Drawing As Transformation: from Primary Geometry to Secondary Geometry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alvar Aalto's Associative Geometries
Alvar Aalto Researchers’ Network Seminar – Why Aalto? 9-10 June 2017, Jyväskylä, Finland Alvar Aalto’s associative geometries Holger Hoffmann Prof. Dipl.-Ing., Architekt BDA Fay Jones School of Architecture and Design Why Aalto?, 3rd Alvar Aalto Researchers Network Seminar, Jyväskylä 2017 Prof. Holger Hoffmann, Bergische Universität Wuppertal, April 30th, 2017 Paper Proposal ALVAR AALTO‘S ASSOCIATIVE GEOMETRIES This paper, written from a practitioner’s point of view, aims at describing Alvar Aalto’s use of associative geometries as an inspiration for contemporary computational design techniques and his potential influence on a place-specific version of today’s digital modernism. In architecture the introduction of digital design and communication techniques during the 1990s has established a global discourse on complexity and the relation between the universal and the specific. And however the great potential of computer technology lies in the differentiation and specification of architectural solutions, ‘place’ and especially ‘place-form’ has not been of greatest interest since. Therefore I will try to build a narrative that describes the possibilities of Aalto’s “elastic standardization” as a method of well-structured differentiation in relation to historical and contemporary methods of constructing complexity. I will then use a brief geometrical analysis of Aalto’s “Neue Vahr”-building to hint at a potential relation of his work to the concept of ‘difference and repetition’ that is one of the cornerstones of contemporary ‘parametric design’. With the help of two projects (one academic, one professional) I will furthermore try to show the capability of such an approach to open the merely generic formal vocabulary of so-called “parametricism” to contextual or regional necessities in a ‘beyond-digital’ way. -
Viewing in 3D
Viewing in 3D Viewing in 3D Foley & Van Dam, Chapter 6 • Transformation Pipeline • Viewing Plane • Viewing Coordinate System • Projections • Orthographic • Perspective OpenGL Transformation Pipeline Viewing Coordinate System Homogeneous coordinates in World System zw world yw ModelViewModelView Matrix Matrix xw Tractor Viewing System Viewer Coordinates System ProjectionProjection Matrix Matrix Clip y Coordinates v Front- xv ClippingClipping Wheel System P0 zv ViewportViewport Transformation Transformation ne pla ing Window Coordinates View Specifying the Viewing Coordinates Specifying the Viewing Coordinates • Viewing Coordinates system, [xv, yv, zv], describes 3D objects with respect to a viewer zw y v P v xv •A viewing plane (projection plane) is set up N P0 zv perpendicular to zv and aligned with (xv,yv) yw xw ne pla ing • In order to specify a viewing plane we have View to specify: •P0=(x0,y0,z0) is the point where a camera is located •a vector N normal to the plane • P is a point to look-at •N=(P-P)/|P -P| is the view-plane normal vector •a viewing-up vector V 0 0 •V=zw is the view up vector, whose projection onto • a point on the viewing plane the view-plane is directed up Viewing Coordinate System Projections V u N z N ; x ; y z u x • Viewing 3D objects on a 2D display requires a v v V u N v v v mapping from 3D to 2D • The transformation M, from world-coordinate into viewing-coordinates is: • A projection is formed by the intersection of certain lines (projectors) with the view plane 1 2 3 ª x v x v x v 0 º ª 1 0 0 x 0 º « » « -
Map Projections
Map Projections Chapter 4 Map Projections What is map projection? Why are map projections drawn? What are the different types of projections? Which projection is most suitably used for which area? In this chapter, we will seek the answers of such essential questions. MAP PROJECTION Map projection is the method of transferring the graticule of latitude and longitude on a plane surface. It can also be defined as the transformation of spherical network of parallels and meridians on a plane surface. As you know that, the earth on which we live in is not flat. It is geoid in shape like a sphere. A globe is the best model of the earth. Due to this property of the globe, the shape and sizes of the continents and oceans are accurately shown on it. It also shows the directions and distances very accurately. The globe is divided into various segments by the lines of latitude and longitude. The horizontal lines represent the parallels of latitude and the vertical lines represent the meridians of the longitude. The network of parallels and meridians is called graticule. This network facilitates drawing of maps. Drawing of the graticule on a flat surface is called projection. But a globe has many limitations. It is expensive. It can neither be carried everywhere easily nor can a minor detail be shown on it. Besides, on the globe the meridians are semi-circles and the parallels 35 are circles. When they are transferred on a plane surface, they become intersecting straight lines or curved lines. 2021-22 Practical Work in Geography NEED FOR MAP PROJECTION The need for a map projection mainly arises to have a detailed study of a 36 region, which is not possible to do from a globe. -
