Venomics and Cellular Toxicity of Thai Pit Vipers (Trimeresurus Macrops and T

Total Page:16

File Type:pdf, Size:1020Kb

Venomics and Cellular Toxicity of Thai Pit Vipers (Trimeresurus Macrops and T toxins Article Venomics and Cellular Toxicity of Thai Pit Vipers (Trimeresurus macrops and T. hageni) Supeecha Kumkate 1, Lawan Chanhome 2 , Tipparat Thiangtrongjit 3, Jureeporn Noiphrom 4, Panithi Laoungboa 2, Orawan Khow 4, Taksa Vasaruchapong 2, Siravit Sitprija 1, Narongsak Chaiyabutr 2,* and Onrapak Reamtong 3,* 1 Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; [email protected] (S.K.); [email protected] (S.S.) 2 Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Pathumwan, Bangkok 10330, Thailand; [email protected] (L.C.); [email protected] (P.L.); [email protected] (T.V.) 3 Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand; [email protected] 4 Department of Research and Development, Queen Saovabha Memorial Institute, The Thai Red Cross Society, Pathumwan, Bangkok 10330, Thailand; [email protected] (J.N.); [email protected] (O.K.) * Correspondence: [email protected] (N.C.); [email protected] (O.R.) Received: 19 December 2019; Accepted: 13 January 2020; Published: 16 January 2020 Abstract: The two venomous pit vipers, Trimeresurus macrops and T. hageni, are distributed throughout Thailand, although their abundance varies among different areas. No species-specific antivenom is available for their bite victims, and the only recorded treatment method is a horse antivenom raised against T. albolabris crude venom. To facilitate assessment of the cross-reactivity of heterologous antivenoms, protein profiles of T. macrops and T. hageni venoms were explored using mass-spectrometry- based proteomics. The results show that 185 and 216 proteins were identified from T. macrops and T. hageni venoms, respectively. Two major protein components in T. macrops and T. hageni venoms were snake venom serine protease and metalloproteinase. The toxicity of the venoms on human monocytes and skin fibroblasts was analyzed, and both showed a greater cytotoxic effect on fibroblasts than monocytic cells, with toxicity occurring in a dose-dependent rather than a time-dependent manner. Exploring the protein composition of snake venom leads to a better understanding of the envenoming of prey. Moreover, knowledge of pit viper venomics facilitates the selection of the optimum heterologous antivenoms for treating bite victims. Keywords: Trimeresurus macrops; Trimeresurus hageni; pit vipers; snake venom proteomics; cytotoxicity; U937 monocytes; fibroblasts Key Contribution: This study revealed for the first time the venomic proteomes of the large-eyed pit viper (Trimeresurus macrops) and Hagen’s pit viper (T. hageni). Both snakes are widespread across Thailand and Southeast Asia. We quantitatively analyzed different protein clusters from these venoms. The cellular toxicity of the venoms on human fibroblasts and monocytes was also investigated. 1. Introduction Venomous pit vipers are snakes of the Crotalinae subfamily, characterized by two movable fangs and heat-sensing pit organs located bilaterally between the eye and nostril. Trimeresurus is a prominent pit viper genus and comprises the greatest number of known species [1]. Trimeresurus snakes are endemic to Asia; they are widely distributed, ranging from deserts to rainforests and in terrestrial, arboreal, and aquatic habitats. Trimeresurus bite victims have been reported in several geographic Toxins 2020, 12, 54; doi:10.3390/toxins12010054 www.mdpi.com/journal/toxins Toxins 2020, 12, 54 2 of 13 regions, including Lao PDR [2], Hong Kong [3], Taiwan [4], Thailand [5], China [6], Sri Lanka [7], and Japan [8]. In addition, green pit vipers were responsible for 58% of snakebites reported in Vietnam in 2017 [9]. Trimeresurus venom varies in toxicity between species; prolonged clotting time is a significant symptom observed in humans [10], and tissue damage and hematotoxicity in bite victims have also been reported [11,12]. Since there is no species-specific