Chromatin Unfolding by Cdt1 Regulates MCM Loading Via Opposing Functions of HBO1 and HDAC11-Geminin Philip G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Roles of Bromodomain Proteins in Cancer
cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Geminin Prevents DNA Damage in Vagal Neural Crest Cells to Ensure Normal Enteric Neurogenesis Chrysoula Konstantinidou1,3, Stavros Taraviras2* and Vassilis Pachnis1*
Konstantinidou et al. BMC Biology (2016) 14:94 DOI 10.1186/s12915-016-0314-x RESEARCH ARTICLE Open Access Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis Chrysoula Konstantinidou1,3, Stavros Taraviras2* and Vassilis Pachnis1* Abstract Background: In vertebrate organisms, the neural crest (NC) gives rise to multipotential and highly migratory progenitors which are distributed throughout the embryo and generate, among other structures, the peripheral nervous system, including the intrinsic neuroglial networks of the gut, i.e. the enteric nervous system (ENS). The majority of enteric neurons and glia originate from vagal NC-derived progenitors which invade the foregut mesenchyme and migrate rostro-caudally to colonise the entire length of the gut. Although the migratory behaviour of NC cells has been studied extensively, it remains unclear how their properties and response to microenvironment change as they navigate through complex cellular terrains to reach their target embryonic sites. Results: Using conditional gene inactivation in mice we demonstrate here that the cell cycle-dependent protein Geminin (Gem) is critical for the survival of ENS progenitors in a stage-dependent manner. Gem deletion in early ENS progenitors (prior to foregut invasion) resulted in cell-autonomous activation of DNA damage response and p53-dependent apoptosis, leading to severe intestinal aganglionosis. In contrast, ablation of Gem shortly after ENS progenitors had invaded the embryonic gut did not result in discernible survival or migratory deficits. In contrast to other developmental systems, we obtained no evidence for a role of Gem in commitment or differentiation of ENS lineages. The stage-dependent resistance of ENS progenitors to mutation-induced genotoxic stress was further supported by the enhanced survival of post gut invasion ENS lineages to γ-irradiation relative to their predecessors. -
Overexpression of Androgen Receptor in Prostate Cancer
ALFONSO URBANUCCI Overexpression of Androgen Receptor in Prostate Cancer ACADEMIC DISSERTATION To be presented, with the permission of the board of Institute of Biomedical Technology of the University of Tampere, for public discussion in the Jarmo Visakorpi Auditorium, of the Arvo Building, Lääkärinkatu 1, Tampere, on January 20th, 2012, at 12 o’clock. UNIVERSITY OF TAMPERE ACADEMIC DISSERTATION University of Tampere, Institute of Biomedical Technology and BioMediTech Tampere University Hospital, Laboratory Centre Graduate Program in Biomedicine and Biotechnology (TGPBB) Finland Supervised by Reviewed by Professor Tapio Visakorpi Docent Auli Karhu University of Tampere University of Helsinki Finland Finland Docent Noora Kotaja University of Turku Finland Copyright ©2012 Tampere University Press and the author Distribution Tel. +358 40 190 9800 Bookshop TAJU Fax +358 3 3551 7685 P.O. Box 617 [email protected] 33014 University of Tampere www.uta.fi/taju Finland http://granum.uta.fi Cover design by Mikko Reinikka Acta Universitatis Tamperensis 1693 Acta Electronica Universitatis Tamperensis 1159 ISBN 978-951-44-8685-2 (print) ISBN 978-951-44-8686-9 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://acta.uta.fi Tampereen Yliopistopaino Oy – Juvenes Print Tampere 2012 CONTENTS ABBREVIATIONS ..................................................................................................... 5 ABSTRACT ................................................................................................................ 7 SINTESI ..................................................................................................................... -
