The Brain Case and Endocranial Cast of Eryops Megacephalus (Cope)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INDEX Abducent Neurons Anatomy 135 Clinical Signs 137 Diseases
INDEX Abducent neurons Anatomy 135 Clinical signs 137 Diseases 139 Function 135 Abiotrophic sensorineural deafness 438 Abiotrophy 100, 363 Auditory 438 Cerebellar cortical 363 Motor neuron 100 Nucleus ambiguus 159 Peripheral vestibular 336 Abscess-Brainstem 330 Caudal cranial fossa 343 Cerebellar 344 Cerebral 416, 418 Pituitary 162 Streptococcus equi 418 Abyssian cat-Glucocerebrosidosis 427 Myastheina gravis 93 Accessory neurons Anatomy 152 Clinical signs 153 Diseases 153 Acetozolamide 212 Acetylcholine 78, 169, 354, 468, 469 Receptor 78 Acetylcholinesterase 79 Achiasmatic Belgian sheepdog 345 Acoustic stria 434 Acral mutilation 237 Adenohypophysis 483 Releasing factors 483 Adenosylmethionine 262 Adhesion-Interthalamic 33, 476 Adiposogenital syndrome 484 Adipsia 458, 484 Adrenocorticotrophic hormone 485 Adversive syndrome 72, 205, 460 Afghan hound-Inherited myelinolytic encephalomyelopathy 264 Agenized flour 452 Aino virus 44 Akabane virus 43 Akita-Congenital peripiheral vestibular disease 336 Alaskan husky encephalopathy 522 Albinism, ocular 345 Albinotic sensorineural deafness 438 Alexander disease 335 Allodynia 190 Alpha fucosidosis 427 Alpha glucosidosis 427 Alpha iduronidase 427 Alpha mannosidase 427 Alpha melanotropism 484 Alsatian-idiopathic epilepsy 458 Alternative anticonvulsant drugs 466 American Bulldog-Ceroid lipofuscinosis 385, 428 American Miniature Horse-Narcolepsy 470 American StaffordshireTerrier-Cerebellar cortical abiotrophy 367 Amikacin 329 Aminocaproic acid 262 Aminoglycoside antibiotics 329, 439 Amprolium toxicity -
New Permian Fauna from Tropical Gondwana
ARTICLE Received 18 Jun 2015 | Accepted 18 Sep 2015 | Published 5 Nov 2015 DOI: 10.1038/ncomms9676 OPEN New Permian fauna from tropical Gondwana Juan C. Cisneros1,2, Claudia Marsicano3, Kenneth D. Angielczyk4, Roger M. H. Smith5,6, Martha Richter7, Jo¨rg Fro¨bisch8,9, Christian F. Kammerer8 & Rudyard W. Sadleir4,10 Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the bio- geographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. 1 Centro de Cieˆncias da Natureza, Universidade Federal do Piauı´, 64049-550 Teresina, Brazil. 2 Programa de Po´s-Graduac¸a˜o em Geocieˆncias, Departamento de Geologia, Universidade Federal de Pernambuco, 50740-533 Recife, Brazil. 3 Departamento de Cs. Geologicas, FCEN, Universidad de Buenos Aires, IDEAN- CONICET, C1428EHA Ciudad Auto´noma de Buenos Aires, Argentina. -
BOA2.1 Caecilian Biology and Natural History.Key
The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia -
Stuttgarter Beiträge Zur Naturkunde
S^5 ( © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser. B Nr. 278 175 pp., 4pls., 54figs. Stuttgart, 30. 12. 1999 Comparative osteology oi Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen) By Rainer R. Schoch, Stuttgart With 4 plates and 54 textfigures Abstract Mastodonsaurus giganteus, the most abundant and giant amphibian of the German Letten- keuper, is revised. The study is based on the excellently preserved and very rieh material which was excavated during road construction in 1977 near Kupferzeil, Northern Baden- Württemberg. It is shown that there exists only one diagnosable species of Mastodonsaurus, to which all Lettenkeuper material can be attributed. All finds from other horizons must be referred to as Mastodonsauridae gen. et sp. indet. because of their fragmentary Status. A sec- ond, definitely diagnostic genus of this family is Heptasaurus from the higher Middle and Upper Buntsandstein. Finally a diagnosis of the family Mastodonsauridae is provided. Ä detailed osteological description of Mastodonsaurus giganteus reveals numerous un- known or formerly inadequately understood features, yielding data on various hitherto poor- ly known regions of the skeleton. The sutures of the skull roof, which could be studied in de- tail, are significantly different from the schemes presented by previous authors. The endocra- nium and mandible are further points of particular interest. The palatoquadrate contributes a significant part to the formation of the endocranium by an extensive and complicated epi- pterygoid. -
Heber Den Archegosaurus Der Stciiikohleiiforntatioii. Wenn Auch