antivenom available for Trimeresurus, except T. albolabris, the only treatment available for bite cases has been a hetero-specific antivenom [13]. Antivenoms raised in horses are the most common therapeutic agents for snakebite treatment; however, they can cause several side effects, such as anaphylactic shock and serum sickness [14]. Moreover, preparation of antivenom from horse blood is laborious and time-consuming with a low production yield [15]. According to proteomics studies, each specific venom contains a unique variety of toxins [16]. To date, T. insularis (Indonesian), T. borneensis (Borneo), T. stejnegeri (Taiwan), T. puniceus (Java), T. purpureomaculatus (Thailand), T. gramineus (India), T. nebularis (Malaysia), and T. alborabris (Thailand) have been investigated for their venom constituents [17–19]. However, there is no reported information on the venomic protein profile of the Southeast Asia endemic species T. macrops and T. hageni. The large-eyed pit viper T. macrops can be distinguished from other green pit vipers by its relatively large eyes (Figure1a). T. macrops bites frequently cause severe tissue damage in humans with the symptoms ranging from local swelling to severe systemic bleeding [20]. Its venom has a long half-life and can be retained within the human body for more than 14 days [21]. T. hageni, known as Hagen’s pit viper is also endemic to Southeast Asia (Figure1b); however, there are only a few reports of the major symptoms of T. hageni venom. In addition, no T. macrops or T. hageni species-specific antivenoms are available. The antivenom raised from T. albolabris is currently used for neutralizing T. macrops and T. hageni venoms. In our study, a comparative proteomics approach was applied to the study of T. macrops and T. hageni venom protein composition. Moreover, we assessed the cytotoxicity of T. macrops and T. hageni venoms on monocytic cells (U937 cells) and skin fibroblasts (CRL-1474 cells) to clarify the effects on cellular physiology. The findings facilitate the analysis of cross-reactivity between these snake toxins and the available antivenoms. The identified toxins may be used for the development of inhibitory or neutralizing agents using molecular techniques to improve snakebite treatment. In addition, some proteins with beneficial activities could be further developed as novel pharmacological agents for human disease. Figure 1. Two prominent species of Trimeresurus snakes in Thailand. Adult large-eyed pit viper (T. macrops) with its noticeably large eyes (a) and the Hagen’s pit viper (T. hageni) perching on a tree branch (b). 2. Results 2.1. Proteomics Analysis of T. macrops and T. hageni Venom After preparing venom from T. macrops and T. hageni, the proteins were separated on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Figure2). Bands at 15, 25, 35, 50, and Toxins 2020, 12, 54 3 of 13 55 kDa were the most abundant in T. macrops venom. Whereas, bands at 15, 16, 20, 22, 32, 55, and 66 kDa were the most intense in T. hageni venom. Each gel lane was excised into 10 pieces. Peptides were extracted from the gel by in-gel digestion and further subjected to liquid chromatography–mass spectrometry (LC-MS/MS) analysis. After MASCOT searching against NCBI (Taxonomy: Chordata), the results revealed that the T. macrops and T. hageni venoms contained 185 and 216 proteins, respectively (Supplementary Table S1). The identified proteins were classified according to their gene ontology, including molecular function, biological process, and cellular component terms (Table1). Figure 2. Coomassie blue-stained 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis of T. macrops and T. hageni venoms (30 µg) under reducing conditions. Table 1. Gene ontology classification of Trimeresurus macrops and T. hageni crude venom proteins. % of Protein Components Gene Ontology T. macrops T. hageni Molecular Function binding (GO:0005488) 12.5 33.3 catalytic activity (GO:0003824) 75.0 44.4 structural molecule activity (GO:0005198) 12.5 - molecular function regulator (GO:0098772) - 22.2 Biological Process biological regulation (GO:0065007) 36.4 20.0 cellular process (GO:0009987) 27.3 26.7 metabolic process (GO:0008152) 9.1 6.7 rhythmic process (GO:0048511) 27.3 20.0 immune system process (GO:0002376) - 6.7 response to stimulus (GO:0050896) - 6.7 localization (GO:0051179) - 13.3 Cellular component cell (GO:0005623) 25.0 33.3 extracellular region (GO:0005576) 12.5 16.7 membrane (GO:0016020) 12.5 - organelle (GO:0043226) 37.5 50.0 protein-containing complex (GO:0032991) 12.5 - Toxins 2020, 12, 54 4 of 13 In terms of molecular function, most T. macrops (75%) and T. hageni (44.4%) venom proteins were involved in catalytic activity. Structural molecule activity proteins were observed only in T. macrops venom and represented 12.5% of the proteins. Whereas, molecular function regulators comprised 22.2% of T. hageni venom proteins. In terms of biological processes, proteins involved in biological regulation and cellular processes were the largest classes present in T. macrops (36.4%) and T. hageni (26.7%) venoms, respectively. While immune system process, response to stimulus, and localization proteins were found only in T. hageni venom. In terms of cellular processes, organelle proteins were found in both T. macrops (37.5%) and T. hageni (50%) venoms. Whereas, membrane and protein-containing complex molecules were presented only in T. macrops venom. Phospholipase A2 (PLA2), snake venom serine protease (SVSP), cysteine-rich secretory, snake venom metalloproteinase (SVMP), disintegrin, L-amino acid oxidase, and C-type lectin were common to the two snake venoms. These protein families contribute to the phenotypic effects of venom on victims. Therefore, all identified proteins were also classified according to the common properties of snake venom, as shown in Figure3. PLA2, SVSP, cysteine-rich secretory, SVMP, and disintegrin were more abundant in T. macrops venom. Whereas, L-amino acid oxidase and C-type lectin were more abundant in T. hageni venom. Due to protein semi-quantification, the exponentially modified protein abundance index (emPAI) was used to estimate the amount of proteins. The 20 most abundant proteins in T.
Recommended publications
  • Working with a Full Deck: the Use of Picture Cards in Herpetological Surveys of Timor-Leste
    68 TECHNIQUES LITERATURE CITED NOUVELLET, P., G. S. A. RASMUSSEN, D. W. MACDONALD, AND F. COURCHAMP. 2012. Noisy clocks and silent sunrises: measurement methods of BURGER, B. 1988. Which way did he go? Telonics Quarterly 1:1. daily activity patterns. J. Zool., London 286:179–184. DORCAS, M. E., AND C. R. PETERSON. 2012. Automated data acquisi- RODDA, G. H. 1984. Movements of juvenile American crocodiles in Ga- tion. In R. W. McDiarmid, M. S. Foster, C. Guyer, J. Gibbons, and tun Lake, Panama. Herpetologica 40:444–451. N. Chernoff (eds.), Reptile Biodiversity: Standard Methods for In- ventory and Monitoring, pp. 61–68. University of California Press, Berkeley, California. Herpetological Review, 2013, 44(1), 68–76. © 2013 by Society for the Study of Amphibians and Reptiles Working with a Full Deck: the Use of Picture Cards in Herpetological Surveys of Timor-Leste Timor is the 44th largest island in the world and the seventh significantly, the Muséum National d’Histoire Naturelle in Paris, largest between Asia and Australia (area 29,402 km2). It occupies France; Naturalis, formerly the Rijksmuseum van Natuurlijke an extremely interesting geographical position within the bio- Historie, in Leiden, The Netherlands; and the Zoologisch Mu- geographical sub-region known as Wallacea, at the southeastern seum Amsterdam, now also housed in Leiden). Additional short edge of the Lesser Sunda Archipelago and separated from Aus- surveys were conducted there during the early 20th century (e.g., tralia by the Timor Sea (ca. 450 km). This gap was considerably Smith 1927; collections in the Natural History Museum, London, lessened during the final 250,000 years of the Pleistocene Epoch United Kingdom) and in the 1990s (e.g., How et al.
