Characiformes - Accessscience from Mcgraw-Hill Education Page 1 of 7

Total Page:16

File Type:pdf, Size:1020Kb

Characiformes - Accessscience from Mcgraw-Hill Education Page 1 of 7 Characiformes - AccessScience from McGraw-Hill Education Page 1 of 7 Characiformes Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.803070 (http://dx.doi.org/10.1036/1097-8542.803070) Content • Characteristics • Diversity and habitat • Classification • Bibliography • Additional Readings An order of teleost fishes sharing the superorder Ostariophysi, series Otophysi, with the Cypriniformes (minnows, carps, and suckers), Siluriformes (catfishes), and Gymnotiformes (knife fishes). See also: Cypriniformes (/content/cypriniformes/177800); Gymnotiformes (/content/gymnotiformes/803360); Ostariophysi (/content/ostariophysi/802680); Siluriformes (/content/siluriformes/623700); Teleostei (/content/teleostei/680400) Characteristics The Characiformes are distinguished by the following characters: usually an adipose fin (only one of 18 families totally without an adipose fin; several families and genera with and without); teeth in jaws usually well-developed; pharyngeal teeth usually present but usually not specialized as in cypriniforms; upper jaw usually nonprotractile or, if movable, not protrusible as in most cyprinids; virtually all species have scales, with some being ctenoid or ctenoid-like (with a serrated margin) as opposed to the usual cycloid scales (with annual growth rings); barbels (slender, tactile processes near the mouth) are absent; usually three postcleithra; pelvic fins and pelvic girdle are minute in some species; and adult sizes range from only 13 mm (0.5 in.) to 1.4 m (4.6 ft). Diversity and habitat The Characiformes comprise 18 families, about 270 genera, and no less than 1675 species, all of which are limited to freshwaters in Africa (209 species) and in the New World from the southwestern United States (one species, Mexican tetra, Astyanax mexicanus), Mexico (eight species), and Central and South America (the remainder of the species). http://www.accessscience.com/content/characiformes/803070 9/3/2015 Characiformes - AccessScience from McGraw-Hill Education Page 2 of 7 Classification The classification of the Characiformes has changed significantly since the mid-1980s. The current consensus classification for the order is as follows. Suborder Citharinoidei There are 20 genera and about 98 species. Features distinguishing the Citharinoidei from all other characiforms are bicuspid teeth in the jaws; second and third postcleithra fused; ascending process of premaxilla absent; and virtually all species with ctenoid scales. This suborder is endemic to Africa. Family Distichodontidae The family comprises 17 genera and 90 species. There are two distinct forms (see illustration). In one, the members have a nonprotractile upper jaw and are micropredators and herbivores, and the body shape varies from deep to moderately deep. The other group has an elongate body and movable jaws, and is carnivorous, feeding on fishes or the fins of fishes. Maximum length is about 83 cm (32.7 in.). http://www.accessscience.com/content/characiformes/803070 9/ 3 / 201 5 Characiformes - AccessScience from McGraw-Hill Education Page 3 of 7 Four families of Characiformes. (From J. S. Nelson, Fishes of the World, Wiley, New York, 2006) Family Citharinidae There are 3 genera and 8 species. The body is deep, the dorsal and anal fins are relatively long, and the maxilla is quite small and lacks teeth. Maximum length is 84 cm (33 in.). Suborder Characoidei The following families are contained in the suborder. Family Parodontidae http://www.accessscience.com/content/characiformes/803070 9/3/2015 Characiformes - AccessScience from McGraw-Hill Education Page 4 of 7 This family comprises 3 genera and about 21 described species. It is characterized by a ventral mouth with greatly enlarged, highly mobile premaxillae and teeth modified for scraping algae off rocks. It inhabits mountain streams of eastern Panama and most of South America. Most species are less than 15 cm (6 in.) in length. Family Curimatidae There are 8 genera and 95 species. The absence of jaw teeth distinguishes this family from all other characiforms, except one genus, Anodus, in the family Hemiodontidae. Curimatidae occurs from southern Costa Rica to northern Argentina. Maximum length is 32 cm (12.6 in.), usually much less. Family Prochilodontidae The family includes 3 genera and 21 species. The mouth is protractile; the lips are enlarged, forming a sucking disc; and the jaws have numerous small teeth. Most species are herbivores or detritovores (organisms that consume dead organic matter), and some swim in an oblique head-down position. This family and the next two families are commonly called headstanders. The range is primarily in the northern half of South America. Maximum length is 74 cm (29 in.). Family Anostomidae The Anostomidae have 12 genera and 137 species. The mouth is small and nonprotractile; the premaxilla is enlarged and excludes the maxillae from the gape; the body is usually