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Palaeontographica - Beiträge zur Naturgeschichte der Vorzeit Jahr/Year: 1851 Band/Volume: 1 Autor(en)/Author(s): Meyer Hermann Christian Erich von Artikel/Article: Ueber den Archegosaurus der Steinkohlenformation. 209-215 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Heber den Archegosaurus der Stciiikohleiiforntatioii. Von Hermann von Meyer. Die Nachrichten über das Vorkommen von Reptilien in Gebilden älter als die Formation des Zechsteins hatten sich bei genauerer Prüfung immer als unhaltbar bewiesen. Man glaubte sich daher um so mehr berechtigt, anzunehmen, dass im Zechstein die ältesten Reptilien begraben lägen, als während der Versammlung der Naturforscher in Mainz Dr. Gergens und Alex. Braun mir eine Wirbelthier- Versteinerung aus dem der Steinkohlenformation angehörigen, durch seine Fische berühmten Schieferthon von Münster- Appel in der bayerschen Pfalz vorlegten, deren Beschaffenheit mehr auf ein Wirbelthier mit Füssen als auf einen Fisch schliessen Hess. Dieses merkwürdige kleine Geschöpf habe ich Anfangs 1844, es Apateon pedestris nennend, beschrieben (Jahrb. f. Min. 1844. S. 336), später aber in den Palaeontographicis (1. S. 152. Taf. 20. Fig. t.) dargelegt. Drei Jahre darauf gelang es dem Berghauptmann v. Dechen in den Sphärosideritnieren der Steinkohlenformation zu Lebach im Saarbrücken'schen, woraus zuvor ebenfalls nur Fische bekannt waren , Ueberreste zu entdecken , welche an die Gegenwart von Sauriern in diesem Ge- bilde glauben Hessen. Mit dem zu Münster-Appel gefundenen Thier stimmten sie nicht überein. Die erste Nachricht darüber theilte Goldfuss in der Niederrheinischen Gesellschaft für Natur- und Heilkunde in Bonn am 18. Februar 1847 mit. -
Morphometry of Parietal Foramen in Skulls of Telangana Population Dr
Scholars International Journal of Anatomy and Physiology Abbreviated Key Title: Sch Int J Anat Physiol ISSN 2616-8618 (Print) |ISSN 2617-345X (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com/sijap Original Research Article Morphometry of Parietal Foramen in Skulls of Telangana Population Dr. T. Sumalatha1, Dr. V. Sailaja2*, Dr. S. Deepthi3, Dr. Mounica Katukuri4 1Associate professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 2Assistant Professor, Department of Anatomy, Gandhi Medical College, Secunderabad, Telangana, India 3Assistant Professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 4Post Graduate 2nd year, Gandhi Medical College, Secunderabad, Telangana, India DOI: 10.36348/sijap.2020.v03i10.001 | Received: 06.10.2020 | Accepted: 14.10.2020 | Published: 18.10.2020 *Corresponding author: Dr. V. Sailaja Abstract Aims & Objectives: To study the prevalence, number, location and variations of parietal foramen in human skulls and correlate with the clinical significance if any. Material and Methods: A total of 45 skulls with 90 parietal bones were studied in the Department of Anatomy Govt medical college Mahabubnagar from osteology specimens in the academic year 2018-2019.Various parameters like unilateral or bilateral occurance or total absence of the parietal foramen, their location in relation to sagittal suture and lambda, their shape have been observed using appropriate tools and the findings have been tabulate. Observation & Conclusions: Out of total 45 skulls there were 64 parietal foramina in 90 parietal bones, with foramina only on right side in 10 skulls, only on left side in 7 skulls, bilaterally present in 23 skulls, total absence in 4 skulls and 1 foramen located in the sagittal suture. -
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus -
Morfofunctional Structure of the Skull
N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V. -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
Permian Tetrapods from the Sahara Show Climate-Controlled Endemism in Pangaea
letters to nature 6. Wysession, M. et al. The Core-Mantle Boundary Region 273–298 (American Geophysical Union, faunas that dominated tropical-to-temperate zones to the north Washington, DC, 1998). 13–15 7. Sidorin, I., Gurnis, M., Helmberger, D. V.& Ding, X. Interpreting D 00 seismic structure using synthetic and south . Our results show that long-standing theories of waveforms computed from dynamic models. Earth Planet. Sci. Lett. 163, 31–41 (1998). Late Permian faunal homogeneity are probably oversimplified as 8. Boehler, R. High-pressure experiments and the phase diagram of lower mantle and core constituents. the result of uneven latitudinal sampling. Rev. Geophys. 38, 221–245 (2000). For over 150 yr, palaeontologists have understood end-Palaeozoic 9. Alfe`, D., Gillan, M. J. & Price, G. D. Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic data. Earth Planet. Sci. Lett. 195, 91–98 (2002). terrestrial ecosystems largely on the basis of Middle and Late 10. Thomas, C., Kendall, J. & Lowman, J. Lower-mantle seismic discontinuities and the thermal Permian tetrapod faunas from southern Africa. The fauna of these morphology of subducted slabs. Earth Planet. Sci. Lett. 225, 105–113 (2004). rich beds, particularly South Africa’s Karoo Basin, has provided 11. Thomas, C., Garnero, E. J. & Lay, T. High-resolution imaging of lowermost mantle structure under the fundamental insights into the origin of modern terrestrial trophic Cocos plate. J. Geophys. Res. 109, B08307 (2004). 16 12. Mu¨ller, G. The reflectivity method: A tutorial. Z. Geophys. 58, 153–174 (1985). structure and the successive adaptations that set the stage for the 13 13. -