    [Show full text]
  • Epidemiology of Snakebites from a General Hospital in Singapore: a 5-Year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS
    640 Epidemiology of Snakebites—Hock Heng Tan Original Article Epidemiology of Snakebites from A General Hospital in Singapore: A 5-year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS Abstract Introduction: This is a retrospective study on the epidemiology of snakebites that were presented to an emergency department (ED) between 2004 and 2008. Materials and Methods: Snakebite cases were identified from International Classification of Diseases (ICD) code E905 and E906, as well as cases referred for eye injury from snake spit and records of antivenom use. Results: Fifty-two cases were identified: 13 patients witnessed the snake biting or spitting at them, 22 patients had fang marks and/or clinical features of envenomations and a snake was seen and the remaining 17 patients did not see any snake but had fang marks suggestive of snakebite. Most of the patients were young (mean age 33) and male (83%). The three most commonly identified snakes were cobras (7), pythons (4) and vipers (3). One third of cases occurred during work. Half of the bites were on the upper limbs and about half were on the lower limbs. One patient was spat in the eye by a cobra. Most of the patients (83%) arrived at the ED within 4 hours of the bite. Pain and swelling were the most common presentations. There were no significant systemic effects reported. Two patients had infection and 5 patients had elevated creatine kinase (>600U/L). Two thirds of the patients were admitted. One patient received antivenom therapy and 5 patients had some form of surgical intervention, of which 2 had residual disability.
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • Final Report for the University of Nottingham / Operation Wallacea Forest Projects, Honduras 2004
    FINAL REPORT for the University of Nottingham / Operation Wallacea forest projects, Honduras 2004 TABLE OF CONTENTS FINAL REPORT FOR THE UNIVERSITY OF NOTTINGHAM / OPERATION WALLACEA FOREST PROJECTS, HONDURAS 2004 .....................................................................................................................................................1 INTRODUCTION AND OVERVIEW ..............................................................................................................................3 List of the projects undertaken in 2004, with scientists’ names .........................................................................4 Forest structure and composition ..................................................................................................................................... 4 Bat diversity and abundance ............................................................................................................................................ 4 Bird diversity, abundance and ecology ............................................................................................................................ 4 Herpetofaunal diversity, abundance and ecology............................................................................................................. 4 Invertebrate diversity, abundance and ecology ................................................................................................................ 4 Primate behaviour...........................................................................................................................................................
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Trimeresurus Sp
    Trimeresurus sp. Copyright: Auszug aus Datenbank der Toxikologischen Abteilung der II. Medizinischen Klinik München; Toxinfo von Kleber JJ , Ganzert M, Zilker Th; Ausgabe 2002; erstellt Wagner Ph, Kleber JJ; Korthals Altes 1999 TOXIKOLOGIE: bei allen Arten von Trimeresurus Sp kommt es immer zu Lokalsymptomen bis Nekrose; zu rechnen ist mit außerdem mit Gerinnungsstörungen, Schocksymptomen T. ALBOLABRIS: massive Lokalsymptome, Gerinnungsstörung leicht bei 30%, stark bei 10% (16); Letalität in Thailand 3% (12) T. FLAVOVIRIDIS: vor Antiserum-Zeit 15% Letalität (12) starke Schwellung + Nekrosen, Schock, keine Gerinnungsstörungen bisher berichtet (11,12) T. GRAMINEUS: Schwellung; keine Nekrosen, keine Gerinnungsstörungen berichtet (1,14) T. KANBURIENSIS: Schwellung, Schock, Gerinnungsstörung (12) T. MUCROSQUAMATUS: Schwellung, Gerinnungsstörungen (12) T. POPEIORUM: Lokalsymptome; sehr geringe Gerinnungsstörung mit normalem Fibrinogen + Thrombo (15) T. PURPUREOMACULATUS: Schwellung, Nekrose, Gerinnungsstörung bis 40% (12,15) T. WAGLERI: Schwellung, Gerinnungsstörung (15) SYMPTOME: erste Vergiftungssymptome direkt nach dem Biß (sofortiger Schmerz, Schwellung entwickelt sich in den ersten 2-4 h) (2); meist starke Schwellung (häufig halbes bis ganzes Glied), bis ca. eine Woche anhaltend; Lymphangitis und schmerzhafte Lymphknotenschwellung (1,2,5,6) ; lokale subkutane Hämorrhagie, gelegentlich Blasenbildung und Hautnekrosen (1,2); bei T. flavoviridis auch Muskelnekrosen und Kompartmentsyndrom (3,12) MUND: lokal nach Giftaussaugen Schwellung an Lippe + Zunge bei T. albolabris (12) COR: selten Butdruckabfall, Schock (11,12); selten EKG-Veränderungen bei T. mucrosquamatus (12) LABOR: Thrombin ähnliche Aktivität führt zur Defibrinierung bis Verbrauchskoagulopathie mit Hypo- bis Afibrinogenämie, Thrombopenie (auch erst nach 12h Latenz) (1,2,4,13,16); Aktivierung der Fibrinolyse mit später Plasminerniedrigung (16); Leukozytose SONST: häufig Übelkeit, Erbrechen, Bauchschmerzen (11, 12); selten Nierenschädigung berichtet bei T.