elongate; and the anal fin is short. The range is Central and South America. Maximum total length is about 88 cm (34.6 in.). Family Chilodontidae There are 2 genera and 7 species. The premaxilla is relatively small and the maxillae much enlarged. The range is northern South America. Maximum total length is 18 cm (7 in.). Family Crenuchidae The Crenuchidae has 12 genera and 74 species. The frontal bones have paired foramina posterodorsally to the orbits, which are enlarged in the subfamily Crenuchinae. Most of the species (10 genera and 71 species) are in the subfamily Characidiinae; in the largest genus, Characidium, are species that have the ability to climb waterfalls by using their paired fins to cling to the underside of rocks. The family inhabits eastern Panama and South America. Maximum total length is under 110 mm (4.3 in.), with the smallest species being only 57 mm (2.2 in.). Family Hemiodontidae The family comprises 5 genera and about 28 described species. Members are fast swimmers with a subcylindrical to fusiform body, adipose eyelids, teeth absent on the lower jaw of adults, and typically with a round spot on the side of the body and a stripe on the lower lobe of the caudal fin. Hemiodontids range from northern South America to the Paraná-Paraguay Basin. Maximum total length is about 33 cm (13 in.). http://www.accessscience.com/content/characiformes/803070 9/ 3 / 201 5 Characiformes - AccessScience from McGraw-Hill Education Page 5 of 7 Family Alestiidae There are 18 genera and 110 species in the family. Many species superficially resemble clupeids, being predominantly silvery. The body varies from deep to moderately slender; the mouth varies from terminal to superior; and many species have a large black spot at the base of the caudal fin. The family, endemic to Africa, is commonly known as African tetras. The maximum length of the small tetras is no more than 21 mm (8.3 in.), whereas the giant tigerfish (Hydrocynus goliath), a formidable fish with jaws armed with very large saberlike teeth, attains a length up to 1.4 m (4.6 ft). Family Gasteropelecidae Gasteropelicids comprise 3 genera and 9 species. This small family (both in number and size) is known as freshwater hatchetfishes because of the deep and strongly compressed body in the shape of a half disk (see illustration). An adipose fin is present in the larger species but absent in the smaller species; the pelvic fins and associated girdle are minute; the elongate pectoral fins are provided with greatly enlarged musculature and corresponding skeletal support. These fishes are capable of jumping relatively high out of the water and making short flights by using their heavily muscled pectoral fins. Commercially collected for the aquarium trade, hatchetfishes are found in Panama and all countries of South America except Chile. Maximum total length ranges from about 23 to 76 mm (0.9 to 3 in.). Family Characidae With 165 genera and not less than 962 species, this family is by far the largest and most diverse of characiform fishes. It presents uncertainties regarding the taxonomic affinities of numerous genera. Many genera are monotypic, whereas several genera have numerous species (such as Astyanax with 86 species and Hyphessobrycon with 97). Some characins resemble shads and herrings (Clupeidae), minnows (Cyprinidae), and darters (Percidae) [see illustration]. Included in the family are popular aquarium fishes (such as neon tetras), food fishes (such as Brycon), and the infamous piranhas (Serrasalmus). Characins range from southwestern Texas, through Mexico, and into Central and South America; elsewhere they are introduced. Maximum adult length varies from less than 30 mm (1.2 in.) to over 100 cm (39 in.). Family Acestrorhynchidae One genus and 15 species constitute this family. Members have an elongate pikelike body covered with small scales. They are found mostly in the Orinoco and Amazon basins of South America. Maximum total length is about 44 cm (17.3 in.). Family Cynodontidae There are 5 genera and 14 species. The mouth is oblique and the jaws bear large canine teeth, which in some species are saberlike. The family is endemic to South America. Maximum length is about 65 cm (25.6 in.). Family Erythrinidae http://www.accessscience.com/content/characiformes/803070 9/3/2015 Characiformes - AccessScience from McGraw-Hill Education Page 6 of 7 There are 3 genera and 14 species. The family is characterized by a cylindrically shaped body (similar to that of the bowfin, Amiidae) (see illustration); relatively large mouth, the gape extending beyond the anterior margin of the eye; numerous palatine teeth, as well as sharp conical teeth in the jaws; no adipose fin; and a round caudal fin. It is endemic to South America, and some species can breathe air and move overland between ponds. Maximum length is about 1.0 m (3.3 ft). Family Lebiasinidae The family comprises 7 genera and 61 species. The mouth is small and superior, the gape not reaching the eye; the adipose fin is present or absent; and in some species the upper lobe of the caudal fin is longer than the lower.