Androgen Receptor Interacting Proteins and Coregulators Table
ANDROGEN RECEPTOR INTERACTING PROTEINS AND COREGULATORS TABLE Compiled by: Lenore K. Beitel, Ph.D. Lady Davis Institute for Medical Research 3755 Cote Ste Catherine Rd, Montreal, Quebec H3T 1E2 Canada Telephone: 514-340-8260 Fax: 514-340-7502 E-Mail: [email protected] Internet: http://androgendb.mcgill.ca Date of this version: 2010-08-03 (includes articles published as of 2009-12-31) Table Legend: Gene: Official symbol with hyperlink to NCBI Entrez Gene entry Protein: Protein name Preferred Name: NCBI Entrez Gene preferred name and alternate names Function: General protein function, categorized as in Heemers HV and Tindall DJ. Endocrine Reviews 28: 778-808, 2007. Coregulator: CoA, coactivator; coR, corepressor; -, not reported/no effect Interactn: Type of interaction. Direct, interacts directly with androgen receptor (AR); indirect, indirect interaction; -, not reported Domain: Interacts with specified AR domain. FL-AR, full-length AR; NTD, N-terminal domain; DBD, DNA-binding domain; h, hinge; LBD, ligand-binding domain; C-term, C-terminal; -, not reported References: Selected references with hyperlink to PubMed abstract. Note: Due to space limitations, all references for each AR-interacting protein/coregulator could not be cited. The reader is advised to consult PubMed for additional references. Also known as: Alternate gene names Gene Protein Preferred Name Function Coregulator Interactn Domain References Also known as AATF AATF/Che-1 apoptosis cell cycle coA direct FL-AR Leister P et al. Signal Transduction 3:17-25, 2003 DED; CHE1; antagonizing regulator Burgdorf S et al. J Biol Chem 279:17524-17534, 2004 CHE-1; AATF transcription factor ACTB actin, beta actin, cytoplasmic 1; cytoskeletal coA - - Ting HJ et al. -
Rabbit Anti-Phospho-MCM2-SL18262R-FITC
SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-phospho-MCM2 SL18262R-FITC Product Name: Anti-phospho-MCM2 (Ser27)/FITC Chinese Name: FITC标记的磷酸化MCM2蛋白抗体 MCM4 (phospho S27); MCM2(phospho-Ser27); MCM2(phospho Ser27); MCM2 (phospho S27); p-MCM2(Ser27); p-MCM2(S27); MCM2 (phospho S27); p-MCM2 (phospho S27); BM28; CCNL 1; CCNL1; CDC like 1; CDC like-1; cdc19; CDCL 1; CDCL1; Cell devision cycle like 1; Cyclin like 1; cyclin like-1; D3S3194; DNA replication licensing factor MCM2; KIAA0030; MCM 2; MCM2; MCM2 minichromosome maintenance deficient 2 mitotin; MCM2 minichromosome Alias: maintenance deficient 2 mitotin (S. cerevisiae); MCM2 minichromosome maintenance deficient 2, mitotin; MCM2_HUMAN; MCM2_MOUSE; MGC10606; Minichromosome maintenance complex component 2; Minichromosome maintenance deficient 2 (mitotin); Minichromosome maintenance deficient 2 mitotin; Minichromosome maintenance protein 2; Minichromosome maintenance protein 2 homolog; Mitotin; Nuclear protein BM28; OTTHUMP00000216047; OTTHUMP00000216050. Organism Species: Rabbit Clonality: Polyclonalwww.sunlongbiotech.com React Species: Human,Mouse,Rat,Dog,Pig,Rabbit, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 101kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: phosphopeptide derived from human MCM2 around the phosphorylation site of Ser27 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Storage: Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. -
Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2. -
Investigation of the Interplay Between SKP2, CDT1 and Geminin in Cancer Cells