189 09 Aju 03 Bryon 8/1/10 07:25 Página 31
189_09 aju 03 Bryon 8/1/10 07:25 Página 31 Measuring the qualities of Choisy’s oblique and axonometric projections Hilary Bryon Auguste Choisy is renowned for his «axonometric» representations, particularly those illustrating his Histoire de l’architecture (1899). Yet, «axonometric» is a misnomer if uniformly applied to describe Choisy’s pictorial parallel projections. The nomenclature of parallel projection is often ambiguous and confusing. Yet, the actual history of parallel projection reveals a drawing system delineated by oblique and axonometric projections which relate to inherent spatial differences. By clarifying the intrinsic demarcations between these two forms of parallel pro- jection, one can discern that Choisy not only used the two spatial classes of pictor- ial parallel projection, the oblique and the orthographic axonometric, but in fact manipulated their inherent differences to communicate his theory of architecture. Parallel projection is a form of pictorial representation in which the projectors are parallel. Unlike perspective projection, in which the projectors meet at a fixed point in space, parallel projectors are said to meet at infinity. Oblique and axonometric projections are differentiated by the directions of their parallel pro- jectors. Oblique projection is delineated by projectors oblique to the plane of pro- jection, whereas the orthographic axonometric projection is defined by projectors perpendicular to the plane of projection. Axonometric projection is differentiated relative to its angles of rotation to the picture plane. When all three axes are ro- tated so that each is equally inclined to the plane of projection, the axonometric projection is isometric; all three axes are foreshortened and scaled equally. -
Smart Sketch System for 3D Reconstruction Based Modeling
Smart Sketch System for 3D Reconstruction Based Modeling Ferran Naya1, Julián Conesa2, Manuel Contero1, Pedro Company3, Joaquim Jorge4 1 DEGI - ETSII, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain {fernasan, mcontero}@degi.upv.es 2 DEG, Universidad Politécnica de Cartagena, C/ Dr. Fleming 30202 Cartagena, Spain [email protected] 3 Departamento de Tecnología, Universitat Jaume I de Castellón, Campus Riu Sec 12071 Castellón, Spain [email protected] 4 Engª. Informática, IST, Av.Rovisco Pais 1049-001 Lisboa, Portugal [email protected] Abstract. Current user interfaces of CAD systems are still not suited to the ini- tial stages of product development, where freehand drawings are used by engi- neers and designers to express their visual thinking. In order to exploit these sketching skills, we present a sketch based modeling system, which provides a reduced instruction set calligraphic interface to create orthogonal polyhedra, and an extension of them we named quasi-normalons. Our system allows users to draw lines on free-hand axonometric-like drawings, which are automatically tidied and beautified. These line drawings are then converted into a three- dimensional model in real time because we implemented a fast reconstruction process, suited for quasi-normalon objects and so-called axonometric inflation method, providing in this way an innovative integrated 2D sketching and 3D view visualization work environment. 1 Introduction User interfaces of most CAD applications are based on the WIMP (Windows, Icons, Menus and Pointing) paradigm, that is not enough flexible to support sketching activi- ties in the conceptual design phase. Recently, work on sketch-based modeling has looked at a paradigm shift to change the way geometric modeling applications are built, in order to focus on user-centric systems rather than systems that are organized around the details of geometry representation. -
Visual Impairment and Deafblind Education Quarterly Volume 61
Visual Impairment and Deafblind Education Quarterly 2016 Convention Issue Volume 61 Number 2 2016 ; Lorem Ipsum Dolor Spring 2016 This is a publication of the Council for Exceptional Children’s Division on Visual Impairments and DeafBlindness (CEC- DVIDB). Advertisements included in this issue are not endorsements of products or services, and individual views of authors are not necessarily the official position of CEC and/or DVIDB. Cover Photo Cover photo is of the St. Louis arch. St. Louis, Missouri was the home of CEC’s 2016 International Convention. Photograph courtesy of Stephanie Barrows. 2 2 ; Lorem Ipsum Dolor Spring 2016 Volume 61, Number 21 Page 6 Message from the Editor 8 President’s Message 14 Virgina M. Sowell Award: Jessica Kolvites 16 Dissertation of the Year Award: Dr. Ellen Bowman 19 Teacher of the Year Award: Rachel Schles 23 Exemplary Advocate Award: Teresa Lacy 26 Distinguished Service Award: Dr. Alana Zambone 30 Including Students Who Are Blind or Have Low Vision in English Language Proficiency Assessments 35 Early Intervention and Visual Impairments: A Prepared Workforce 53 Introducing the iBraille Challenge! 