Recommended publications
  • Electrophorus Electricus ERSS
    Electric Eel (Electrophorus electricus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, August 2011 Revised, July 2018 Web Version, 8/21/2018 Photo: Brian Gratwicke. Licensed under CC BY-NC 3.0. Available: http://eol.org/pages/206595/overview. (July 2018). 1 Native Range and Status in the United States Native Range From Eschmeyer et al. (2018): “Distribution: Amazon and Orinoco River basins and other areas in northern Brazil: Brazil, Ecuador, Colombia, Bolivia, French Guiana, Guyana, Peru, Suriname and Venezuela.” Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From AquaScapeOnline (2018): “Electric Eel 24” (2 feet) (Electrophorus electricus) […] Our Price: $300.00” 1 The State of Arizona has listed Electrophorus electricus as restricted live wildlife. Restricted live wildlife “means wildlife that cannot be imported, exported, or possessed without a special license or lawful exemption” (Arizona Secretary of State 2006a,b). The Florida Fish and Wildlife Conservation Commission has listed the electric eel Electrophorus electricus as a prohibited species. Prohibited nonnative species, "are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities” (FFWCC 2018). The State of Hawaii Plant Industry Division (2006) includes Electrophorus electricus on its list of prohibited animals. From
    [Show full text]
  • DNA Barcode of Parodontidae Species from the La Plata River Basin - Applying New Data to Clarify Taxonomic Problems
    Neotropical Ichthyology, 11(3):497-506, 2013 Copyright © 2013 Sociedade Brasileira de Ictiologia DNA barcode of Parodontidae species from the La Plata river basin - applying new data to clarify taxonomic problems Elisangela Bellafronte1, Tatiane Casagrande Mariguela2, Luiz Henrique Garcia Pereira2, Claudio Oliveira2 and Orlando Moreira-Filho1 In the past years, DNA barcoding has emerged as a quick, accurate and efficient tool to identify species. Considering the difficulty in identifying some Parodontidae species from the La Plata basin and the absence of molecular data for the group, we aimed to test the effectiveness of DNA barcoding and discuss the importance of using different approaches to solve taxonomic problems. Eight species were analyzed with partial sequences of Cytochrome c oxidase I. The mean intraspecific K2P genetic distance was 0.04% compared to 4.2% for mean interspecific K2P genetic distance. The analyses of distance showed two pairs of species with K2P genetic divergence lower than 2%, but enough to separate these species. Apareiodon sp. and A. ibitiensis, considered as the same species by some authors, showed 4.2% genetic divergence, reinforcing their are different species. Samples of A. affinis from the Uruguay and Paraguay rivers presented 0.3% genetic divergence, indicating a close relationship between them. However, these samples diverged 6.1% from the samples of the upper Paraná River, indicating that the latter represents a potentially new species. The results showed the effectiveness of the DNA barcoding method in identifying the analyzed species, which, together with the morphological and cytogenetic available data, help species identification. Nos últimos anos o DNA barcoding surgiu como uma ferramenta rápida, precisa e eficiente para identificar espécies.
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Zootaxa, Apareiodon Agmatos, a New Species from The
    Zootaxa 1925: 31–38 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Apareiodon agmatos, a new species from the upper Mazaruni river, Guyana (Teleostei: Characiformes: Parodontidae) DONALD C. TAPHORN B.1, HERNÁN LÓPEZ-FERNÁNDEZ 2 & CALVIN R. BERNARD3 1Museo de Ciencias Naturales de Guanare, BioCentro, UNELLEZ, Mesa de Cavacas, Guanare 3310, Estado Portuguesa, Venezuela. E-mail: [email protected] 2Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada. E-mail: [email protected] 3Center for the Study of Biodiversity, University of Guyana, Georgetown, Guyana. E-mail: [email protected] Abstract Apareiodon agmatos, new species, is described from the upper Mazaruni River and its tributaries, Essequibo Basin, in western Guyana. The new species is distinguishable from all other species of Parodontidae by having an incomplete lat- eral line. The scales of A. agmatos are more numerous than in any previously described parodontid. It has five incisor- like pedunculate teeth on the premaxilla aligned in a straight row, each with a large central spatulate cusp bordered on each side by a minute lateral cusp. The maxilla has two or infrequently three incisors. It shares an unusual pigmentation pattern of one dorsomedial and four lateral black stripes with A. gransabana, which was described from the neighboring upper Río Caroní drainage, Orinoco Basin. Apareiodon agmatos also shares with A. gransabana and Parodon guyanen- sis a higher number (5 versus 4) of teeth than other members of the genus in the premaxillary. Apareiodon agmatos and A.
