Sonic Interaction Design Sonic Interaction Design

Total Page:16

File Type:pdf, Size:1020Kb

Sonic Interaction Design Sonic Interaction Design Sonic Interaction Design Sonic Interaction Design edited by Karmen Franinovi ć and Stefania Serafin The MIT Press Cambridge, Massachusetts London, England © 2013 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected] or write to Special Sales Depart- ment, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Sonic interaction design / edited by Karmen Franinovi ć and Stefania Serafin. pages cm Includes bibliographical references and index. ISBN 978-0-262-01868-5 (hardcover : alk. paper) 1. Sonic interaction design. 2. Product design. 3. Sound in design. 4. Human-computer interaction. I. Franinović , Karmen, 1975 — editor of compilation. II. Serafin, Stefania, 1973 — editor of compilation. TS171.S624 2013 004.01 ' 9 — dc23 2012028482 10 9 8 7 6 5 4 3 2 1 Contents Introduction vii I Emergent Topics 1 1 Listening to the Sounding Objects of the Past: The Case of the Car 3 Karin Bijsterveld and Stefan Krebs 2 The Experience of Sonic Interaction 39 Karmen Franinovi ć and Christopher Salter 3 Continuous Auditory and Tactile Interaction Design 77 Yon Visell, Roderick Murray-Smith, Stephen A. Brewster, and John Williamson 4 Pedagogical Approaches and Methods 125 Davide Rocchesso, Stefania Serafin, and Michal Rinott 5 Perceptual Evaluation of Sound-Producing Objects 151 Bruno L. Giordano, Patrick Susini, and Roberto Bresin II Case Studies 199 Audio and Touch 201 6 Perceptual Integration of Audio and Touch: A Case Study of PebbleBox 203 Sile O’ Modhrain and Georg Essl 7 Semiacoustic Sound Exploration with the Sound of Touch 213 David Merrill and Hayes Raffle 8 The Gamelunch: Basic SID Exploration of a Dining Scenario 225 Stefano Delle Monache, Pietro Polotti, and Davide Rocchesso vi Contents 9 ZiZi: The Affectionate Couch and the Interactive Affect Design Diagram 235 Stephen Barrass 10 SonicTexting 245 Michal Rinott 11 The A20: Interactive Instrument Techniques for Sonic Design Exploration 255 Atau Tanaka, Olivier Bau, and Wendy Mackay Sonification of Human Activities 271 12 Designing Interactive Sound for Motor Rehabilitation Tasks 273 Federico Avanzini, Simone Spagnol, Antonio Rod à , and Amalia De G ö tzen 13 Sonification of the Human EEG 285 Thomas Hermann and Gerold Baier 14 High-Density Sonification: Overview Information in Auditory Data Explorations 299 Johan Kildal and Stephen A. Brewster Sound in Virtual Reality 307 15 Simulating Contacts between Objects in Virtual Reality with Auditory, Visual, and Haptic Feedback 309 Jean Sreng and Anatole L é cuyer 16 Sonic Interaction via Spatial Arrangement in Mixed-Reality Environments 329 Mike Wozniewski, Zack Settel, and Jeremy R. Cooperstock 17 Heigh Ho: Rhythmicity in Sonic Interaction 341 Cumhur Erkut, Antti Jylh ä , and Davide Rocchesso 18 Barking Wallets and Poetic Flasks: Exploring Sound Design for Interactive Commodities 351 Daniel Hug Contributors 369 Index 373 Introduction Sound is an integral part of every performative and aesthetic experience with an arti- fact. Yet, in design disciplines, sound has been a neglected medium, with designers rarely aware of the extent to which sound can change the overall user experience. The shaping of the auditory character of products has been dominated by functional pri- orities such as noise reduction, the representational uses of sounds as auditory icons, and sound as emergency signal or alarm. These roles that sound has played as func- tional, iconic, and signaling element during the interaction with an artifact have arguably limited our everyday experiences with sound. Sonic interaction design (SID) emerged from the desire to challenge these prevalent design approaches by consider- ing sound as an active medium that can enable novel phenomenological and social experiences with and through interactive technology. By using sound in an embodied and performative way, this burgeoning new field works with emergent research topics related to multisensory, performative, and tactile aspects of sonic experience. Yet, it builds on existing knowledge and themes that have been at the heart of sound discourses for decades, such as the relationship between sound and location, issues of privacy and power, and the ability of a sounding artifact to communicate information. A deep examination of such topics requires the involve- ment of diverse perspectives and methods belonging to a range of different disciplines including interactive arts, electronic music, cultural studies, psychology, cognitive sciences, acoustics, interaction design, and communication studies. Thus, SID can be defined as an interdisciplinary field of research and practice that explores ways in which sound can be used to convey information, meaning, and aesthetic and emo- tional qualities in interactive contexts. As a design practice, SID is the creative activity of shaping the relationships between artifacts, services, or environments and their users by means of interactive sound. In this context, the goal of SID is not only to extend the existing research on interactive sound but also to foster new application viii Introduction areas and new domains of practice for sound designers, architects, interaction design- ers, media artists, product designers, and urban planners. Product Design: Reduction versus Quality Since its origins, sound design for products has focused on the elimination of undesir- able noise that is produced through physical