3 3 ; Lorem Ipsum Dolor Spring 2016 Volume 61, Number 2 Page 60 Mathematics Instruction for Students with Visual Impairments: What is there and where can we go 70 Peer Assisted Learning Strategies to Improve Reading Fluency and Socialization Among Students Who Are Blind and Visually Impaired 77 University and School for the Deaf and Blind Parternship Experience 79 The Expanded Core Curriculum: What We Learned at the Florida School for the Deaf and Blind 85 Experience of a Lifetime for an Undergraduate Student 92 Missouri School for the Blind 107 DVIDB Professional Standards Committee Report 4 4 ; Lorem Ipsum Dolor Spring 2016 Volume 61, Number 2 Page 109 Ad Hoc Committee on DVIDB Position Paper 116 The Expanded Core Curriculum 137 CEC Membership Application 5 5 ; Lorem Ipsum Dolor Spring 2016 Kathleen Farrand, Ph.D. -
2D to 3D Image Conversion Using Trimetric Projection and Depth-Map Estimation
ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering ISO 3297:2007 Certified Vol. 5, Issue 7, July 2016 2D to 3D Image Conversion using Trimetric Projection and Depth-map Estimation Rashmi Snawer1, Asst. Prof. Ms. Anubhooti Papola2 Department of Computer Science, Uttarakhand Technical University Dehradun1, 2 Abstract: The three-dimensional (3D) displays needed the axes and angle information for dimensional view which is engaged in the predictable 2D substance. This work presents a novel methodology that involuntarily converts 2D images into 3D which is easily available for users with the help of our mM desktop application. Here we are working on axonometric projection and focusing on axis of any object or image, in this methodology we are going to merge three different axonometric projections and showing this as a new technique in Tri-metric projection. Projection applies in 2D records which we have to convert in 3D. This technique is helpful in 2d to 3D conversion with a better view and it takes less time for conversion since researchers are using three different projection techniques together for an exceptional result. Keywords: Predictable 2D substance, focusing on axis of any object or image, 2D records which we have to convert in 3D help of our mM desktop application 1. INTRODUCTION In the 2D structure, we use only two coordinates X and Y it an idea of the outer world, how objects are near or how other than in 3D an extra coordinate Z is new. 3D graphics they are far. -
Viewing and Projection Viewing and Projection
Viewing and Projection The topics • Interior parameters • Projection type • Field of view • Clipping • Frustum… • Exterior parameters • Camera position • Camera orientation Transformation Pipeline Local coordinate Local‐>World World coordinate ModelView World‐>Eye Matrix Eye coordinate Projection Matrix Clip coordina te others Screen coordinate Projection • The projection transforms a point from a high‐ dimensional space to a low‐dimensional space. • In 3D, the projection means mapping a 3D point onto a 2D projection plane (or called image plane). • There are two basic projection types: • Parallel: orthographic, oblique • Perspective Orthographic Projection Image Plane Direction of Projection z-axis z=k x 1000 x y 0100 y k 000k z 1 0001 1 Orthographic Projection Oblique Projection Image Plane Direction of Projection Properties of Parallel Projection • Definition: projection directions are parallel. • Doesn’t look real. • Can preserve parallel lines Projection PlllParallel in 3D PlllParallel in 2D Properties of Parallel Projection • Definition: projection directions are parallel. • Doesn’t look real. • Can preserve parallel lines • Can preserve ratios t ' t Projection s s :t s' :t ' s' Properties of Parallel Projection • Definition: projection directions are parallel. • Doesn’t look real. • Can preserve parallel lines • Can preserve ratios • CANNOT preserve angles Projection Properties of Parallel Projection • Definition: projection directions are parallel. • Doesn’t look real. • Can preserve parallel -
Download Download
O'SHAUNGHNESSY | The 1866 Vercoe and Harding map and the axonometric: the object of subjective representation AHA: Architectural History Aotearoa (2010) vol 7:58-65 The 1866 Vercoe and Harding map and the axonometric: the object of subjective representation Katherine O'Shaunghnessy ABSTRACT: The 1866 Vercoe and Harding map of Auckland provides a visual description of colonial development during the 1860s. This map is a static representation of the past and the backdrop to an exploration of the site via architectural drawing. This paper outlines the process of excavating a site through axonometric drawing looking specifically at an area within Freemans Bay. It explains how the two dimensional Vercoe and Harding map has been extruded into a three dimensional representation of the site. The idea of the map as a subjective representation of the past will be explored alongside the use of what