    [Show full text]
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Phylogenetic Relationships Within the Speciose Family Characidae
    Oliveira et al. BMC Evolutionary Biology 2011, 11:275 http://www.biomedcentral.com/1471-2148/11/275 RESEARCH ARTICLE Open Access Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling Claudio Oliveira1*, Gleisy S Avelino1, Kelly T Abe1, Tatiane C Mariguela1, Ricardo C Benine1, Guillermo Ortí2, Richard P Vari3 and Ricardo M Corrêa e Castro4 Abstract Background: With nearly 1,100 species, the fish family Characidae represents more than half of the species of Characiformes, and is a key component of Neotropical freshwater ecosystems. The composition, phylogeny, and classification of Characidae is currently uncertain, despite significant efforts based on analysis of morphological and molecular data. No consensus about the monophyly of this group or its position within the order Characiformes has been reached, challenged by the fact that many key studies to date have non-overlapping taxonomic representation and focus only on subsets of this diversity. Results: In the present study we propose a new definition of the family Characidae and a hypothesis of relationships for the Characiformes based on phylogenetic analysis of DNA sequences of two mitochondrial and three nuclear genes (4,680 base pairs). The sequences were obtained from 211 samples representing 166 genera distributed among all 18 recognized families in the order Characiformes, all 14 recognized subfamilies in the Characidae, plus 56 of the genera so far considered incertae sedis in the Characidae. The phylogeny obtained is robust, with most lineages significantly supported by posterior probabilities in Bayesian analysis, and high bootstrap values from maximum likelihood and parsimony analyses.
    [Show full text]
  • ESPÉCIES NOME POPULAR FONTE Classe ACTINOPTERYGII Ordem
    A NEXO 11: Lista de espécies de peixes coletadas no Ribeirão Claro (SP). 1- Referente à dissertação de mestrado de Alexandre Tadeu Barbosa dos Santos, em andamento. 2 - Referente ao trab alho de iniciação científica de André Teixeira da Silva, em andamento. OBS: Ambos os estudo s estão sendo realizados pelo Departamento de Zoologia – IB – UNESP – Rio Claro. NOME ESPÉCIES FONTE POPULAR Classe ACTINOPTERYGII Ordem CHARACIFORMES Família ANOSTOMIDAE CETRA (2003); SANTOS (dados não publicados)1; Leporinus octofasciatus piau SILVA (dados não publicados) 2 CETRA (2003); SANTOS (dados não publicados) 1; Schizodon nasutus ximborê, taguara SILVA (dados não publicados) 2 Família CHARACIDAE SANTOS (dados não publicados) 1; SILVA (dados Acestrorhynchus lacustris peixe-cachorro não publicados) 2 CETRA (2003); SANTOS (dados não publicados) 1; Astyanax altiparanae tambiu SILVA (dados não publicados) 2 Astyanax fasciatus lambari do rabo CETRA (2003); SANTOS (dados não publicados) 1 vermelho Astyanax scabripinis paranae lambari CETRA (2003); SANTOS (dados não publicados) 1 Cheirodon stenodon pequira SANTOS (dados não publicados) 1 CETRA (2003); SANTOS (dados não publicados) 1; Hyphessobrycon eques mato-grosso SILVA (dados não publicados) 2 Odontostilbe cf. sp. pequira SANTOS (dados não publicados) 1 Piabina argentea pequira SANTOS (dados não publicados) 1 Planautina sp. pequira SANTOS (dados não publicados) 1 CETRA (2003); SANTOS (dados não publicados) 1; Salminus hilarii tabarana SILVA (dados não publicados) 2 CETRA (2003); SANTOS (dados não publicados) 1; Serrapinus heterodon pequira SILVA (dados não publicados) 2 CETRA (2003); SANTOS (dados não publicados) 1; Serrapinus notomelas pequira SILVA (dados não publicados) 2 CETRA (2003); SANTOS (dados não publicados) 1; Serrasalmus spilopleura pirambeba SILVA (dados não publicados) 2 Família CRENICHIDAE Characidium cf.