1 Investigation of the interplay between SKP2, CDT1 and Geminin in cancer cells 2 3 Andrea Ballabeni¶*, Raffaella Zamponi§ 4 5 ¶Department of Systems Biology, Harvard Medical School, Boston, MA, USA 6 (Current affiliation: Harvard School of Public Health, Boston, MA, USA) s 7 t n i 8 §Department of Experimental Oncology, European Institute of Oncology, Milan, Italy r P 9 (Current affiliation: Novartis Institutes of Biomedical research, Cambridge, MA, USA) e r 10 P 11 *Corresponding author E-mail: [email protected], [email protected] 12 13 Abstract 14 Geminin has a dual role in the regulation of DNA replication: it inhibits replication factor CDT1 15 activity during the G2 phase of the cell cycle and promotes its accumulation at the G2/M 16 transition. In this way Geminin prevents DNA re-replication during G2 phase and ensures that 17 DNA replication is efficiently executed in the next S phase. CDT1 was shown to associate with 18 SKP2, the substrate recognition factor of the SCF ubiquitin ligase complex. We investigated the 19 interplay between these three proteins in cancer cell lines. We show that Geminin, CDT1 and 20 SKP2 could possibly form a complex and propose the putative regions of CDT1 and Geminin 21 involved in the binding. We also show that, despite the physical interaction, SKP2 depletion does 22 not substantially affect CDT1 and Geminin protein levels. Moreover, we show that while 1 PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.794v1 | CC-BY 4.0 Open Access | rec: 16 Jan 2015, publ: 16 Jan 2015 1 Geminin and CDT1 levels fluctuate, SKP2 levels, differently than in normal cells, are almost 2 steady during the cell cycle of the tested cancer cells. -
Gene Expression Profiling Analysis Contributes to Understanding the Association Between Non-Syndromic Cleft Lip and Palate, and Cancer
2110 MOLECULAR MEDICINE REPORTS 13: 2110-2116, 2016 Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer HONGYI WANG, TAO QIU, JIE SHI, JIULONG LIANG, YANG WANG, LIANGLIANG QUAN, YU ZHANG, QIAN ZHANG and KAI TAO Department of Plastic Surgery, General Hospital of Shenyang Military Area Command, PLA, Shenyang, Liaoning 110016, P.R. China Received March 10, 2015; Accepted December 18, 2015 DOI: 10.3892/mmr.2016.4802 Abstract. The present study aimed to investigate the for NSCL/P were implicated predominantly in the TGF-β molecular mechanisms underlying non-syndromic cleft lip, signaling pathway, the cell cycle and in viral carcinogenesis. with or without cleft palate (NSCL/P), and the association The TP53, CDK1, SMAD3, PIK3R1 and CASP3 genes were between this disease and cancer. The GSE42589 data set found to be associated, not only with NSCL/P, but also with was downloaded from the Gene Expression Omnibus data- cancer. These results may contribute to a better understanding base, and contained seven dental pulp stem cell samples of the molecular mechanisms of NSCL/P. from children with NSCL/P in the exfoliation period, and six controls. Differentially expressed genes (DEGs) were Introduction screened using the RankProd method, and their potential functions were revealed by pathway enrichment analysis and Non-syndromic cleft lip, with or without cleft palate (NSCL/P) construction of a pathway interaction network. Subsequently, is one of the most common types of congenital defect and cancer genes were obtained from six cancer databases, and affects 3.4-22.9/10,000 individuals worldwide (1). -
Geminin-Deficient Neural Stem Cells Exhibit Normal Cell Division and Normal Neurogenesis
Geminin-Deficient Neural Stem Cells Exhibit Normal Cell Division and Normal Neurogenesis Kathryn M. Schultz1,2, Ghazal Banisadr4., Ruben O. Lastra1,2., Tammy McGuire5, John A. Kessler5, Richard J. Miller4, Thomas J. McGarry1,2,3* 1 Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 2 Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 3 Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 4 Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 5 Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America Abstract Neural stem cells (NSCs) are the progenitors of neurons and glial cells during both embryonic development and adult life. The unstable regulatory protein Geminin (Gmnn) is thought to maintain neural stem cells in an undifferentiated state while they proliferate. Geminin inhibits neuronal differentiation in cultured cells by antagonizing interactions between the chromatin remodeling protein Brg1 and the neural-specific transcription factors Neurogenin and NeuroD. Geminin is widely expressed in the CNS during throughout embryonic development, and Geminin expression is down-regulated when neuronal precursor cells undergo terminal differentiation. Over-expression of Geminin in gastrula-stage Xenopus embryos can expand the size of the neural plate. The role of Geminin in regulating vertebrate neurogenesis in vivo has not been rigorously examined. To address this question, we created a strain of Nestin-Cre/Gmnnfl/fl mice in which the Geminin gene was specifically deleted from NSCs. -