interaction. In the early 1950s, several companies begun to apply evaluation to their products through precise measurements of the level of sound produced during their use. Such tests allowed designers and engineers to accordingly modify the mechanical design of their products in order to reduce sonic annoyance for the user. Today, similar measurements are combined with psychophysical methods well suited to characterize the acoustic annoyance of the user for products such as vacuum cleaners, coffee machines, and air conditioners [ 14 ]. However, this type of evaluation often fails to account for the users’ emotional and cognitive responses to the functional and aesthetic aspects of a product [3 ]. Thus, more recently, psychologists have begun to explore emotional responses to sound in prod- ucts beyond so-called user preference tests [ 15 ], reflecting a more general trend in design research of exploring the emotional impact of products [ 11 ]. Although in practice the trend toward reducing annoying sound, rather than designing its quality, still dominates in product design, there are a few cases in which sound is used to affect the overall perceived quality of a product. For example, in order to provide strong product identities, sonic branding professionals have begun to use sound to enhance the use of a product rather than to deploy sound solely as an addition to the visual advertisements. Various luxury goods are designed in a way that action performed with the product generates desirable sounds, as for example in opening of a perfume bottle, starting a motorcycle, or closing the door of a car [12 ]. Meanwhile, scientific researchers have demonstrated that other senses such as the sense of taste can be affected through sound, leading them to conclude that the auditory cues elicited by our contact or interaction with different surfaces (such as abrasive sandpapers or even our own skin) and products (including electric toothbrushes, aerosol sprays, food mixers, and cars) can dramatically change the way in which they are perceived, despite the fact that we are often unaware of the influence of such auditory cues on our perception. [ 13 ] Although designers could benefit from applying such perceptual phenomena to prod- ucts, the ethical issues related to the use of multisensory effects without the awareness of the user still remain to be discussed. Introduction ix Human-Computer Interaction: Metaphors and Sonification In digital products, sound has been predominantly used to accompany screen-based interaction or to present information in the form of sound. Auditory displays can help extract meaning from complex data, alert to a particular event, or signal the accom- plishment of an action performed with a graphical icon on the screen [ 8 ]. Such rep- resentational uses of sound have defined a number of functional roles for computer sound as well as contributed to development of new design tools. Extensive research was conducted on earcons — abstract sounds that accompany different computer events [ 2 ] — and auditory icons — everyday sounds associated with interactions on the computer desktop [ 5 ]. In this context, everyday sounds have proved to be efficient interactive metaphors because users could easily associate such sounds with physical events that cause them. A typical example is the sound of crushing paper when moving a file to a trash can on a computer desktop [ 6 ]. This research also presented a designerly way of thinking about sound, suggesting that its qualities should be exaggerated in order to improve the perception of the sound event and thus facilitate
Recommended publications
  • Game Level Layout from Design Specification
    EUROGRAPHICS 2014 / B. Lévy and J. Kautz Volume 33 (2014), Number 2 (Guest Editors) Game Level Layout from Design Specification Chongyang Ma∗z Nicholas Vining∗ Sylvain Lefebvrey Alla Sheffer∗ ∗ University of British Columbia y ALICE/INRIA z University of Southern California Abstract The design of video game environments, or levels, aims to control gameplay by steering the player through a sequence of designer-controlled steps, while simultaneously providing a visually engaging experience. Traditionally these levels are painstakingly designed by hand, often from pre-existing building blocks, or space templates. In this paper, we propose an algorithmic approach for automatically laying out game levels from user-specified blocks. Our method allows designers to retain control of the gameplay flow via user-specified level connectivity graphs, while relieving them from the tedious task of manually assembling the building blocks into a valid, plausible layout. Our method produces sequences of diverse layouts for the same input connectivity, allowing for repeated replay of a given level within a visually different, new environment. We support complex graph connectivities and various building block shapes, and are able to compute complex layouts in seconds. The two key components of our algorithm are the use of configuration spaces defining feasible relative positions of building blocks within a layout and a graph-decomposition based layout strategy that leverages graph connectivity to speed up convergence and avoid local minima. Together these two tools quickly steer the solution toward feasible layouts. We demonstrate our method on a variety of real-life inputs, and generate appealing layouts conforming to user specifications. Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations 1.
