-occurring taxa. tributions of the larvae) could also contribute to a reduction in both inter- and intraspecific competition for Methods resources. Here, we integrate data on larval diets, prey availability, Field sampling—The SOF region (Fig. 1A) is a tropical prey removal, and vertical and horizontal distributions of to subtropical oceanic environment containing the rapidly four taxa of larval tunas in the Straits of Florida (SOF) flowing Florida Current that, to the north, becomes collected over large temporal and spatial scales. The four approximately one third of the total transport of the Gulf taxa of tuna larvae examined, oceanic tunas (Thunnus spp.), Stream (Leaman et al. 1989). Upstream of the Florida skipjack tuna (Katsuwonus pelamis), little tunny (Euthynnus Current is the Loop Current of the Gulf of Mexico or, alletteratus), and bullet and frigate tunas (Auxis spp.), periodically, when the Loop Current is pinched off, the represent all four genera of ‘‘true’’ tunas (family Scom- direct outflow of the Caribbean Sea via the Yucatan bridae, tribe Thunnini) that occur in the tropical and Channel. For the present study, a transect of 17 stations subtropical open ocean. Within the SOF, they composed (numbered west to east) across the SOF from the Florida 97% of the scombrid larvae and were second only to shelf break (south of Miami, Florida) to the Great Bahama lanternfishes (Myctophidae) in larval fish abundance. Bank (south of Bimini, Bahamas) was sampled monthly in These taxa occur together in the SOF from ca. April to 2003 and 2004 (Llopiz and Cowen 2008). The three eastern- November and are morphologically similar, having preco- and westernmost stations were , 2 km apart, and other cious development and the capability for piscivory during central stations were , 5.5 km apart. Within this region, the larval stage (Tanaka et al. 1996). Considering the high
Recommended publications
  • Does a Latitudinal Gradient Exist?
    Notes 1813 Limnol. Oceatzogr., 38(8). 1993, 1813-1818 (0 1993, by the Ameruzan Society of Limnology and Oceanography. Inc Chlorophyll a concentrations in the North Pacific: Does a latitudinal gradient exist? Abstract -Chlorophyll a concentrations were tion properties of glass-fiber and membrane measured as a function of depth from 28 to 48”N filters have demonstrated that glass-fiber filters along 152”W in March 199 1 with Whatman GF/F and 0.2~pm Nuclepore filters. Surface Chl a concen- inadequately retain < 1-pm-diameter cells due trations measured with 0.2~ym Nuclepore filters were to their large nominal pore size (0.7 and 1.2 up to fourfold higher than those measured with pm for Whatman GF/F and GF/C filters). Low Whatman GF/F filters. The largest difference be- retention efficiencies of glass-fiber filters result tween the two filter types was found in subtropical waters, where picoplankton were a major constituent when Chl a concentrations are low (<0.5-l .O of the phytoplankton assemblage. Chl a concentra- pg Chl a liter-‘) and when picoplankton are a tions integrated from 0 to 175 m showed a threefold dominant fraction of the phytoplankton as- increase (9-26 mg Chl a m-I) between 28 and 48”N semblage (Phinney and Yentsch 1985; Taguchi when Whatman GF/F filters were used. However, integrated Chl a concentrations based on measure- and Laws 1988). Under such conditions the ments with 0.2~pm Nuclepore filters were nearly con- use of membrane filters with submicron pore stant (25-3 1 mg Chl a mpZ) over the transect.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]
  • Species Fact Sheets Euthynnus Affinis (Cantor, 1849)
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Species Fact Sheets Euthynnus affinis (Cantor, 1849) Black and white drawing: (click for more) Synonyms Euthunnus yaito Kishinouye, 1915 Wanderer wallisi Whitley, 1937 Euthunnus affinis affinis Fraser-Brunner, 1949 Euthunnus alletteratus affinis Beaufort, 1951 Euthunnus wallisi Whitley, 1964 FAO Names En - Kawakawa, Fr - Thonine orientale, Sp - Bacoreta oriental. 3Alpha Code: KAW Taxonomic Code: 1750102406 Scientific Name with Original Description Thynnus affinis Cantor, 1849, J.Asiatic Soc.Bengal, 18(2):1088-1090 (Sea of Penang, Malaysia). Diagnostic Features Gillrakers 29 to 33 on first arch; gill teeth 28 or 29; vomerine teeth absent. Anal fin rays 13 or 14. Vertebrae 39; no trace of vertebral protuberances; bony caudal keels on 33 and 34 vertebrae. Colour: dorsal makings composed of broken oblique stripes. Geographical Distribution FAO Fisheries and Aquaculture Department Launch the Aquatic Species Distribution map viewer Throughout the warm waters of the Indo-West Pacific, including oceanic islands and archipelagos.A few stray specimens have been collected in the eastern tropical Pacific. Habitat and Biology An epipelagic, neritic speciesinhabiting waters temperatures ranging from 18 to 29° C. Like other scombrids, E. affinis tend to form multispecies schools by size, 'i.e. with small Thunnus albacares, Katsuwonus pelamis, Auxis sp., and Megalaspis cordyla (a carangid), comprising from 100 to over 5 000 individuals. Although sexually mature fish may be encountered throughout the year, there are seasonal spawning peaks varying according to regions: i.e. March to May in Philippine waters; during the period of the NW monsoon (October-November to April-May) around the Seychelles; from the middle of the NW monsoon period to the beginning of the SE monsoon (January to July) off East Africa; and probably from August to October off Indonesia.