Anti-Geminin Antibody (Clone 1A8) Mouse Anti Human Monoclonal Antibody Catalog # ALS17716
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Anti-Geminin Antibody (clone 1A8) Mouse Anti Human Monoclonal Antibody Catalog # ALS17716 Specification Anti-Geminin Antibody (clone 1A8) - Product Information Application WB, IHC-P, IF, E Primary Accession O75496 Predicted Human Host Mouse Clonality Monoclonal Isotype IgG1,k Calculated MW 23565 Anti-Geminin Antibody (clone 1A8) - Additional Information Gene ID 51053 Alias Symbol GMNN Other Names GMNN, Geminin Target/Specificity Human Geminin Reconstitution & Storage Protein A purified Precautions Anti-Geminin Antibody (clone 1A8) is for research use only and not for use in diagnostic or therapeutic procedures. Anti-Geminin Antibody (clone 1A8) - Protein Information Name GMNN Function Inhibits DNA replication by preventing the incorporation of MCM complex into pre-replication complex (pre-RC) (PubMed:<a href="http://www.uniprot.org/c itations/9635433" target="_blank">9635433</a>, PubMed:<a href="http://www.uniprot.org/ci tations/14993212" target="_blank">14993212</a>, Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PubMed:<a href="http://www.uniprot.org/ci tations/20129055" target="_blank">20129055</a>, PubMed:<a href="http://www.uniprot.org/ci tations/24064211" target="_blank">24064211</a>). It is degraded during the mitotic phase of the cell cycle (PubMed:<a href="http://www.uni prot.org/citations/9635433" target="_blank">9635433</a>, PubMed:<a href="http://www.uniprot.org/ci tations/14993212" target="_blank">14993212</a>, PubMed:<a href="http://www.uniprot.org/ci tations/24064211" target="_blank">24064211</a>). -
Geminin Deploys Multiple Mechanisms to Regulate Cdt1 Before Cell Division Thus Ensuring the Proper Execution of DNA Replication
Geminin deploys multiple mechanisms to regulate Cdt1 before cell division thus ensuring the proper execution of DNA replication Andrea Ballabenia, Raffaella Zamponib, Jodene K. Moorea, Kristian Helinc,d, and Marc W. Kirschnera,1 aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115; bNovartis Institutes for Biomedical Research, Cambridge, MA 02139; cBiotech Research and Innovation Centre and dCentre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark Contributed by Marc W. Kirschner, June 7, 2013 (sent for review March 4, 2013) Cdc10-dependent transcript 1 (Cdt1) is an essential DNA replication the initiation of S phase and its duration. We show that although protein whose accumulation at the end of the cell cycle promotes Cdt1 protein accumulates in G2 phase, it still turns over very the formation of pre-replicative complexes and replication in the quickly and that to produce high Cdt1 levels when cells exit next cell cycle. Geminin is thought to be involved in licensing rep- mitosis into G1, the accumulation in G2 must overcome degra- lication by promoting the accumulation of Cdt1 in mitosis, because dation. This regulation is a product of Geminin’s positive regu- decreasing the Geminin levels prevents Cdt1 accumulation and lation of Cdt1 protein and RNA in the preceding G2 phase. impairs DNA replication. Geminin is known to inhibit Cdt1 func- Degradation of Cdt1 is not a consequence of DNA damage, be- tion; its depletion during G2 leads to DNA rereplication and check- cause Cdt1 levels decrease upon Geminin depletion even in point activation. Here we show that, despite rapid Cdt1 protein presence of inhibitors of DNA synthesis.