    [Show full text]
  • MSC Apex Generative Design Brochure
    Brochure MSC Apex Generative Design Bridge the gap between design and manufacturing with Smart Generative Design At a glance MSC Apex Generative Design is the fully automated generative design solution built on the most intuitive CAE environment in the world, MSC Apex. It exploits all the easy-to-use and easy-to-learn features of MSC Apex while employing an innovative generative design engine in the background. Thus, it dramatically decreases the effort required in the design optimisation workflow. Simplicity Import and validation No expert knowledge required for conducting Import existing geometries or mesh, find optimisations through a high user-focused optimised design candidates, and perform software design design validation - all inside a single CAE environment. Automated design Direct output Almost automatically generate multiple smoothed design candidates that all satisfy the Export geometry that can be directly design criteria while minimising the weight. manufactured and used immediately without manual re-work. One process Import the resulting geometries in Simufact Additive or Digimat AM to achieve cost-efficient first-time-right result for every part MSC Apex Generative Design Design for Additive Manufacturing (DfAM) without expert knowledge MSC Apex Generative Design is designed specifically to generate the detailed and highly complex structures that only additive processes can manufacture. The optimised designs exhibit perfect transitions between structure elements such as struts and shells as well as they contain usually self- supporting structures that ensure the results can be sent straight to print. However, in cases where further manufacturing and design validation is necessary, MSC Apex Generative Design is interoperable with Simufact Additive, Digimat AM, and MSC Nastran.
    [Show full text]
  • Textile & Fashion Careers Level 2
    Textile & Fashion Careers Level 2 Apparel Construction Demonstrate measurement skills, standard and metric. Select patterns. Follow written pattern directions. Demonstrate pattern layout and material cutout. Demonstrate pattern making. Operate machines, equipment and attachments in a safe and efficient manner. Use tools for construction, alteration and repairs. Demonstrate basic construction and alteration skills and techniques. Computer Technology in Textile/Fashion Industry Set up Computer Aided Design (CAD) tables. Grade and digitize patterns. Create models. Design and plot markers. Produce embroidery motif. Interior Design Research and use information to assess product needs. Determine solutions to design problems. Select fabric, considering patterns and textures, for visual effect. Demonstrate basic construction skills needed in product development. Demonstrate basic installation of window treatments. Apply basic techniques to strip and rebuild furniture. Use standard methods of upholstery for furniture and automobiles. Design and construct slipcover products. Fashion Merchandising and Retail Describe the dynamics of the fashion industry. Explain economic concepts. Explain apparel production, business strategy, sales and distribution. Analyze retail business fundamentals. Compare strategies for retail success. Evaluate principles and methods of advertising. Analyze the global perspectives of the textile/fashion industry. Entrepreneurial Skills Describe types of small business. Analyze components of success in business. Evaluate methods for meeting customer needs. Evaluate regulations and laws related to self-employment. Utilize handcraft and entrepreneurial skills to meet business objectives. PERSONAL QUALITIES Work Effort Safety Habits Work Area Organization On Task Behavior Responsibility Initiative Team Work Respect Interpersonal Skills .
