Non Metric Traits of the Skull and Their Role in Anthropological Studies

Total Page:16

File Type:pdf, Size:1020Kb

Non Metric Traits of the Skull and Their Role in Anthropological Studies Original article Non metric traits of the skull and their role in anthropological studies Kaur, J.1*, Choudhry, R.2, Raheja, S.3 and Dhissa, NC.4 1Doctor, Master of Science in Anatomy, Assistant Professor, Department of Anatomy, ESIC Dental College, Rohini, New Delhi 2Doctor, Master of Science in Anatomy, Ex Head of the Department of Anatomy, VMMC & Safdarjung Hospital, New Delhi 3Doctor, Master of Science in Anatomy, Professor, Department of Anatomy, Lady Hardinge Medical College, New Delhi 4Doctor, Master of Science in Anatomy, Associate Professor, Department of Anatomy, ESIC Dental College, New Delhi *E-mail: [email protected] Abstract Anthropological and paleoanthropological studies concerning the so called epigenetic cranial traits or non-metrical cranial traits have been increasing in frequency in last ten years. For this type of study, the trait should be genetically determined, vary in frequency between different populations and should not show age, sex and side dependency. The present study was conducted on hundred dry adult human skulls from Northern India. They were sexed and classified into groups of various non metrical traits. These traits were further studied for sexual and side dimorphism. None of the traits had shown statistically significant side dimorphism. Two of them (Parietal foramen and Exsutural mastoid foramen) however had shown statistically significant sexual dimorphism. Since the dimorphism is exhibited by very less number of traits, it can be postulated that these traits are predominantly under genetic control and can be effectively used for population studies. Keywords: double hypoglossal canal, epigenetic variants, non-metric cranial variants, supraorbital foramen, zygomaticofacial foramen. 1 Introduction 2 Material and methods Anthropological and paleoanthropological studies Hundred dry adult human skulls from Northern India, concerned with the epigenetic traits or non-metrical cranial having no deformity or fracture were examined. The skulls traits have been increasing in frequency in the last ten were sexed and classified into groups of various non metrical years. Analysis of non-metrical traits remains an important traits. approach to the tracing of genetic relationships among Sexing of the skulls was done by assessing the contour of ancient populations as they permit the measurement of the supraorbital margin. A large piece of plasticine was pressed biological distances between past populations. They can onto the supraorbital margin to produce an impression of also be used for the assessment of the existence of parental its contour. The plasticine was removed carefully so as not structures within a community or as taxonomic indicators. to distort it. These were cut vertically and the shape was These non-metrical cranial traits can be effectively used assessed in cross section. The impression was classified on a seven grade scale as given by previous observer (GRAW, as anthropological characters (CHAMBELLAN, 1883 apud CZARNETZKI and HAFFNER, 1999) as follows: DORSEY, 1983). They play an important role in population • 1, 2, 3 = Trough shaped profile suggestive of male; studies (WOOD–JONES, 1931). This idea was put into • 5, 6, 7 = Angulation of inner aspect suggestive of female; practice (LAUGHLIN and JORGENSEN, 1956). Further • 1 = Definite male; some viewers gave the opinion that these variants could be • 4 = Uncertain; used to calculate a distance statistics between population • 7 = Definite female. samples (BERRY and BERRY, 1967). The accuracy