    [Show full text]
  • On Trimeresurus Sumatranus
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266262458 On Trimeresurus sumatranus (Raffles, 1822), with the designation of a neotype and the description of a new species of pitviper from Sumatra (Squamata: Viperidae: Crotalinae) Article in Amphibian and Reptile Conservation · September 2014 CITATIONS READS 4 360 3 authors, including: Gernot Vogel Irvan Sidik Independent Researcher Indonesian Institute of Sciences 102 PUBLICATIONS 1,139 CITATIONS 12 PUBLICATIONS 15 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Save Vietnam Biodiversity View project Systematics of the genus Pareas View project All content following this page was uploaded by Gernot Vogel on 01 October 2014. The user has requested enhancement of the downloaded file. Comparative dorsal view of the head of Trimeresurus gunaleni spec. nov. (left) and T. sumatranus (right). Left from above: male, female (holotype), male, all alive, from Sumatra Utara Province, Sumatra. Right: adult female alive from Bengkulu Province, Su- matra, adult male alive from Bengkulu Province, Sumatra, preserved female from Borneo. Photos: N. Maury. Amphib. Reptile Conserv. | amphibian-reptile-conservation.org (1) September 2014 | Volume 8 | Number 2 | e80 Copyright: © 2014 Vogel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs 3.0 Unported License, Amphibian & Reptile Conservation which permits
    [Show full text]
  • 2019 Fry Trimeresurus Genus.Pdf
    Toxicology Letters 316 (2019) 35–48 Contents lists available at ScienceDirect Toxicology Letters journal homepage: www.elsevier.com/locate/toxlet Clinical implications of differential antivenom efficacy in neutralising coagulotoxicity produced by venoms from species within the arboreal T viperid snake genus Trimeresurus ⁎ Jordan Debonoa, Mettine H.A. Bosb, Nathaniel Frankc, Bryan Frya, a Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia b Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands c Mtoxins, 1111 Washington Ave, Oshkosh, WI, 54901, USA ARTICLE INFO ABSTRACT Keywords: Snake envenomation globally is attributed to an ever-increasing human population encroaching into snake Venom territories. Responsible for many bites in Asia is the widespread genus Trimeresurus. While bites lead to hae- Coagulopathy morrhage, only a few species have had their venoms examined in detail. We found that Trimeresurus venom Fibrinogen causes haemorrhaging by cleaving fibrinogen in a pseudo-procoagulation manner to produce weak, unstable, Antivenom short-lived fibrin clots ultimately resulting in an overall anticoagulant effect due to fibrinogen depletion. The Phylogeny monovalent antivenom ‘Thai Red Cross Green Pit Viper antivenin’, varied in efficacy ranging from excellent neutralisation of T. albolabris venom through to T. gumprechti and T. mcgregori being poorly neutralised and T. hageni being unrecognised by the antivenom. While the results showing excellent neutralisation of some non-T. albolabris venoms (such as T. flavomaculaturs, T. fucatus, and T. macrops) needs to be confirmed with in vivo tests, conversely the antivenom failure T.