    [Show full text]
  • SYNOPSIS on the BIOLOGY of YELLOWFIN TUNA Thunnus (Neothunnus) Albacares (Bonnaterre)1788(PACIFIC OCEAN)
    Species Synopsis No. 16 FAO Fisheries Biology Synopsis No, 59 FIb/S59 (Distribution restricted) SAST - Tuna SYNOPSIS ON THE BIOLOGY OF YELLOWFIN TUNA Thunnus (Neothunnus) albacares (Bonnaterre)1788(PACIFIC OCEAN) Exposé synoptique sur la biologie du thon à nageoires jaunes Thunnus (Neothimnus) albacares (Bonnaterre)1788(Océan Pacifique) Sinopsis sobre la. biología dei atítn de aleta amarilla Thunnus (Neothunnus) aibacares (Bonnaterre) 1788 (Ocano Pacífico) Prepared by MILNER B, SCHAEFER, GORDON C,, BROADHEAD and CRAIG J, ORANGE Inter -American Tropical Tuna Commission La Jolla, California, U, S,, A, ISHERIES DIVISION, BIOLOGY BRANCH tOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS R,ome, 1963 538 FIb/S59 Tuna 1:1 i IDENTITY Body plump, wholly covered with scales, which differ in size and form in different parts i. iTaxonomy of the body.Corselet well deveioped but its boundary is not distinct.Tle lateral line has a 1. 1. 1Definition peculiar curve above the pectorals.Teeth rather feeble.Single series of small conical /Fo11owing Berg (1940) modified according to teeth in both jaws.They are sharp and curve Fraser-Brunner (1950)J inward.Villiform teeth on the vomers palatines and pterygoids.Many dentigerous calcareous Phylum VERTEBRATA plates are found on the palate.The denticles on Subphylum Craniata these plates are quite similar to those found on Superclass Gnathostomata the vomer, palatines and pterygoids. Thus the Series Pisces roof of the mouth-cavity is quite rough, contrary Class Teleostomi to the nearly smooth roof in the Katsuwonidae. Subclass Actinopterygii Three lobes of the liver subequal.Intestine Order Perciformes rather long, with three folds.Pyloric tubes Suborder Scombroidei developed only on the posterior convex side of Family Scombridae the duodenum.