of identification of sex using this method The employment of discontinues traits in anthropology was found to be 70%. After sexing the skulls were looked has certainly been spurred by their apparent ease of scoring for the presence or absence of various non-metrical traits and the fact that they are genetically determined, even (grouped as follows). though partly under environmental control. The aim of this study is to present the frequency of 2.1 Variants related to foramina of nerves and various non-metrical cranial variants in adult human skulls vessels and to investigate side and sexual dimorphisms for these • Supraorbital foramen (Figure 1); traits. Further it was concluded whether these traits could be • Supraorbital notch (Figure 2); used effectively for population studies. • Frontal Foramen; J. Morphol. Sci., 2012, vol. 29, no. 4, p. 189-194 189 Kaur, J., Choudhry, R., Raheja, S. et al. • Frontal notch; observed (Tables 2 and 4). The results obtained were • Zygomaticofacial foramen (Figure 3); subjected to the Chi- square test to note the dimorphisms if • Double hypoglossal canal (Figure 4). present were statistically significant (Tables 5 and 6). 2.2 Variants related to the foramina of blood vessels • Parietal foramen (Figure 5); • Absence of mastoid foramen (Figure 7); • Exsutural mastoid foramen (Figure 8); • Patent condylar canal(Figure 6). Each trait was noted for its presence or absence in male, female and uncertain skulls separately. Variants occurring bilaterally were scored each time they occurred and also on right and left side separately to note side dimorphism (Tables 1 and 3). Sexual dimorphism for the variants was Figure 3. Double Zygomaticofacial foramen (Left side). Figure 1. Supraorbital foramen (Right side). Figure 4. Double hypoglossal canal (Left side). Figure 2. Supraorbital notch (Both sides). Figure 5. Parietal foramen (Both sides). 190 J. Morphol. Sci., 2012, vol. 29, no. 4, p. 189-194 Traits of the skull in anthropology Table 1. Incidence of variants related to the foramina of nerves and vessels. Male Male Male Female Female Female Uncertain Uncertain Uncertain Cranial traits (UL) Rt (UL) Lt (BL) (UL) Rt (UL) Lt (BL) (66) RT (10) LT (10) BL (20) (57) (57) (114) (33) (33) n % n % n % n % n % n % n % n % n % Supraorbital 6 10.5 6 10.5 30 26.3 6 18.2 4 12.2 20 30.3 1 10 1 10 10 50 foramen Supraorbital 4 7 6 10.5 50 43.9 3 9.1 7 21.2 30 45.5 0 0 1 10 8 40 notch Frontal foramen 2 3.5 2 3.5 4 3.5 1 3 4 12.2 4 6.1 0 0 0 0 0 0 Frontal notch 1 1.75 1 1.75 0 0 0 0 1 3 0 0 0 0 0 0 0 0 Zygomaticofacial 9 15.8 6 10.5 56 49.1 1 3 3 9 36 54.5 3 30 2 20 10 50 foramen Double 2 3.5 4 7.0 6 5.3 2 6.1 2 6.1 2 3 1 10 0 0 2 10 hypoglossal canal 3 Results The different variants exhibited side and sexual dimorphisms as follows: 3.1 Variants related to the foramina of nerves and vessels Side Dimorphism: Zygomaticofacial foramen had shown the highest incidence (60%), followed by Supraorbital notch (54%) and the Supraorbital foramen (44.5%). Frontal notch is found in only 1.5% of the skulls. Supraorbital foramen, Frontal foramen and Frontal notch showed no side dimorphism in males. Supraorbital notch had higher incidence on the left side and Zygomaticofacial foramen had shown preponderance for right side in males (Table 1) but these differences were not statistically significant (Table 5). Figure 6. Patent condylar canal (Right side). Supraorbital notch, Frontal foramen and Zygomaticofacial foramen were more frequently found on left side in females (Table 1) but again these differences were not statistically significant (Table 5). Sexual dimorphism: Supraorbital foramen, supraorbital notch and Frontal foramen had shown an affinity for females. However, these differences were not statistically significant (Table 6). Zygomaticofacial foramen, Frontal notch and Double hypoglossal canal had shown similar frequencies in both males and females (Table 2). 