CS6008/Human Computer Interaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Syllabus: Art 4366-Interactive Design
Art 4348 - Interactive Design, 2013 Fall p. 1 SYLLABUS: ART 4366-INTERACTIVE DESIGN INSTRUCTOR Seiji Ikeda Assistant Professor Office: Fine Arts Building 369-C Hours: Tuesdays, 10-11am [email protected] CLASS INFORMATION Art 4348 - Interactive Design, Section 1 Fine Arts Building 368-A, Monday and Wednesday, 11-1:50pm CATALOGUE DESCRIPTION Comprehensive analysis of interactive concepts and the role of new media in relationship to the field of visual communications. The student will explore and construct innovative uses of interaction using coding and contemporary applications. May be repeated for credit. Prerequisite: ART 3354: SIGN AND SYMBOL, or permission of the advisor. COURSE OBJECTIVES The course will explore interactive media and trends in web design and development. The basic course structure is a combination of seminars (made up of lecture, readings, discussion, research of topics) and practical digital projects. Comprehensive learning of how the theoretical and sociological impact of today’s media & design has on the culture and the individual will be emphasized. The class will research and implement effective ideas solving visual problems in navigation, interface design, and layout design through the use of type, graphic elements, texture, motion and animation. Main projects will revolve around creating Motion-based websites. DESCRIPTION OF INSTRUCTIONAL METHODS The structure of the class includes lectures, demonstrations, group discussion, individual and group critiques and in/outside class studio activities. Projects will be assigned and will be due on scheduled dates. Each project will include an introduction to the specifics of what is expected and what concepts we are covering. At the completion of assigned projects a critique/class review will take place. -
A Review of User Interface Design for Interactive Machine Learning
1 A Review of User Interface Design for Interactive Machine Learning JOHN J. DUDLEY, University of Cambridge, United Kingdom PER OLA KRISTENSSON, University of Cambridge, United Kingdom Interactive Machine Learning (IML) seeks to complement human perception and intelligence by tightly integrating these strengths with the computational power and speed of computers. The interactive process is designed to involve input from the user but does not require the background knowledge or experience that might be necessary to work with more traditional machine learning techniques. Under the IML process, non-experts can apply their domain knowledge and insight over otherwise unwieldy datasets to find patterns of interest or develop complex data driven applications. This process is co-adaptive in nature and relies on careful management of the interaction between human and machine. User interface design is fundamental to the success of this approach, yet there is a lack of consolidated principles on how such an interface should be implemented. This article presents a detailed review and characterisation of Interactive Machine Learning from an interactive systems perspective. We propose and describe a structural and behavioural model of a generalised IML system and identify solution principles for building effective interfaces for IML. Where possible, these emergent solution principles are contextualised by reference to the broader human-computer interaction literature. Finally, we identify strands of user interface research key to unlocking more efficient and productive non-expert interactive machine learning applications. CCS Concepts: • Human-centered computing → HCI theory, concepts and models; Additional Key Words and Phrases: Interactive machine learning, interface design ACM Reference Format: John J. -
Ii Topic Outline Idi 1
AVICENNE WBT: DESIGN & IMPLEMENTATION STRATEGIES – II TOPIC OUTLINE IDI 1 - Interactive Design Principles 1.1. Interactive Vocabulary 1.1.1 Hypertext 1.1.2 Hypermedia 1.1.3 Link 1.1.4 Nodes 1.1.5 Branching 1.1.6 Node Map 1.1.7 Navigation 1.2 Multimedia as a System 1.3 Component of the System 1.3.1 Component Drivers 1.3.1.1 Target User 1.3.1.2 Venue 1.3.1.3 Purpose 1.3.1.4. Subjects 1.3.1.4 Genres 1.3.2 Multimedia Components 1.4. The User Interface 1.4.1 The Metaphor 1.4.2. Principles of Good Interface IDI1 - CONCEPT MAP Objectives of the Lesson At the end of this lecture learners will be able to 1. Analyze an interactive system based on interactive vocabulary 2. Develop an interactive system including links, hypertext or hypermedia, nodes, node map, and etc. 3. Investigate a multimedia system with respect to drivers and components 4. Analyze users interfaces for their effectiveness and efficiency 5. Evaluate and make recommendations for an interface 6. Establish a relationship among concepts multimedia, interactivity, and user interface IDI 1 - Interactive Design Principles 1.1. Interactive Vocabulary 1.1.1 Hypertext A tool placed or embedded into text. However, this text differs from normal texts due to its functionality that allows users to link, go, and jump to other related segment of content. It is fundamental term of interactivity. It can be also stated as the most primitive type of interaction. It is the origin of interactivity civilization. -
