Cell Death and Differentiation (2006) 13, 1052–1056 & 2006 Nature Publishing Group All rights reserved 1350-9047/06 $30.00 www.nature.com/cdd News and Commentary Role of geminin: from normal control of DNA replication to cancer formation and progression? M Montanari1,2, M Macaluso1,3,4, A Cittadini2 and A Giordano*,1,3 Geminin in the Licensing The replication of eukaryotic genome is a complex process 1 Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Biotechnology, Temple University, Philadelphia, PA, USA strictly regulated by an intricate intracellular and extracellular 2 Institute of General Pathology- ‘Giovanni XXIII’ Cancer Research Center, signaling network, which controls different phenomena such Catholic University of Sacred Heart, Rome, Italy as cell proliferation, differentiation and apoptosis.6,7 All these 3 Department of Human Pathology and Oncology, University of Siena, Siena, processes have a common function: the regulation of the Italy initial phase of DNA replication. During this event, specific 4 Section of Oncology, Department of Oncology, University of Palermo, proteins sequentially assemble onto the replication origin by Palermo, Italy forming specific replicative complexes (pre-RC), which allow * Corresponding author: A Giordano, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Biotechnology, Temple for the chromatin to be competent (licensed) for the next DNA 8 University, Biolife Sciences Building, Suite # 333,1900, North 12th Street, replication step of the cell cycle. Philadelphia, PA 19122-6099, USA. Tel: þ 1-215-204-9520; Geminin is a 25 kDa nuclear protein that functions by Fax: þ 1-215-204-9519; inhibiting DNA replication.9 During specific phases of the cell E-mail:
[email protected] cycle, geminin is able to bind to Cdt1 protein and inhibits pre- RC formation.10 In eukaryotes, the origins of replication are Cell Death and Differentiation (2006) 13, 1052–1056.