3.2 Variants related to foramina of blood vessels Side Dimorphism: Exsutural mastoid foramen and Parietal foramen had shown high incidences of 58.5% and 51% respectively followed by Patent condylar canal, 42.5%. Parietal foramen and Patent condylar canal were more frequently seen on right side in males. Exsutural mastoid foramen was more frequent on left side (Table 3). But these side dimorphisms were not statistically significant (Table 5). Sexual dimorphism: Parietal foramen was more frequently found in females (60.6%) when compared to the males, 45.6%.Exsutural mastoid foramen had shown, male preponderance (68.4%).These differences displaying sexual Figure 7. Absence of mastoid foramen (Left side). dimorphism were statistically significant (p < 0.05, Table 6). J. Morphol. Sci., 2012, vol. 29, no. 4, p. 189-194 191 Kaur, J., Choudhry, R., Raheja, S. et al. Table 2. Sexual dimorphism of variants related to the foramina of nerves and vessels. Cranial traits Male (114) Female (66) Uncertain (20) Total (200) n % n % n % n % Supraorbitalforamen 42 36.8 30 45.5 1260 84 42 Supraorbital notch 60 52.6 40 60.6 9 45 109 54.5 Frontal foramen 8 7.0 8 12.1 5 25 21 10.5 Frontal notch 2 1.6 1 1.5 0 0 3 1.5 Zygomaticofacial foramen 71 62.3 41 62.1 15 75 127 63.5 Double hypoglossal canal 12 10.5 6 9.1 3 15 21 10.5 Table 3. Incidence of variants related to the foramina of blood vessels. Male Male Male Female Female Female Uncertain Uncertain Uncertain Cranial traits (U57) (U57) (B114) (U 33) (U 33) (B 66) (U 10) (U 10) (B 20) RT LT RT LT RT LT n % n % n % n % n % n % n % n % n % Parietal foramen 4 7 2 3.5 46 40.4 3 9.1 3 9.1 34 1.5 2 20 2 20 4 20 Absence of mastoid 8 14 8 14 12 10.5 4 12.1 4 12.1 4 6 2 20 0 0 0 0 foramen Exsutural mastoid 6 10.5 1017.5 62 54.4 6 18.2 3 9.1 16 24.2 3 30 2 20 6 40 foramen Patent condylar 1221.1 9 15.8 24 21.1 7 21.2 2 6.1 22 3.3 0 0 1 10 8 40 canal 4 Discussion The non-metrical variants can be effectively used for anthropological studies only if they are under genetic control.
Recommended publications
  • MR Imaging of the Orbital Apex
    J Korean Radiol Soc 2000;4 :26 9-0 6 1 6 MR Imaging of the Orbital Apex: An a to m y and Pat h o l o g y 1 Ho Kyu Lee, M.D., Chang Jin Kim, M.D.2, Hyosook Ahn, M.D.3, Ji Hoon Shin, M.D., Choong Gon Choi, M.D., Dae Chul Suh, M.D. The apex of the orbit is basically formed by the optic canal, the superior orbital fis- su r e , and their contents. Space-occupying lesions in this area can result in clinical d- eficits caused by compression of the optic nerve or extraocular muscles. Even vas c u l a r changes in the cavernous sinus can produce a direct mass effect and affect the orbit ap e x. When pathologic changes in this region is suspected, contrast-enhanced MR imaging with fat saturation is very useful. According to the anatomic regions from which the lesions arise, they can be classi- fied as belonging to one of five groups; lesions of the optic nerve-sheath complex, of the conal and intraconal spaces, of the extraconal space and bony orbit, of the cav- ernous sinus or diffuse. The characteristic MR findings of various orbital lesions will be described in this paper. Index words : Orbit, diseases Orbit, MR The apex of the orbit is a complex region which con- tains many nerves, vessels, soft tissues, and bony struc- Anatomy of the orbital apex tures such as the superior orbital fissure and the optic canal (1-3), and is likely to be involved in various dis- The orbital apex region consists of the optic nerve- eases (3).