    [Show full text]
  • Conservation Challenges Regarding Species Status Assessments in Biogeographically Complex Regions: Examples from Overexploited Reptiles of Indonesia KYLE J
    Conservation challenges regarding species status assessments in biogeographically complex regions: examples from overexploited reptiles of Indonesia KYLE J. SHANEY, ELIJAH WOSTL, AMIR HAMIDY, NIA KURNIAWAN MICHAEL B. HARVEY and ERIC N. SMITH TABLE S1 Individual specimens used in taxonomic evaluation of Pseudocalotes tympanistriga, with their province of origin, latitude and longitude, museum ID numbers, and GenBank accession numbers. Museum ID GenBank Species Province Coordinates numbers accession Bronchocela cristatella Lampung -5.36079, 104.63215 UTA R 62895 KT180148 Bronchocela jubata Lampung -5.54653, 105.04678 UTA R 62896 KT180152 B. jubata Lampung -5.5525, 105.18384 UTA R 62897 KT180151 B. jubata Lampung -5.57861, 105.22708 UTA R 62898 KT180150 B. jubata Lampung -5.57861, 105.22708 UTA R 62899 KT180146 Calotes versicolor Jawa Barat -6.49597, 106.85198 UTA R 62861 KT180149 C. versicolor* NC009683.1 Gonocephalus sp. Lampung -5.2787, 104.56198 UTA R 60571 KT180144 Pseudocalotes cybelidermus Sumatra Selatan -4.90149, 104.13401 UTA R 60551 KT180139 P. cybelidermus Sumatra Selatan -4.90711, 104.1348 UTA R 60549 KT180140 Pseudocalotes guttalineatus Lampung -5.28105, 104.56183 UTA R 60540 KT180141 P. guttalineatus Sumatra Selatan -4.90681, 104.13457 UTA R 60501 KT180142 Pseudocalotes rhammanotus Lampung -4.9394, 103.85292 MZB 10804 KT180147 Pseudocalotes species 4 Sumatra Barat -2.04294, 101.31129 MZB 13295 KT211019 Pseudocalotes tympanistriga Jawa Barat -6.74181, 107.0061 UTA R 60544 KT180143 P. tympanistriga Jawa Barat -6.74181, 107.0061 UTA R 60547 KT180145 Pogona vitticeps* AB166795.1 *Entry to GenBank by previous authors TABLE S2 Reptile species currently believed to occur Java and Sumatra, Indonesia, with IUCN Red List status, and certainty of occurrence.
    [Show full text]
  • Reproductive Biology and Natural History of the White-Lipped Pit Viper (Trimeresurus Albolabris Gray, 1842) in Hong Kong Anne Devan-Song University of Rhode Island
    University of Rhode Island DigitalCommons@URI Natural Resources Science Faculty Publications Natural Resources Science 2017 Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray, 1842) in Hong Kong Anne Devan-Song University of Rhode Island Paolo Martelli See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs Citation/Publisher Attribution Devan-Song, A., Martelli, P., & Karraker, N. E. (2017). Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray, 1842) in Hong Kong. Herpetological Conservation and Biology, 12(1), 41-55. Retrieved from http://www.herpconbio.org/Volume_12/Issue_1/Devan-Song_etal_2017.pdf Available at: http://www.herpconbio.org/Volume_12/Issue_1/Devan-Song_etal_2017.pdf This Article is brought to you for free and open access by the Natural Resources Science at DigitalCommons@URI. It has been accepted for inclusion in Natural Resources Science Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Anne Devan-Song, Paolo Martelli, and Nancy E. Karraker This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/nrs_facpubs/115 Herpetological Conservation and Biology 12:41–55. Submitted: 30 September 2015; Accepted: 18 January 2017; Published: 30 April 2017. Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray,
    [Show full text]
  • REPTILIA: SQUAMATA: CROTALIDAE Cerrophidion Tzotzilorum
