www.impactjournals.com/Genes&Cancer Genes & Cancer, Vol. 8 (9-10), September 2017 Geminin deficiency enhances survival in a murine medulloblastoma model by inducing apoptosis of preneoplastic granule neuron precursors Savita Sankar1, Ethan Patterson1, Emily M. Lewis1, Laura E. Waller1, Caili Tong1, Joshua Dearborn2, David Wozniak2, Joshua B. Rubin3, Kristen L. Kroll1 1 Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA 2 Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA 3 Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA Correspondence to: Kristen L. Kroll, email:
[email protected] Keywords: neural, medulloblastoma, cerebellum, DNA replication, apoptosis Received: September 15, 2017 Accepted: November 03, 2017 Published: November 12, 2017 Copyright: Sankar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Abstract ABSTRACT Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin’s potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development.