    [Show full text]
  • Ocean Iron Fertilization Experiments – Past, Present, and Future Looking to a Future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project
    Biogeosciences, 15, 5847–5889, 2018 https://doi.org/10.5194/bg-15-5847-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Reviews and syntheses: Ocean iron fertilization experiments – past, present, and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) project Joo-Eun Yoon1, Kyu-Cheul Yoo2, Alison M. Macdonald3, Ho-Il Yoon2, Ki-Tae Park2, Eun Jin Yang2, Hyun-Cheol Kim2, Jae Il Lee2, Min Kyung Lee2, Jinyoung Jung2, Jisoo Park2, Jiyoung Lee1, Soyeon Kim1, Seong-Su Kim1, Kitae Kim2, and Il-Nam Kim1 1Department of Marine Science, Incheon National University, Incheon 22012, Republic of Korea 2Korea Polar Research Institute, Incheon 21990, Republic of Korea 3Woods Hole Oceanographic Institution, MS 21, 266 Woods Hold Rd., Woods Hole, MA 02543, USA Correspondence: Il-Nam Kim ([email protected]) Received: 2 November 2016 – Discussion started: 15 November 2016 Revised: 16 August 2018 – Accepted: 18 August 2018 – Published: 5 October 2018 Abstract. Since the start of the industrial revolution, hu- providing insight into mechanisms operating in real time and man activities have caused a rapid increase in atmospheric under in situ conditions. To maximize the effectiveness of carbon dioxide (CO2) concentrations, which have, in turn, aOIF experiments under international aOIF regulations in the had an impact on climate leading to global warming and future, we therefore suggest a design that incorporates sev- ocean acidification. Various approaches have been proposed eral components. (1) Experiments conducted in the center of to reduce atmospheric CO2. The Martin (or iron) hypothesis an eddy structure when grazing pressure is low and silicate suggests that ocean iron fertilization (OIF) could be an ef- levels are high (e.g., in the SO south of the polar front during fective method for stimulating oceanic carbon sequestration early summer).
    [Show full text]
  • Factors Controlling the Community Structure of Picoplankton in Contrasting Marine Environments
    Biogeosciences, 15, 6199–6220, 2018 https://doi.org/10.5194/bg-15-6199-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Factors controlling the community structure of picoplankton in contrasting marine environments Jose Luis Otero-Ferrer1, Pedro Cermeño2, Antonio Bode6, Bieito Fernández-Castro1,3, Josep M. Gasol2,5, Xosé Anxelu G. Morán4, Emilio Marañon1, Victor Moreira-Coello1, Marta M. Varela6, Marina Villamaña1, and Beatriz Mouriño-Carballido1 1Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain 2Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 3Departamento de Oceanografía, Instituto de investigacións Mariñas (IIM-CSIC), Vigo, Spain 4King Abdullah University of Science and Technology (KAUST), Read Sea Research Center, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia 5Centre for Marine Ecosystem Research, School of Sciences, Edith Cowan University, WA, Perth, Australia 6Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO), A Coruña, Spain Correspondence: Jose Luis Otero-Ferrer ([email protected]) Received: 27 April 2018 – Discussion started: 4 June 2018 Revised: 4 October 2018 – Accepted: 10 October 2018 – Published: 26 October 2018 Abstract. The effect of inorganic nutrients on planktonic as- played a significant role. Nitrate supply was the only fac- semblages has traditionally relied on concentrations rather tor that allowed the distinction among the ecological
    [Show full text]
  • Diel Horizontal Migration of Zooplankton: Costs and Benefits Of
    Freshwater Biology (2002) 47, 343–365 FRESHWATER BIOLOGY SPECIAL REVIEW Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral R. L. BURKS,* D. M. LODGE,* E. JEPPESEN† and T. L. LAURIDSEN† *Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, U.S.A. †Department of Lake and Estuarine Ecology, National Environmental Research Institute, Vejlsøvej, Silkeborg, Denmark SUMMARY 1. In some shallow lakes, Daphnia and other important pelagic consumers of phyto- plankton undergo diel horizontal migration (DHM) into macrophytes or other structures in the littoral zone. Some authors have suggested that DHM reduces predation by fishes on Daphnia and other cladocerans, resulting in a lower phytoplankton biomass in shallow lakes than would occur without DHM. The costs and benefits of DHM, and its potential implications in biomanipulation, are relatively unknown, however. 2. In this review, we compare studies on diel vertical migration (DVM) to assess factors potentially influencing DHM (e.g. predators, food, light, temperature, dissolved oxygen, pH). We first provide examples of DHM and examine avoidance by Daphnia of both planktivorous (PL) fishes and predacious invertebrates. 3. We argue that DHM should be favoured when the abundance of macrophytes is high (which reduces planktivory) and the abundance of piscivores in the littoral is sufficient to reduce planktivores. Food in the littoral zone may favour DHM by daphnids, but the quality of these resources relative to pelagic phytoplankton is largely unknown. 4. We suggest that abiotic conditions, such as light, temperature, dissolved oxygen and pH, are less likely to influence DHM than DVM because weaker gradients of these conditions occur horizontally in shallow lakes relative to vertical gradients in deep lakes.