    [Show full text]
  • The Anatomic Analysis of the Vidian Canal and the Surrounding
    Braz J Otorhinolaryngol. 2019;85(2):136---143 Brazilian Journal of OTORHINOLARYNGOLOGY www.bjorl.org ORIGINAL ARTICLE The anatomic analysis of the vidian canal and the surrounding structures concerning vidian neurectomy ଝ using computed tomography scans a,∗ a b Gülay Ac¸ar , Aynur Emine C¸ic¸ekcibas¸ı , ˙Ibrahim C¸ukurova , c a d Kemal Emre Özen , Muzaffer ¸ekerS , ˙Ibrahim Güler a Necmettin Erbakan University, Meram Faculty of Medicine, Department of Anatomy, Konya, Turkey b Health Sciences University, Izmir Tepecik Trainig and Research Hospital, Department of Otolaryngology-Head and Neck Surgery, Izmir, Turkey c Katip C¸elebi University, Faculty of Medicine, Department of Anatomy, Izmir, Turkey d Selcuk University, Faculty of Medicine, Department of Radiology, Konya, Turkey Received 15 September 2017; accepted 8 November 2017 Available online 26 December 2017 KEYWORDS Abstract Intrasphenoid Introduction: The type of endoscopic approach chosen for vidian neurectomy can be specified septum; by evaluating the vidian canal and the surrounding sphenoid sinus structures. Morphometric Objective: The variations and morphometry of the vidian canal were investigated, focusing on analysis; the functional correlations between them which are crucial anatomical landmarks for preoper- Pterygoid process ative planning. pneumatization; Methods: This study was performed using paranasal multidetector computed tomography Vidian canal; images that were obtained with a section thickening of 0.625 mm of 250 adults. Vidian neurectomy Results: The distributions of 500 vidian canal variants were categorized as follows; Type 1, within the sphenoid corpus (55.6%); Type 2, partially protruding into the sphenoid sinus (34.8%); Type 3, within the sphenoid sinus (9.6%). The pneumatization of the pterygoid process is mostly seen in vidian canal Type 2 (72.4%) and Type 3 (95.8%) (p < 0.001).
    [Show full text]
  • Morphometry of Parietal Foramen in Skulls of Telangana Population Dr
    Scholars International Journal of Anatomy and Physiology Abbreviated Key Title: Sch Int J Anat Physiol ISSN 2616-8618 (Print) |ISSN 2617-345X (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com/sijap Original Research Article Morphometry of Parietal Foramen in Skulls of Telangana Population Dr. T. Sumalatha1, Dr. V. Sailaja2*, Dr. S. Deepthi3, Dr. Mounica Katukuri4 1Associate professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 2Assistant Professor, Department of Anatomy, Gandhi Medical College, Secunderabad, Telangana, India 3Assistant Professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 4Post Graduate 2nd year, Gandhi Medical College, Secunderabad, Telangana, India DOI: 10.36348/sijap.2020.v03i10.001 | Received: 06.10.2020 | Accepted: 14.10.2020 | Published: 18.10.2020 *Corresponding author: Dr. V. Sailaja Abstract Aims & Objectives: To study the prevalence, number, location and variations of parietal foramen in human skulls and correlate with the clinical significance if any. Material and Methods: A total of 45 skulls with 90 parietal bones were studied in the Department of Anatomy Govt medical college Mahabubnagar from osteology specimens in the academic year 2018-2019.Various parameters like unilateral or bilateral occurance or total absence of the parietal foramen, their location in relation to sagittal suture and lambda, their shape have been observed using appropriate tools and the findings have been tabulate. Observation & Conclusions: Out of total 45 skulls there were 64 parietal foramina in 90 parietal bones, with foramina only on right side in 10 skulls, only on left side in 7 skulls, bilaterally present in 23 skulls, total absence in 4 skulls and 1 foramen located in the sagittal suture.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • 98796-Anatomy of the Orbit
    Anatomy of the orbit Prof. Pia C Sundgren MD, PhD Department of Diagnostic Radiology, Clinical Sciences, Lund University, Sweden Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lay-out • brief overview of the basic anatomy of the orbit and its structures • the orbit is a complicated structure due to its embryological composition • high number of entities, and diseases due to its composition of ectoderm, surface ectoderm and mesoderm Recommend you to read for more details Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 3 x 3 Imaging technique 3 layers: - neuroectoderm (retina, iris, optic nerve) - surface ectoderm (lens) • CT and / or MR - mesoderm (vascular structures, sclera, choroid) •IOM plane 3 spaces: - pre-septal •thin slices extraconal - post-septal • axial and coronal projections intraconal • CT: soft tissue and bone windows 3 motor nerves: - occulomotor (III) • MR: T1 pre and post, T2, STIR, fat suppression, DWI (?) - trochlear (IV) - abducens (VI) Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Superior orbital fissure • cranial nerves (CN) III, IV, and VI • lacrimal nerve • frontal nerve • nasociliary nerve • orbital branch of middle meningeal artery • recurrent branch of lacrimal artery • superior orbital vein • superior ophthalmic vein Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst.