    [Show full text]
  • Growth in Four Populations of Leporinus Friderici
    Journal of Fish Biology (1991) 38,387-397 Growth in four populations of Leporinus frìderìci (Bloch, 1794) (Anostomidae, Teleostei) in French Guiana T. BOUJARD*?,F. LECOMTE$,J.-F. RENNO*, F. MEUNIER$AND P. NEVEU§ *Laboratoire d’Hydrobiologie, INRA, BP 709,97 387 Kourou Cedex, Guyane, $Equipe ‘Formations Squelettiques ’, UA CNRS 1137, Université Paris 7,2place Jussieu, 75 251 Paris Cedex 05 and $Laboratoire de Biométrie, INRA-CRJJ, 78 350 Jouy-en-Josas, France (Received20 March 1990, Accepted 20 October 1990) The growth rates of.leporiizus fiiderici (Bloch, 1794) in four populations from four rivers of French Guiana are compared. According to a statistical analysis of growth curves using the method of maximum likelihood with the Gauss-Markardt algorithm, a marked difference is observed in the growth of the different samples which is attributed to the year of capture rather than to the geographical origin of fishes. It is demonstrated that the main factor affecting growth performances is the length of the rainy season, which corresponds for this species to the feeding period. Key words: Leporinusfriderici; South America; French Guiana; growth; skeletal chronobiology. I. INTRODUCTION In previous studies (Meunier et al., 1985; Lecomte et al., 1985, 1986, 1989), an annulus was shown to be formed at each of the two dry seasons of the year in three species of fish from French Guiana [Leporinusfriderici, Arius proops (Val., 1839), A. couma (Val., 1839)l. These growth zones are particularly obvious on the opercular bone and in the first ray of the pectoral fin. They were used to describe the growth of these species using the von Bertalanffy (1938) model.
    [Show full text]
  • Cytogenetic Studies in Some Apareiodon Species (Pisces, Parodontidae)
    C 2000 The Japan Mendel Society Cytologia 65: 397-402,2000 Cytogenetic Studies in Some Apareiodon Species (Pisces, Parodontidae) Celia Maria de Jesus* and Orlando Moreira-Filho Departamento de Genetica e Evolucbo, Universidade Federal de Sdo Carlos Rodovia Washington Luis, km 235, Caixa Postal 676, CEP 13565-905, Sdo Carlos, SP, Brasil Accepted September 8, 2000 Summary Cytogenetic studies in 6 species of Apareiodon (Pisces, Parodontidae) from different Brazilian hydrographic basins showed a diploid number equal to 2n=54 chromosomes and the ab- sence of morphologically differentiated sex chromosomes. Although the diploid and the fundamental numbers had been constant, some differences were observed concerning the karyotypic structure of the species. A. ibitiensis, Apareiodon sp. A and Apareiodon sp. B presented 50M/SM+4ST chromo- somes, while A. piracicabae, A. vittatus and Apareiodon sp. C presented 52M/SM+2ST ones. Apareiodon piracicabae showed a polymorphism in relation to the number and position of the nucle- olar organizer regions (NORs), while A. vittatus showed a variation in the NORs size. The available data indicate that the Parodontidae family have been submitted to a chromosomal diversification dur- ing their species differentiation process, despite the maintenance of the same diploid number. Key words Apareiodon, Karyotypic evolution, NOR, C-band. The Characiformes fish are widely distributed in the neotropical region, showing a wide varia- tion in the diploid number. Two general trends in the chromosomal evolution can be observed in this order. In fact, some groups show a heterogeneous evolutionary with a diversity in the chromo- some number and the karyotypic structure. In contrast, a more homogenous pattern can be observed in other groups, leading to a relatively stable karyotypes.