THE COMPUTER SCIENCE with HCI
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727 PP 52-54 www.iosrjournals.org THE COMPUTER SCIENCE with HCI Shubhangi M. Sherekar1 1([email protected], Dept of Computer Science, Shivaji Science College, Nagpur, India) Abstract: The intention of this paper is to provide an overview on the subject of Computer science with Human computer Interaction. Human computer interaction (HCI) is the study of people design, implement, and use interactive computer systems. In this paper we study why do human uses computing system? , what do human uses computing system for? And the computer science of HCI. Keywords: Human Computer Interaction, computing system, computer science of HCI. I. INTRODUCTION Human–computer interaction (HCI) is the study of interaction between people (users) and computers. It is often regarded as the intersection of computer science, behavioral sciences, design and several other fields of study. Interaction between users and computers occurs at the rapid growth of computing has made effective human-computer interaction essential. Increased attention to usability is also driven by competitive pressures for greater productivity, the need to reduce frustration, and to reduce overhead costs such as user training. As computing affects more aspects of our lives the need for usable systems becomes even more important. II. HUMAN-COMPUTER INTERACTION: The Association for Computing Machinery defines human-computer interaction as "a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them. Because human-computer interaction studies a human and a machine in conjunction, it draws from supporting knowledge on both the machine and the human side. -
What Is Interaction Design? (1) What Is Interaction Design? (2)
2/1/2010 Basis of Innovation Interaction Design Interaction design Data mining Evolutionary computation Andrew Kusiak The University of Iowa [email protected] Based on D. Saffer, Designing Interaction: Cognitive Innovative Applications and Devices, New Riders, Berkeley, CA, 2010. What is Interaction Design? (1) What is Interaction Design? (2) Not well defined Interdisciplinary roots in: industrial and communication Design is to design a design to produce a design design, human factors, and human-computer interaction John Heskett Interaction Design Much of interaction is not visible E.g., Though Windows and Mac operating systems may have almost the same functionality and look, yet, they feel differently Interaction is about behavior and behavior is difficult to observe and understand 1 2/1/2010 Interaction Design Perspectives Focus of Interaction Design (1) Focusing on users o Designers should advocate users’ expectaions Finding alternatives Technology centered o Designing is not choosing among multiple options, o E.g., use of digital technology o It is about creating options (Genetic programming link) Behaviorist Using ideation and prototyping o Study product behavior and users’ feedback o Many prototypes, e.g., Jeff Hawkins – designer of the original Social interaction design PalmPilot carried around wooden blocks and wrote on them o Facilitating interaction among products and people Collaborating and addressing constraints o Designers deal with teammates, money, materials; and address business goals, deadlines, etc. Focus of Interaction Design (2) History of Interaction Design (1) Creating appropriate solutions Likely begun with Native Americans and other tribes o Appropriate to the situation (Evolutionary computation and evolving landscape link) used smoke and other signals to communicate over Drawing on a wide range of influences long distances E. -
Lecture Notes in Computer Science 8345