Origin and Phylogenetic Relationships of Living Amphibians
Points of View Syst. Biol. 51(2):364–369, 2002 Tetrapod Phylogeny, Amphibian Origins, and the Denition of the Name Tetrapoda MICHEL LAURIN Equip´ e “Formations squelettiques” UMR CNRS 8570, Case 7077, Universite´ Paris 7, 75005 Paris, France; E-mail: [email protected] The most detailed, computer-generated Ahlberg and Milner, 1994) or did not include phylogeny of early amphibians has been amphibians (Gauthier et al., 1988), thus published recently (Anderson, 2001). The precluding identication of the dichotomy study was based on an analysis of 182 os- between amphibians and reptiliomorphs teological characters and 49 taxa, including (the clade that includes amniotes and the 41 “lepospondyls,” 7 other Paleozoic taxa extinct taxa that are more closely related representing other major groups (seymouri- to amniotes than to lissamphibians). The amorphs, embolomeres, temnospondyls, latest phylogeny (Anderson, 2001) suggests Downloaded By: [University of Tennessee] At: 00:39 18 January 2008 etc.), and a single lissamphibian (the oldest that despite initial skepticism (Coates et al., known apodan, the Jurassic taxon Eocae- 2000), the new pattern of stegocephalian cilia). The publication of this phylogeny is relationships appears to be well supported welcome, but several points raised in that and relatively stable, at least as it pertains to paper deserve to be discussed further. Espe- the relationships between major taxa such cially problematic are the views Anderson as Temnospondyli, Embolomeri, Seymouri- expressed about the polyphyletic origin of amorpha, Amniota, and the paraphyletic extant amphibians and about the application group informally called lepospondyls of phylogenetic nomenclature. (Figs. 1a, 1b). TETRAPOD PHYLOGENY Anderson (2001) found that the lep- Origin of Extant Amphibians ospondyls are more closely related to This brings us to the more difcult ques- amniotes than to seymouriamorphs and em- tion of amphibian origins. -
Non Metric Traits of the Skull and Their Role in Anthropological Studies
Original article Non metric traits of the skull and their role in anthropological studies Kaur, J.1*, Choudhry, R.2, Raheja, S.3 and Dhissa, NC.4 1Doctor, Master of Science in Anatomy, Assistant Professor, Department of Anatomy, ESIC Dental College, Rohini, New Delhi 2Doctor, Master of Science in Anatomy, Ex Head of the Department of Anatomy, VMMC & Safdarjung Hospital, New Delhi 3Doctor, Master of Science in Anatomy, Professor, Department of Anatomy, Lady Hardinge Medical College, New Delhi 4Doctor, Master of Science in Anatomy, Associate Professor, Department of Anatomy, ESIC Dental College, New Delhi *E-mail: [email protected] Abstract Anthropological and paleoanthropological studies concerning the so called epigenetic cranial traits or non-metrical cranial traits have been increasing in frequency in last ten years. For this type of study, the trait should be genetically determined, vary in frequency between different populations and should not show age, sex and side dependency. The present study was conducted on hundred dry adult human skulls from Northern India. They were sexed and classified into groups of various non metrical traits. These traits were further studied for sexual and side dimorphism. None of the traits had shown statistically significant side dimorphism. Two of them (Parietal foramen and Exsutural mastoid foramen) however had shown statistically significant sexual dimorphism. Since the dimorphism is exhibited by very less number of traits, it can be postulated that these traits are predominantly under genetic control and can be effectively used for population studies. Keywords: double hypoglossal canal, epigenetic variants, non-metric cranial variants, supraorbital foramen, zygomaticofacial foramen. 1 Introduction 2 Material and methods Anthropological and paleoanthropological studies Hundred dry adult human skulls from Northern India, concerned with the epigenetic traits or non-metrical cranial having no deformity or fracture were examined.