    [Show full text]
  • Interaction Design Studio - 711 Instructor: Patrick Thornton Email: [email protected] Thursday 6-8:45 Pm Location: Pac 1815 - Clarice Smith Performing Arts Center
    Interaction Design Studio - 711 Instructor: Patrick Thornton Email: [email protected] Thursday 6-8:45 pm Location: Pac 1815 - Clarice Smith Performing Arts Center Course Description Interaction design is the process of defining products and the broad services built around them. When interacting with systems, people build expectations and mental models of how things work. They learn what they can and cannot achieve. This course is about how to design for interactions that will resonate with your audiences: How the features and functions of a product get translated into something people find usable, useful, and desirable. Through a series of lectures, discussions, in-class design practice, and projects, students will explore the role of interaction designers. Students will learn how to prototype interactive products, systems, and services, and how to defend their work through the cycle of brainstorming and shared critique. This is a studio class, focusing on production processes that are required to develop public-facing work. The studio is important both as a working space and a space for collaborative reflection. Studio practice also describes a working method. As such, the INST711 classroom will focus on two activities: ● Externalization: You will put your ideas and conceptualizations into tangible materials. ● Critique: You will both give and receive constructive feedback on your own work and the work of other students in class. Student Learning Outcomes On the successful completion of this course, students will be able to: ● Explain basic concepts, techniques, and knowledge of interaction design. ● Critically discuss common methods in the interaction design process ● Use visual thinking and communication techniques to develop design concepts ● Build prototypes at varying levels of fidelity and can evaluate them using appropriate methods ● Develop critiquing skills to analyze interaction design artifacts and concept design.
    [Show full text]
  • User Interaction Design for Secure Systems
    User Interaction Design for Secure Systems Ka-Ping Yee Report No. UCB/CSD-02-1184 May 2002 Computer Science Division (EECS) University of California Berkeley, California 94720 Supported by NSF award #EIA-0122599 ITR/SI: Societal Scale Information Systems: Technologies, Design and Applications User Interaction Design for Secure Systems Ka-Ping Yee [email protected] Computer Science Department University of California, Berkeley Abstract Perhaps the most spectacular class of recent security problems is the e-mail virus, which is a good real-life The security of any computer system that is configured example of a security violation in the absence of software and operated by human beings critically depends on the errors. At no point in the propagation of the virus does information conveyed by the user interface, the decisions any application or system software do anything other of the computer users, and the interpretation of their than exactly what its programmers would expect: the e- actions. We establish some starting points for reasoning mail client correctly displays the message and correctly about security from a user-centred point of view, by decodes the attached virus program; the system correctly modelling a system in terms of actors and actions and executes the virus program. Rather, the problem has introducing the concept of the subjective actor-ability occurred because the expectations of the programmer state. We identify ten key principles for user interaction became inconsistent with what the user would want. design in secure systems and give case studies to Our purpose here is to present a way of thinking about illustrate and justify each principle, describing real-world this type of issue.
    [Show full text]
  • Sonification As a Means to Generative Music Ian Baxter
    Sonification as a means to generative music By: Ian Baxter A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Faculty of Arts & Humanities Department of Music January 2020 Abstract This thesis examines the use of sonification (the transformation of non-musical data into sound) as a means of creating generative music (algorithmic music which is evolving in real time and is of potentially infinite length). It consists of a portfolio of ten works where the possibilities of sonification as a strategy for creating generative works is examined. As well as exploring the viability of sonification as a compositional strategy toward infinite work, each work in the portfolio aims to explore the notion of how artistic coherency between data and resulting sound is achieved – rejecting the notion that sonification for artistic means leads to the arbitrary linking of data and sound. In the accompanying written commentary the definitions of sonification and generative music are considered, as both are somewhat contested terms requiring operationalisation to correctly contextualise my own work. Having arrived at these definitions each work in the portfolio is documented. For each work, the genesis of the work is considered, the technical composition and operation of the piece (a series of tutorial videos showing each work in operation supplements this section) and finally its position in the portfolio as a whole and relation to the research question is evaluated. The body of work is considered as a whole in relation to the notion of artistic coherency. This is separated into two main themes: the relationship between the underlying nature of the data and the compositional scheme and the coherency between the data and the soundworld generated by each piece.