    [Show full text]
  • Study of Variation in Atypical Foramina of Dry Human Skull
    Study of variation in atypical foramina of dry human skull Study of variation in atypical foramina of dry human skull Dr.Praveen R Singh* , Dr.C.J.Raibagkar** *Associate Professor, **Ex.Professor & Head,Anatomy Department, Pramukhswami Medical College, Karamsad Abstract : Foramina or openings in the skull are very important as they allow passage of important structures likes nerves and blood vessels through them. Various people have studied variations in foramina as these variants have been found to be related to many disease states, which can be either acquired or inherited. Out of various skull foramina, we studied three atypical foramina named lacrimal, emissary sphenoidal & parietal in 103 dried human skulls. We looked for their presence unilaterally/bilaterally, their numbers, dimension and comparison bilaterally. Lacrimal foramen was absent bilaterally in 41% of the skulls while present unilaterally in 29% with an average size of 0.86 mm. Emissary sphenoidal foramen was absent bilaterally in 49%of the skulls, present unilaterally in 20% with an average size of 0.87 mm. When compared bilaterally 11% of the skulls showed difference of more than 0.5mm in emissary sphenoidal foramen while it was multiple in 2% of the skulls studied. Parietal foramen was absent bilaterally in 20% of the skulls while it was present unilaterally in 29% with an average size of 0.91 mm. When compared bilaterally 15% of the skulls had difference of more than 0.5mm.The foramen studied showed variation in different parameters observed which might be due to genetic, nutritional, environmental differences or some disease conditions. Knowledge of presence and variation in its anatomical parameter can be crucial for surgeons and anesthetists.
    [Show full text]
  • Morphometric Analysis of Stylomastoid Foramen Location and Its Clinical Importance
    Dental Communication Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 8 2020 Pp-108-111 Morphometric Analysis of Stylomastoid Foramen Location and its Clinical Importance Hemanth Ragav N V1 and Yuvaraj Babu K2* 1Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai- 600077, India 2Assistant Professor, Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai- 600077, India ABSTRACT The stylomastoid foramen is located between the styloid process and mastoid process of the temporal bone. Facial nerve and Stylomastoid branch of posterior auricular artery passes through this stylomastoid foramen. The facial nerve can be blocked at this stylomastoid foramen but it has high risk of nerve damage. For Nadbath facial nerve block, stylomastoid foramen is the most important site. Facial canal ends at this foramen and it is the important motor portion of this stylomastoid foramen. A total of 50 dry skulls from the Anatomy Department of Saveetha Dental College were studied to locate the position of the centre of the stylomastoid foramen with respect to the tip of mastoid process and the articular tubercle of the zygomatic arch by a digital vernier caliper. All measurements were tabulated and statistically analysed. In our study, we found the mean distance of stylomastoid foramen from mastoid processes 16.31+2.37 mm and 16.01+2.08 mm on right and left. Their range is 10.48-23.34 mm and 11.5-21.7 mm. The mean distance of stylomastoid foramen from articular tubercle is 29.48+1.91 mm and 29.90+1.62 mm on right and left.
    [Show full text]
  • ASPECTS of the CRANIAL MORPHOLOGY of the THEROCEPHALIAN Moschorhlnus (REPTILIA: THERAPSIDA)
    ASPECTS OF THE CRANIAL MORPHOLOGY OF THE THEROCEPHALIAN Moschorhlnus (REPTILIA: THERAPSIDA) Jacobus Francois Durand A thesis submitted to the Faculty of Science, University of the Witwaters.-and, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg 1989 ERRATA p ill, line 11 For "alhough" read "although". p 11 "The dorsal part of the pterygoid contacts the foot of the epiptexygoid doreally" should read "The dorsal part of the pterygoid contacts the ventral surface of the foot of the epipterygoid". VP 6 , 7 "within the jugal arch" should read "medial to the jugal arch". PP 6 , 25, 26, 52, "temporal fossa" should read "temporal fenestra". 129 p 82 "ventro-lateral flange of the parietal" should read "latero-ventral flange of the parietal". pp 9 , 62, 65, 65, "processus aecendene of the epipterygoid" should read 105, 150, 151, 172 "££0088808 Mcendena". pp 125, 124, 128, "Jollie (1962)" should read "Jollie (197?)". 150, 151 p p 103, 161 "Hopsoa" should read "Hopcsa". Add to References BOOMSTRA, L.D. 19)8. On a Soutn African mamal-like reptile Baurla oynops. Palaeobioloairq 6 t 164-183. OVER, R. 1876. Description of the Reptiliia. of South Africa in the collection of the British Museum". 1-2 London $ British Museum. ii ABSTRACT A sound understanding of the morphology of the Therocephal1 a Is essential to our understanding of the reptile-mammal transition. In this thesis the anatony of the posterior half o the Moschorhinus skull Is described in detail. This study revealed many aspects overlooked or misinterpreted by othtr authors. Two Moschorhinus skulls were studied externally.