    [Show full text]
  • Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea
    water Article Picoplankton Distribution and Activity in the Deep Waters of the Southern Adriatic Sea Danijela Šanti´c 1,* , Vedrana Kovaˇcevi´c 2, Manuel Bensi 2, Michele Giani 2 , Ana Vrdoljak Tomaš 1 , Marin Ordulj 3 , Chiara Santinelli 2, Stefanija Šestanovi´c 1, Mladen Šoli´c 1 and Branka Grbec 1 1 Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, POB 500, 21000 Split, Croatia 2 National Institute of Oceanography and Applied Geophysics, Borgo Grotta Gigante 42/c, 34010 Sgonico (Ts), Italy 3 University of Split, University Department of Marine Studies, Ruđera Boškovi´ca37, 21000 Split, Croatia * Correspondence: [email protected]; Tel.: +385-21-408-006; Fax: +385-21-358-650 Received: 19 July 2019; Accepted: 8 August 2019; Published: 10 August 2019 Abstract: Southern Adriatic (Eastern Mediterranean Sea) is a region strongly dominated by large-scale oceanographic processes and local open-ocean dense water formation. In this study, picoplankton biomass, distribution, and activity were examined during two oceanographic cruises and analyzed in relation to environmental parameters and hydrographic conditions comparing pre and post-winter phases (December 2015, April 2016). Picoplankton density with the domination of autotrophic biomasses was higher in the pre-winter phase when significant amounts of picoaoutotrophs were also found in the meso-and bathy-pelagic layers, while Synechococcus dominated the picoautotrophic group. Higher values of bacterial production and domination of High Nucleic Acid content bacteria (HNA bacteria) were found in deep waters, especially during the post-winter phase, suggesting that bacteria can have an active role in the deep-sea environment. Aerobic anoxygenic phototrophic bacteria accounted for a small proportion of total heterotrophic bacteria but contributed up to 4% of bacterial carbon content.
    [Show full text]
  • 8.2 the Significance of Ocean Deoxygenation for Open Ocean Tunas and Billfishes Shirley Leung,K
    8.2 The significance of ocean deoxygenation for open ocean tunas and billfishes Shirley Leung,K. A. S. Mislan, Barbara Muhling and Richard Brill 8.2 The significance of ocean deoxygenation for open ocean tunas and billfishes Shirley Leung1,*, K. A. S. Mislan1,2, Barbara Muhling3,4 and Richard Brill5 1 School of Oceanography, University of Washington, USA. Email : [email protected] 2 eScience Institute, University of Washington, USA 3 University of California Santa Cruz, Santa Cruz, CA, USA 4 National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, La Jolla, CA, USA 5 Virginia Institute of Marine Science, Gloucester Point, VA, USA Summary • Tunas and billfishes should be especially sensitive to low ambient oxygen conditions given their high metabolic rates as well as the large differences between their resting and maximum metabolic rates. Although there are many behavioural similarities among the different species, there are also clear and demonstrable differences in growth rates, maximum adult size, physiological abilities, low-oxygen tolerances, and preferred environmental conditions. • Climate change is projected to alter oxygen concentrations throughout the open ocean, with most regions undergoing decreases due to a slowdown in ocean ventilation and a decline in surface oxygen solubility. Between 200 and 700 m depth (a vertical range including depths to which tunas and billfishes commonly descend to forage), the greatest and most certain decreases in oxygen concentrations are projected to occur in the North Pacific and much of the Southern Ocean, while the smallest and least certain changes are projected to occur within the tropical Pacific Ocean.