might be considered an objective drawing type to create a subjective visualization of the site. The paper will investigate the process of creating this axonometric and the way in which this drawing relies on both historical fact and historical assumption. It will address how this process produces an understanding of the site, namely, the ability to translate each building based on the simple outline of its plan. This paper is part of a wider investigation into the documentation of heritage sites and the use of drawing to create an understanding of place. Thus, this drawing alone does not create this awareness of place, but rather, informs a new understanding of the 1866 map and a representation of what Freemans Bay might have been during the 1860s. -
New Techniques and Applications P4
TUESDAY PROCEEDINGS OF THE 31ST ANNUAL MEETING TUESDAY, JUNE 5, 1984 measure EFs which correlate well with gamma camera measurements) was employed to record sequential 2 minute time activity curves from the left ventricles of 6 healthy men (ages 19-24) during a control period and during a 30 8:00-10:00 Petree Hall in the Los Angeles Convention Center minute stress interview with a psychiatrist. Four o£the subjects were also monitored in a cold room (1°C) for 20 min« In addition to the left ventricular time-activity FORMAL OPENING AND PLENARY SESSION curve, heart rate (HR), and BP (cuff) were recorded. All 8:15 WELCOME AND TRIBUTE TO THE FOUNDER'S subjects had increases in HR, BP and EF during the stress interview. Cold, however, produced decreases in HR and EF GROUP,* Merle K. Loken, M.D., Ph.D., and an increase in BP. The results (mean±Su)are tabulated below: President, Society of Nuclear Medicine HR BP EF Rest 66+ 2 121/80 ±13/4 51+11 REMARKS: B. Leonard Holman, M.D., Chairman, Sci Interview 76+11* 158/101+ 7/7* 68+13* Rest Pre-cold 70+ 7 114/76 +12/5 58+ 7 entific Program Committee 1984 Cold 63+ 4* 141/94 +14/5* 37+ 4* *p<.05 REMARKS: Shelley D. Hartnett, CNMT, President, End-systolic and end-diastolic counts and hence volume decreased during the interview and increased during cold Technologist Section exposure. These data suggest that (1) ambulatory changes in REMARKS: Thomas P. Haynie III, M.D., Chairman, ventricular function can be measured with the VEST, and (2) significant changes in cardiovascular physiology are seen Credentials and Membership Committee in normal subjects during a stress interview and exposure to cold. -
A Brief History of Data Visualization
A Brief History of Data Visualization Michael Friendly Psychology Department and Statistical Consulting Service York University 4700 Keele Street, Toronto, ON, Canada M3J 1P3 in: Handbook of Computational Statistics: Data Visualization. See also BIBTEX entry below. BIBTEX: @InCollection{Friendly:06:hbook, author = {M. Friendly}, title = {A Brief History of Data Visualization}, year = {2006}, publisher = {Springer-Verlag}, address = {Heidelberg}, booktitle = {Handbook of Computational Statistics: Data Visualization}, volume = {III}, editor = {C. Chen and W. H\"ardle and A Unwin}, pages = {???--???}, note = {(In press)}, } © copyright by the author(s) document created on: March 21, 2006 created from file: hbook.tex cover page automatically created with CoverPage.sty (available at your favourite CTAN mirror) A brief history of data visualization Michael Friendly∗ March 21, 2006 Abstract It is common to think of statistical graphics and data visualization as relatively modern developments in statistics. In fact, the graphic representation of quantitative information has deep roots. These roots reach into the histories of the earliest map-making and visual depiction, and later into thematic cartography, statistics and statistical graphics, medicine, and other fields. Along the way, developments in technologies (printing, reproduction) mathematical theory and practice, and empirical observation and recording, enabled the wider use of graphics and new advances in form and content. This chapter provides an overview of the intellectual history of data visualization from medieval to modern times, describing and illustrating some significant advances along the way. It is based on a project, called the Milestones Project, to collect, catalog and document in one place the important developments in a wide range of areas and fields that led to mod- ern data visualization. -
Engineering Drawing
LECTURE NOTES For Environmental Health Science Students Engineering Drawing Wuttet Taffesse, Laikemariam Kassa Haramaya University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2005 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2005 by Wuttet Taffesse, Laikemariam Kassa All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE The problem faced today in the learning and teaching of engineering drawing for Environmental Health Sciences students in universities, colleges, health institutions, training of health center emanates primarily from the unavailability of text books that focus on the needs and scope of Ethiopian environmental students.