    [Show full text]
  • Lmc 6313 Principles of Interaction Design
    Principles of Interaction Design – LMC 6313 Syllabus Course Number: LMC 6313 Location: Skiles 346 Times: T/Th – 3:00p-3:50p F (lab) – 11:15a-2:00p Instructor: Dr. Anne Sullivan Instructor Email: [email protected] Office Hours: By Appointment (Mondays are the best bet) Office Location: TSRB 317C TA: Takeria Blunt TA Email: [email protected] Course Website: http://canvas.gatech.edu Course Description: What is interaction, what is design, where did these notions come from, and where are they going? Through the activities in this course, you will return to questions of what kind of designer you are and wish to be, what you believe in, and how that will extend to your research and practice. You will also develop your own critical take on the material in the class and sharpen your voice and arguments about your perspectives. Interaction design wasn’t invented from scratch as a singular, monolithic practice. It was born out of the intersection of a number of disciplines from within design and human-computer interaction, and also from art, media, architecture, politics, and philosophy, and beyond. There are many different definitions of what it is and where we fit into it, and no two people we meet in this class will likely have the same definition. And that’s the way it should be. Through my suggestions and yours, we will also turn to design questions in digital culture, film, tv, fiction, gaming, music, art and beyond as we together frame our understandings. As you read, The syllabus, dates, times, assignments, and details are subject to change by instructor notification through Canvas or email.
    [Show full text]
  • How Interaction Designers Use Tools to Manage Ideas Preprint
    How Interaction Designers Use Tools to Manage Ideas NANNA INIE, Aarhus University PETER DALSGAARD, Aarhus University This paper presents a grounded theory-analysis based on a qualitative study of professional interaction designers (n=20) with a focus on how they use tools to manage design ideas. Idea management can be understood as a subcategory of the field Personal Information Management, which includes the activities around the capture, organization, retrieval, and use of information. Idea management pertains then to the management and use of ideas as part of creative activities. The paper identifies tool-supported idea management strategies and needs of professional interaction designers, and discusses the context and consequences of these strategies. Based on our analysis, we identify a conceptual framework of ten strategies which are supported by tools: saving, externalizing, advancing, exploring, archiving, clustering, extracting, browsing, verifying, and collaborating. Finally, we discuss how this framework can be used to characterize and analyze existing and novel idea management tools. CCS Concepts: • Human-centered computing~User studies KEYWORDS Idea management; design ideas; design process; design tools; ideation ACM Reference format: 1 INTRODUCTION The fields of HCI and interaction design are well-known for studying impacts of novel interfaces and tools, and perhaps less known for studying the impact of tools that are already used in professional practice (Smith et al. 2009; Pedersen at al. 2018; Dalsgaard 2017). In the words of Stolterman, this ofen leads to research outcomes that are difficult to apply in practice, because the research is based on an inadequate understanding of how design happens in professional setings (Stolterman 2008).
    [Show full text]
  • 92 Airq Sonification As a Context for Mutual Contribution Between
    ARANGO, J.J. AirQ Sonification as a context for mutual contribution between Science and Music Revista Música Hodie, Goiânia, V.18 - n.1, 2018, p. 92-102 AirQ Sonification as a context for mutual contribution between Science and Music Julián Jaramillo Arango (Caldas University Manizales, Colombia) [email protected] Abstract. This paper addresses a high-level discussion about the links between Science and Music, focusing on my own sonification and auditory display practices around air quality. Grounded on recent insights on interdisciplina- rity and sonification practices, the first sections will point out some potential contributions from scientific research to music studies and vice versa. I will propose the concept of mutualism to depict the interdependent status of Mu- sic and Science. The final sections will discuss air contamination as a complex contemporary problem, and will re- port three practice-based-design projects, AirQ jacket, Esmog Data and Breathe!, which outline different directions in facing local environmental awareness. Keywords. Science and Music, Sonification, Environmental Awarness, Sonology. A sonificação do AirQ como um contexto de contribuição mutua entre a Ciência e a Música. Resumo. Este artigo levanta uma discussão geral sobre as relações entre a Ciência e a Música, e se concentra em minhas praticas de sonificação e display auditivo da qualidade do ar. Baseado em reflexões recentes sobre a interdis- ciplinaridade e as práticas de sonificação as primeiras seções identificam algumas contribuições potenciais da pes- quisa científica aos estudos musicais e vice versa. O conceito de mutualismo será proposto para expressar a interde- pendência entre Música e Ciência. As seções finais discutem a contaminação do ar como um problema complexo de nossos dias e descreve três projetos de design-baseado-na-prática, AirQ jacket, Esmog Data e Breathe! que propõem direções diferentes para gerar consciência ambiental no contexto local.