    [Show full text]
  • THE SKULL BONES of the Iguana Iguana OSSOS DO CRÂNIO DO
    219 Original Article THE SKULL BONES OF THE Iguana iguana OSSOS DO CRÂNIO DO Iguana iguana Rozana Cristina ARANTES¹, Maria de Jesus Veloso SOARES¹, Ana Kelen Felipe LIMA¹, Frederico Ozanan CARNEIRO E SILVA², Angelita das Graças Honorato de OLIVEIRA² 1. Course of Veterinary Medicine of Veterinarian Medical College of Tocantins Federal University of Campus Araguaína, TO, Brazil. [email protected]; 2. Course of Veterinary Medicine of Veterinarian Medical College, Federal University of Uberlândia, Uberlândia, MG, Brazil ABSTRACT: The iguanas ( Iguana iguana ) are animals that can reach up 110 cm. The crest of spines that is located at the its back long characterizes these animals. They live from Mexico to Central Brazil, in the Amazon, Cerrado, and Caatinga, they live in trees and have daytime habits and are herbivorous. This group habits all regions, except the polars regions. The objective was the description of the skull of bones of a representative of this specie. The members of this group live in all regions, except the Polar Regions. The objective of this research was to give a description of the skull bones of this specie. The Companhia Independente de Polícia Rodoviária e Ambiental do Estado do Tocantins (CIPRA) gave to the Veterinary Anatomy Laboratory of the Veterinarian Medical College, of the Tocantins Federal University, Campus of Araguaína, a specie the animal, after the animal be killed by a trauma. The animal’s body was macerate by the technique of cooking. The skull was separate from the body, and following was accomplished the description of the skull bones. The following bones form the Iguana skull: premaxillary, nasal, prefrontal, frontal, prefrontal, parietal, jaw, lachrymal, jugal, postorbital, squamosal, ectopterygoid, epipterigoide, pterygoid, prootic quadrate bone, jaw, vomer, palatine, parasphenoid rostral, parasphenoid rostral, parabasisphenoid, supratemporal, exoccipital-opisthotic, supraoccipital.
    [Show full text]
  • The Condylar Canal and Emissary Vein—A Comprehensive and Pictorial Review of Its Anatomy and Variation
    Child's Nervous System (2019) 35:747–751 https://doi.org/10.1007/s00381-019-04120-4 REVIEW ARTICLE The condylar canal and emissary vein—a comprehensive and pictorial review of its anatomy and variation Stefan Lachkar1 & Shogo Kikuta1 & Joe Iwanaga1,2 & R. Shane Tubbs1,3 Received: 6 March 2019 /Accepted: 8 March 2019 /Published online: 21 March 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The condylar canal and its associated emissary vein serve as vital landmarks during surgical interventions involving skull base surgery. The condylar canal serves to function as a bridge of communication from the intracranial to extracranial space. Variations of the condylar canal are extremely prevalent and can present as either bilateral, unilateral, or completely absent. Anatomical variations of the condylar canal pose as a potential risk to surgeons and radiologist during diagnosis as it could be misinterpreted for a glomus jugular tumor and require surgical intervention when one is not needed. Few literature reviews have articulated the condylar canal and its associated emissary vein through extensive imaging. This present paper aims to further the knowledge of anatomical variations and surgical anatomy involving the condylar canal through high-quality computed tomography (CT) images with cadaveric and dry bone specimens that have been injected with latex to highlight emissary veins arising from the condylar canal. Keywords Posterior condylar canal . Anatomical variation . Anatomy . Cadaver . Skull . Emissary vein Introduction the posterior cranial fossa near or in the jugular fossa (Figs. 3 and 4)[2, 7, 9]. Its contents include the condylar emissary The condylar canal serves as a vital passageway for venous vein, which connects the sigmoid sinus or superior jugular circulation (condylar emissary vein) (Fig.