Lecture Notes in Computer Science 8345 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen Editorial Board David Hutchison Lancaster University, Lancaster, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Alfred Kobsa University of California, Irvine, CA, USA Friedemann Mattern ETH Zurich, Zürich, Switzerland John C. Mitchell Stanford University, Stanford, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen TU Dortmund University, Dortmund, Germany Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max Planck Institute for Informatics, Saarbruecken, Germany For further volumes: http://www.springer.com/series/7409 Achim Ebert • Gerrit C. van der Veer Gitta Domik • Nahum D. Gershon Inga Scheler (Eds.) Building Bridges: HCI, Visualization, and Non-formal Modeling IFIP WG 13.7 Workshops on Human–Computer Interaction and Visualization: 7th HCIV@ECCE 2011 Rostock, Germany, August 23, 2011, and 8th HCIV@INTERACT 2011 Lisbon, Portugal, September 5, 2011 Revised Selected Papers 123 Editors Achim Ebert Gitta Domik Inga Scheler University of Paderborn University of Kaiserslautern Paderborn Kaiserslautern Germany Germany Nahum D. Gershon Gerrit C. van der Veer The MITRE Corporation Open University The Netherlands McLean, VA Heerlen USA The Netherlands ISSN 0302-9743 ISSN 1611-3349 (electronic) ISBN 978-3-642-54893-2 ISBN 978-3-642-54894-9 (eBook) DOI 10.1007/978-3-642-54894-9 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2014936290 LNCS Sublibrary: SL3 – Information Systems and Applications, incl. -
Interactivity: a Review of the Concept and a Framework for Analysis
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Access LMU Interactivity: A review of the concept and a framework for analysis OLIVER QUIRING and WOLFGANG SCHWEIGER Abstract The terms ‘interactivity’ and ‘interactive media’ became significant buzz- words during the late 1980s and early 1990s when the multi-media euphoria fascinated politicians, economists, and researchers alike. However, right from the beginning of the scientific debate, the inconsistent usage of the term ‘interactivity’ massively complicated the comparability of numerous empirical studies. This is where this article joins the discussion. First, the article sheds light on the terminological origins of ‘interactivity’ and distin- guishes the term from cognate expressions. Further, it restructures and ex- tends existing findings on the basis of a new analysis framework which considers three levels of interactive communication (action level, level of subjective situation evaluation, and level of meaning exchange). Finally, it delivers a systematic overview of specific criteria of interactive communica- tion. Keywords: interactivity, framework, computer-mediated-communication, human-machine interaction, Internet, media use Introduction ‘Interactivity’ and ‘interactive media’ became significant buzzwords dur- ing the late 1980s and early 1990s when the multi-media euphoria fasci- nated politicians, economists, and researchers alike. During the last de- cade this multimedia euphoria of the early days slowed down distinctly although new technologies were developed continuously. The term ‘inter- active’ was used less frequently but constantly within communication science publications. The term as well as the idea of ‘interactivity’ has, despite some pioneer articles (e. g., Durlak, 1987; Rafaeli, 1988; Heeter, 1989; Steuer, 1992), not been explained satisfactorily so far. -
Programming Interactivity.Pdf
Download at Boykma.Com Programming Interactivity A Designer’s Guide to Processing, Arduino, and openFrameworks Joshua Noble Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo Download at Boykma.Com Programming Interactivity by Joshua Noble Copyright © 2009 Joshua Noble. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editor: Steve Weiss Indexer: Ellen Troutman Zaig Production Editor: Sumita Mukherji Cover Designer: Karen Montgomery Copyeditor: Kim Wimpsett Interior Designer: David Futato Proofreader: Sumita Mukherji Illustrator: Robert Romano Production Services: Newgen Printing History: July 2009: First Edition. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. Programming Interactivity, the image of guinea fowl, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information con- tained herein. TM This book uses RepKover™, a durable and flexible lay-flat binding. -
The Design Charrette Ways to Envision Sustainable Futures the Design Charrette
Rob Roggema Editor The Design Charrette Ways to Envision Sustainable Futures The Design Charrette Rob Roggema Editor The Design Charrette Ways to Envision Sustainable Futures Editor Rob Roggema Department of Landscape Architecture Van Hall Larenstein, Wageningen University The Netherlands The Swinburne Institute for Social Research Swinburne University of Technology Hawthorn, Australia ISBN 978-94-007-7030-0 ISBN 978-94-007-7031-7 (eBook) DOI 10.1007/978-94-007-7031-7 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2013947776 © Springer Science+Business Media Dordrecht 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. -
Sonic Interaction Design Sonic Interaction Design