    [Show full text]
  • Community Structure, Picoplankton Grazing and Zooplankton Control of Heterotrophic Nanoflagellates in a Eutrophic Reservoir During the Summer Phytoplankton Maximum
    AQUATIC MICROBIAL ECOLOGY Published January 30 Aquat Microb Ecol Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum Karel Simekl,*,Petr art man', Jiii ~edomal,Jakob pernthaler2, Doris Springmann3,Jaroslav Vrbal, Roland psenner2 'Hydrobiological Institute of the Academy of Sciences of the Czech Republic, Na sadkach 7, CZ-37005 ~eskeBudejovice, Czech Republic 'Institute 01 Zoology and Limnology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria hstitute of Limnology, University of Konstanz. PO Box 5560, D-78434 Konstanz, Germany ABSTRACT. An intensive 5 wk study was conducted to investigate the role of protists, especially heterotrophic nanoflagellates (HNF),in microbial food webs during the summer phytoplankton bloom in the epilimnion and metalimnion of the eutrophic hmov reservoir (South Bohemia. Czech Republic). On average, protists consumed -90 % of bacterial production in both layers. The community composi- tion of HNF and the relative importance of different HNF groups as picoplankton consumers were determined. Small HNF (<8 pm), as chryson~onads,bodonlds and choanoflagellates, usually accounted for <30% of total HNF biomass but numerically dominated the community in both layers They con- sumed most of (-70 to 85%) the bacterioplankton as well as autotrophic picoplankton (APP, exclusively cyanobacteria) production in the reservoir, with the rest consumed by ciliates. Both ciliates and HNF had higher clearance rates on APP than on bactena and their grazing was likely responsible for a sharp decrease in APP abundance (from 3-4 X 105 to <2 X 103 ml-') and a very constant size structure of bac- terioplankton in which short rods in the size class of 0.4 to 0.8 pm constituted 55 to 80':') of the total bac- terial biomass in both layers.
    [Show full text]
  • FAO Fisheries & Aquaculture
    Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Biological characteristics of tuna Tuna and tuna-like species are very important economically and a significant Related topics source of food, with the so-called principal market tuna species - skipjack, yellowfin, bigeye, albacore, Atlantic bluefin, Pacific bluefin (those two species Tuna resources previously considered belonging to the same species referred as northern bluefin) Tuna fisheries and and southern bluefin tuna - being the most significant in terms of catch weight and utilization trade. These pages are a collection of Fact Sheets providing detailed information on tuna and tuna-like species. Related information FAO FishFinder Aquatic Species - fact Table of Contents sheets Taxonomy and classification Related activities Morphological characteristics FAO activities on tuna Geographical distribution Habitat and biology Trophic relations and growth Reproduction Bibliography Taxonomy and classification [ Family: Scombridae ] : Scombrids [ Family: Istiophoridae Family: Xiphiidae ] : Billfishes Upper systematics of tunas and tuna-like species Scombrids and billfishes belong to the suborder of the Scombroidei which position is shown below: Phylum : Chordata └─ Subphylum Vertebrata └─ Superclass Gnathostomata └─ Class Osteichthyes └─ Subclass Actinopterygii └─ Infraclass Teleostei └─ Superorder Acanthopterygii └─ Order Perciformes ├─ Suborder Scombroidei | └─ Family Scombridae └─ Suborder Xiphioidei FAO Fisheries
    [Show full text]
  • The Italian Annotated Bibliography on Albacore (Thunnus Alalunga, Bonnaterre, 1788)
    SCRS/2019/156 Collect. Vol. Sci. Pap. ICCAT, 76(8): 7-39 (2020) THE ITALIAN ANNOTATED BIBLIOGRAPHY ON ALBACORE (THUNNUS ALALUNGA, BONNATERRE, 1788) F. Garibaldi1, P. Addis2, A. Di Natale3, C. Piccinetti4, F. Tinti5 SUMMARY The Italian scientists have a long tradition of studies and research on albacore (Thunnus alalunga). This species is one of the most important for the Italian fishery since many centuries, even if it was often neglected. This is the first attempt to list together the many papers published so far by Italian scientists, concerning the biology of this species, the fisheries and many other scientific and cultural issues. The aim of this paper is to provide a sort of annotated bibliography, with specific key words, even if it is surely incomplete, because of the many papers published over the years. So far, we found 164 papers on albacore. This updated bibliography was set together to serve the scientists and to help them in finding some rare references that might be useful for their work. RÉSUMÉ Les scientifiques italiens ont une longue tradition d'études et de recherches sur le germon (Thunnus alalunga). Cette espèce est l'une des plus importantes pour la pêche italienne depuis de nombreux siècles, même si elle a été souvent négligée. Il s'agit de la première tentative de répertorier les nombreux articles publiés à ce jour par des scientifiques italiens concernant la biologie de cette espèce, les pêcheries et de nombreuses autres questions scientifiques et culturelles. Le but de ce document est de fournir une sorte de bibliographie annotée, avec des mots clés spécifiques, même si elle est sûrement incomplète, en raison des nombreux articles publiés au cours des années.
    [Show full text]