    [Show full text]
  • With Autopsy Guide and Clinical Notes with Autopsy G Uide with and Clinicalnotes Autopsy Anatomy Topographical
    učební texty Univerzity Karlovy v Praze UIDE AND CLINICALNOTES TOPOGRAPHICAL WITH AUTOPSY G WITH AUTOPSY Jiří Valenta ANATOMYPavel Fiala WITH AUTOPSY GUIDE AND CLINICAL NOTES TOPOGRAPHICAL ANATOMY ANATOMY TOPOGRAPHICAL Jiří Valenta, Pavel Fiala Pavel Valenta, Jiří KAROLINUM U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w . k o s m a s . c z , U I D : K O S 1 9 5 7 3 9 Topographical Anatomy with Autopsy Guide and Clinical Notes prof. MUDr. Jiří Valenta, DrSc. doc. RNDr. Pavel Fiala, CSc. Reviewers: prof. MUDr. Libor Páč, CSc. prof. MUDr. Zbyněk Vobořil, DrSc. Published by Charles University in Prague, Karolinum Press as a teaching text for the Faculty of Medicine in Pilsen Prague 2013 Typeset by DTP Karolinum Press Second edition © Charles University in Prague, 2013 Illustrations © Pavel Fiala, 2013 Text © Jiří Valenta, Pavel Fiala, 2013 The text has not been revised by the publisher ISBN 978-80-246-2210-1 ISBN 978-80-246-2646-8 (online : pdf) Ukázka knihy z internetového knihkupectví www.kosmas.cz Charles University in Prague Karolinum Press 2014 http://www.cupress.cuni.cz U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w . k o s m a s . c z , U I D : K O S 1 9 5 7 3 9 U k á z k a k n i h y z i n t e r n e t o v é h o k n i h k u p e c t v í w w w .
    [Show full text]
  • Variability of the Parietal Foramen and the Evolution of the Pineal Eye in South African Permo-Triassic Eutheriodont Therapsids
    The sixth sense in mammalian forerunners: Variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids JULIEN BENOIT, FERNANDO ABDALA, PAUL R. MANGER, and BRUCE S. RUBIDGE Benoit, J., Abdala, F., Manger, P.R., and Rubidge, B.S. 2016. The sixth sense in mammalian forerunners: Variability of the parietal foramen and the evolution of the pineal eye in South African Permo-Triassic eutheriodont therapsids. Acta Palaeontologica Polonica 61 (4): 777–789. In some extant ectotherms, the third eye (or pineal eye) is a photosensitive organ located in the parietal foramen on the midline of the skull roof. The pineal eye sends information regarding exposure to sunlight to the pineal complex, a region of the brain devoted to the regulation of body temperature, reproductive synchrony, and biological rhythms. The parietal foramen is absent in mammals but present in most of the closest extinct relatives of mammals, the Therapsida. A broad ranging survey of the occurrence and size of the parietal foramen in different South African therapsid taxa demonstrates that through time the parietal foramen tends, in a convergent manner, to become smaller and is absent more frequently in eutherocephalians (Akidnognathiidae, Whaitsiidae, and Baurioidea) and non-mammaliaform eucynodonts. Among the latter, the Probainognathia, the lineage leading to mammaliaforms, are the only one to achieve the complete loss of the parietal foramen. These results suggest a gradual and convergent loss of the photoreceptive function of the pineal organ and degeneration of the third eye. Given the role of the pineal organ to achieve fine-tuned thermoregulation in ecto- therms (i.e., “cold-blooded” vertebrates), the gradual loss of the parietal foramen through time in the Karoo stratigraphic succession may be correlated with the transition from a mesothermic metabolism to a high metabolic rate (endothermy) in mammalian ancestry.
    [Show full text]