Sonic Interaction Design Sonic Interaction Design edited by Karmen Franinovi ć and Stefania Serafin The MIT Press Cambridge, Massachusetts London, England © 2013 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected] or write to Special Sales Depart- ment, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Sonic interaction design / edited by Karmen Franinovi ć and Stefania Serafin. pages cm Includes bibliographical references and index. ISBN 978-0-262-01868-5 (hardcover : alk. paper) 1. Sonic interaction design. 2. Product design. 3. Sound in design. 4. Human-computer interaction. I. Franinović , Karmen, 1975 — editor of compilation. II. Serafin, Stefania, 1973 — editor of compilation. TS171.S624 2013 004.01 ' 9 — dc23 2012028482 10 9 8 7 6 5 4 3 2 1 Contents Introduction vii I Emergent Topics 1 1 Listening to the Sounding Objects of the Past: The Case of the Car 3 Karin Bijsterveld and Stefan Krebs 2 The Experience of Sonic Interaction 39 Karmen Franinovi ć and Christopher Salter 3 Continuous Auditory and Tactile Interaction Design 77 Yon Visell, Roderick Murray-Smith, Stephen A. -
Learning About Interactivity from Physical Toys
Proc. of NORDES’07 (the Nordic Design Research Conference), Stockholm, 27-29.6.2007 LEARNING ABOUT INTERACTIVITY FROM PHYSICAL TOYS BY EVA HORNECKER PERVASIVE INTERACTION LAB, DEPT. OF COMPUTING THE OPEN UNIVERSITY MILTON KEYNES MK7 6AA, UK TEL: +44 (0)1908 654566 [email protected] Interaction Design is about designing examples. I here reflect on insights from a student exercise in analysing physical toys for their interaction interactions. We thus need to understand what qualities. The aims of this paper are to contribute to makes up (good) ‘interactivity’. This paper understanding interactivity and to exchange experiences discusses experiences with an exercise that aims in how to sensitize learners for qualities of interactivity. to sensitize students for interaction qualities and The exercise builds upon central notions from conceptual interaction design literature (Löwgren, 2001, 2002; to make them familiar with central concepts on Shedroff 2000, Crawford, 2002) on the nature of the nature of interactivity through analysis of interactivity and interaction qualities. Pairs of students physical toys. Reflection on students’ insights are asked to select physical toys, to play with them for a while, and to reflect on their experiences. Guiding and observations reveals how these abstract questions relate to the toy’s behaviour, reactions and notions interrelate in complex ways and expressivity, the expressivity and freedom it allows its provides vivid examples, giving evidence of the ‘user’, the constraints it sets, the size of the interaction space, locus of control with the ‘user’ or the toy, etc. exercise’s value. Analysing a non-digital object reduces the complexity of the exercise (effectively restricting objects’ functionality) INTRODUCTION and allows learners to focus on the interactivity itself – discussing general principles and basic concepts by Interaction Design is generally being defined as the looking at simple but fundamental examples. -
Interactive Design and Production I USC School of Cinematic Arts, CTIN-532 Fall Semester 2017
Interactive Design and Production I USC School of Cinematic Arts, CTIN-532 Fall Semester 2017 Professor: Richard Lemarchand Office: SCI 201 L Phone: (213) 740-3081 Email: [email protected] Student Assistant: Jung-Ho Sohn Meeting Information: Room: SCI L114 Day and Time: Monday 3:00 PM - 5:20 PM, Friday 3:00PM – 5:20PM Units: 4 Course Website http://bit.ly/CTIN-532-2017 Course Description: Welcome to CTIN-532, and to the third of your siX semesters in the IMGD MFA program. This class is a challenging one, but it should also be a lot of fun. If you pay close attention to your classmates and to me, the instructor, and summon the courage to communicate with all of us honestly, frequently, quickly, and with compassion, I can almost completely guarantee you a positive, supportive, sane, and enjoyable experience in the class, and one that leads to a valuable learning outcome. Imagination and design are inexorably interlinked. The dreams we dream at night and by day can lead to the greatest accomplishments in art and literature, science and technology, industry and entertainment. But until we commit to a decision and act upon it we are not designing, only speculating. Even a small game or interactive media project requires us to make thousands of decisions; some of them major, many of them minor, although it might not always be apparent to us which type of decision is which. How can we stay in control of this decision-making process, ensuring that we make good-quality decisions, and that we don’t run out of time to make them? This class aims to show you how.