    [Show full text]
  • Chaetostoma Milesi) Ecological Risk Screening Summary
    Spotted Rubbernose Pleco (Chaetostoma milesi) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2014 Revised, November 2016, November 2017 Web Version, 9/10/2018 Photo: Frank Alvarez. Licensed under Creative Commons BY 3.0. Available: http://www.fishbase.org/photos/UploadedBy.php?autoctr=9310&win=uploaded. (March 31, 2014). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “South America: Magdalena and Apuré River basins.” From Ballen et al. (2016): “The new species [Chaetostoma joropo] has been long confused with Chaetostoma milesi, a species with similar overall morphology and color pattern that is restricted to the Magdalena- Cauca River Basin.” 1 Status in the United States No records of Chaetostoma milesi in the wild or in trade United States were found. Means of Introductions in the United States No records of Chaetostoma milesi in the United States were found. Remarks From Ballen et al. (2016): “The new species [Chaetostoma joropo] has been long confused with Chaetostoma milesi, a species with similar overall morphology and color pattern that is restricted to the Magdalena- Cauca River Basin.” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Chaetostoma milesi Fowler 1941 is the valid name for this species. It is also the original name. From ITIS (2013): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Osteichthyes Class Actinopterygii
    [Show full text]
  • Four New Records of Fish Species (Cypriniformes: Nemacheilidae
    Zoological Research 35 (1): 51−58 DOI:10.11813/j.issn.0254-5853.2014.1.051 Four new records of fish species (Cypriniformes: Nemacheilidae, Balitoridae; Characiformes: Prochilodontidae) and corrections of two misidentified fish species (Tetraodontiformes: Tetraodontidae; Beloniformes: Belonidae) in Yunnan, China Marco Endruweit* Qingshan Road 601, Qingdao, China Abstract: In this study, six fish species of five families are reported for the first time from Yunnan Province, China. The nemacheilid Schistura amplizona Kottelat, 2000 is reported from the Luosuojiang River and Nanlahe River subbasins, Mekong basin; the prochilodontid Prochilodus lineatus (Valenciennes, 1837), the balitorid Vanmanenia serrilineata Kottelat, 2000, and the tetraodontid Monotrete turgidus Kottelat, 2000, from Nanlahe River subbasin, Mekong basin; the balitorid Beaufortia daon (Mai, 1978), and the belonid Xenentodon canciloides (Bleeker, 1854), both, from Black River subbasin, Red River basin. The freshwater puffer M. turgidus and the needlefish X. canciloides have been previously misidentified as Tetraodon leiurus (Bleeker, 1950) and Tylosurus strongylurus (van Hasselt, 1823), respectively. Keywords: New record; Misidentification; Mekong basin; Red River; Yunnan Yunnan Province is located in the Southwest within Chen et al in 1989, respectively 1990 for the second the People’s Republic of China. Its name refers to its volume, giving 226 species and subspecies accounts in location south of the Yunling Mountain range. It shares the first volume plus an additional 173 in the second. international border with Myanmar in the West and Through extensive fieldwork and re-evaluation of Southwest, with Laos and Vietnam in the South; national institutionally stored lots the number of Yunnanese fish borders with Xizang Autonomous Region to the species is growing (for e.g.
    [Show full text]
  • A New Report of Multiple Sex Chromosome System in the Order Gymnotiformes (Pisces)
    © 2004 The Japan Mendel Society Cytologia 69(2): 155–160, 2004 A New Report of Multiple Sex Chromosome System in the Order Gymnotiformes (Pisces) Sebastián Sánchez1,*, Alejandro Laudicina2 and Lilian Cristina Jorge1 1 Instituto de Ictiología del Nordeste, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Sargento Cabral 2139 (3400) Corrientes, Argentina 2 Laboratorio de Citogenética Molecular, Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Gral. Paz 1499 (1650) San Martín, Buenos Aires, Argentina Received December 25, 2004; accepted April 3, 2004 Summary An X1X2Y sex chromosome system is reported for the first time in Gymnotus sp. The chromosome number observed was 2nϭ40 (14 M-SMϩ26 ST-A) in females and 2nϭ39 (15 M- SMϩ24 ST-A) in males, with the same fundamental number in both sexes (FNϭ54). The multiple sex chromosome system might have been originated by a Robertsonian translocation of an ancestral acrocentric Y-chromosome with an acrocentric autosome, resulting in a metacentric neo-Y chromo- some observed in males. Single NORs were detected on the short arm of a middle-sized acrocentric chromosome pair. Constitutive heterochromatin was observed in the pericentromeric regions of sev- eral chromosome pairs, including the neo-Y chromosome and the NOR carrier chromosomes. The ϩ DAPI/CMA3 stain revealed that all the pericentromeric heterochromatin are A T rich whereas the NORs were associated with GϩC rich base composition. The possible ancestral condition character- ized by an undifferentiated Y- chromosome from all the Gymnotiformes fishes is discussed. Key words X1X2Y sex chromosomes, C-NOR band, CMA3-DAPI stain, Gymnotus, Fishes. Multiple sex chromosome systems are known only for 7 neotropical fish species representing near 1% species cytogenetically analyzed already (Almeida-Toledo and Foresti 2001).
    [Show full text]