    [Show full text]
  • Gourmet Typography Training
    presents GOURMET TYPOGRAPHY TRAINING Take control of your type instead of letting it control you! Gourmet Typography Training teaches and demonstrates the expert-level typographic skills and aesthetics that are rarely taught in schools or fully understood by professionals. Fill in the gaps in your typographic know-how and learn how to “see” type like you’ve never seen it before. Why Gourmet Typography Training? Every creative professional, regardless of specialty, can benefit from learning to communicate more effectively with type. Whether you are a beginner or seasoned pro, Gourmet Typography Training will sharpen your eye and give you practical, usable skills that will visibly improve the beauty, clarity and effectiveness of all your typographic projects. Subjects covered include: Who will benefit? What makes a good typeface Visual communicators of all kinds, including: OpenType demystified Graphic designers Type crimes: Are you a type criminal? Art directors Fine-tuning type, including alignment, Creative directors hyphenation, hung punctuation, etc. Creative services directors Tracking, kerning, and word spacing Web designers Tips for more professional typography Package designers Type on the Web, Web fonts Production specialists Type in motion Typographers Keyboard shortcuts and time-saving tips Web programmers and developers Every creative professional regardless of specialty can learn to communicate more effectively with type! For more information, call The Type Studio at 203.227.5929 or email us at [email protected]. www.thetypestudio.com (page 1 of 2) What they are saying about Ilene’s Gourmet Typography Training... “Your course was great! Since taking it, “I recently attended your Gourmet “As a working professional in the advertis- I can’t help but look at every book title, Typography workshop and wanted to ing industry with 10 years of creative magazine headline, and even company thank you again for an amazing day.
    [Show full text]
  • Towards an Integrated Generative Design Framework
    Towards an integrated generative design framework Vishal Singh, School of Architecture and Building, Deakin University, 1 Geringhap Street, Geelong, Victoria 3220, Australia Ning Gu, School of Architecture and Built Environment, University of Newcastle, New South Wales 2308, Australia Design creativity techniques encourage divergent thinking. But how well do the existing generative design techniques support this requirement? How can these general techniques be augmented for supporting design exploration and creativity? This paper investigates these questions through a review of five different generative design techniques used in architectural design that includes cellular automata, genetic algorithms, L-systems, shape grammars, and swarm intelligence. Based on the literature on design cognition and the recent theoretical works on digital design thinking, this paper proposes the need for an integrated generative design framework to enhance design exploration support for human designers. Potential challenges and strategies towards developing such an integrated framework are discussed. Ó 2011 Elsevier Ltd. All rights reserved. Keywords: generative design, architectural design, digital design, design cognition, reflective practise he main incentives for adopting generative design (GD) systems in Tarchitecture are to use computational capabilities to support human designers and (or) automate parts of the design process. The ability to explore larger design space and support design generation is one of the main objectives besides achieving efficiency
    [Show full text]
  • The Record Producer As Nexus: Creative Inspiration, Technology and the Recording Industry
    The Record Producer as Nexus: Creative Inspiration, Technology and the Recording Industry A submission presented in partial fulfilment of the requirements of the University of Glamorgan/Prifysgol Morgannwg for the degree of Doctor of Philosophy by Michael John Gilmour Howlett April 2009 ii I certify that the work presented in this dissertation is my own, and has not been presented, or is currently submitted, in candidature for any degree at any other University: _____________________________________________________________ Michael Howlett iii The Record Producer as Nexus: Creative Inspiration, Technology and the Recording Industry Abstract What is a record producer? There is a degree of mystery and uncertainty about just what goes on behind the studio door. Some producers are seen as Svengali- like figures manipulating artists into mass consumer product. Producers are sometimes seen as mere technicians whose job is simply to set up a few microphones and press the record button. Close examination of the recording process will show how far this is from a complete picture. Artists are special—they come with an inspiration, and a talent, but also with a variety of complications, and in many ways a recording studio can seem the least likely place for creative expression and for an affective performance to happen. The task of the record producer is to engage with these artists and their songs and turn these potentials into form through the technology of the recording studio. The purpose of the exercise is to disseminate this fixed form to an imagined audience—generally in the hope that this audience will prove to be real.
    [Show full text]