    880.1 REPTILIA: SQUAMATA: CROTALIDAE Cerrophidion tzotzilorum Catalogue of American Amphibians and Reptiles. Jadin, R.C. 2010. Cerrophidion tzotzilorum. Cerrophidion tzotzilorum (Campbell) Tzotzil Montane Pitviper Nauyaca del frío, víbora Bothrops nummifer mexicanus: McCoy and Van Horn 1962:186 (part). Cerrophidion godmani: Auth, Smith, Brown, and Lintz 2000:73 (part). _ FIGURE 2. Photograph of the hemipenis of the holotype Bothrops tzotzilorum Campbell 1985:48. Type locali- _ ty, “10.9 km ESE San Cristóbal de Las Casas, of Cerrophidion tzotzilorum (UTA R 9641); (A) sulcate view, Chiapas, Mexico, elevation 2320 m.” Holotype, (B) asulcate view. Amphibian and Reptile Diversity Research Cen- ter, University of Texas at Arlington (UTA) R_9641, • DIAGNOSIS. This species is parapatric with C. an adult male collected by J.A. Campbell on 8 godmani with few reports of sympatry (Campbell June 1979. 1985). It differs from C. godmani in having shorter Porthidium tzotzilorum: Campbell and Lamar 1989: and more numerous dorsal and lateral body blotches, 264. generally lower ventral scale counts, and fewer den- Cerrophidion tzotzilorum: Campbell and Lamar 1992: tary and pterygoid teeth. 24. • DESCRIPTIONS. The most complete descrip- • CONTENT. No subspecies are recognized. tions of the external morphology are in Campbell (1985, 1988), Campbell and Lamar (1989, 2004), and • DEFINITION. Cerrophidion tzotzilorum may be the Jadin (in press). smallest species of pitviper in the New World (Camp- bell and Lamar 2004); adults probably do not exceed • ILLUSTRATIONS. In the original description, 50 cm in total length. Coloration may be a dark gray- Campbell (1985) provided sketches of both the left ish brown or rust. A darker gray or brown zig_zag pat- side and dorsal views of the head of the holotype, tern extends from the neck down the entire length of along with a sulcate view of the left hemipene.
    [Show full text]
  • Morphological and Genetic Verification of Ovophis Tonkinensis (Bourret, 1934) in Hong Kong
    Herpetology Notes, volume 10: 457-461 (2017) (published online on 06 September 2017) Morphological and genetic verification of Ovophis tonkinensis (Bourret, 1934) in Hong Kong Jonathan J. Fong1, Alessandro Grioni2, Paul Crow2 and Ka-shing Cheung3,* Abstract. Hong Kong lies in the putative ranges of two Ovophis species: O. makazayazaya (Sichuan and Yunnan Provinces, Taiwan, and northern Vietnam) and O. tonkinensis (Guangxi, Guangdong, and Hainan Provinces, and northern Vietnam). It is unclear which Ovophis species is/are present in Hong Kong. Previous studies identified O. tonkinensis using morphology, but without molecular data. In this study, we verified the presence of O. tonkinensis in Hong Kong using molecular (four mitochondrial DNA loci) and morphological data of two specimens. The clade that is currently identified as Ovophis tonkinensis has a large geographic range and relatively deep divergences, hinting that its taxonomy requires further work. Key words. Hong Kong, Ovophis tonkinensis, Ovophis makazayazaya, reptile, snake. Introduction makazayazaya (Karsen et al. 1998). Malhotra et al. (2011) included four Ovophis specimens from Hong Kong The Asian pitviper genus Ovophis has had a (BMNH 1983 281–284) in their morphometric analyses. complicated taxonomic history. Previously, Ovophis These four specimens grouped with O. tonkinensis was believed to contain three species (O. chaseni specimens from northern Vietnam and southern China. (Smith, 1931), O. okinavensis (Boulenger, 1892), O. Studies in areas close to Hong Kong also confirmed the monticola (Gunther, 1864; 4 subspecies)) (McDiarmid presence of O. tonkinensis, including Hainan Province et al. 1999). However, Malhotra and Thorpe (2004) (morphology: David (1995), David (2001), Wang et removed the first two species from this genus so that al.
    [Show full text]