VEM Thin Film Evaporation Guide

Total Page:16

File Type:pdf, Size:1020Kb

VEM Thin Film Evaporation Guide Vacuum Engineering & Materials 390 Reed Street Santa Clara, CA 95050 USA www.vem-co.com Revision 2017 Thin Film Evaporation Guide Toll Free: 877-986-8900 Phone: 408-871-9900 Fax: 408-562-9125 E-mail: [email protected] ISO 9001:2008 Certified Copyright © 2017 – Vacuum Engineering and Materials, all rights reserved Temperature Melting Density °C @ Vapor Pressure (Torr) Evaporation Crucible Material Symbol Z-ratio Remarks Point °C (bulk, g/cm3) Method Liner 10-8 10-6 10-4 TiB -TiC, 2 High deposition rates possible. Al wets Aluminum Al 660 2.7 1.08 677 821 1010 eBeam (Xlnt) TiB -BN, 2 IMCS graphite, BN Aluminum TiB -BN, BN, C, AlSb 1080 4.3 — — — — eBeam (fair) 2 Co-evaporation is the best approach Antimonide Al2O3 Aluminum TiB -BN, BN, Co-evaporation can work but typically AlAs 1600 3.7 — — — ~1300 eBeam (poor) 2 Arsenide Al2O3 done with MBE Aluminum eBeam or thermal evaporation of AlBr3 97 3.01 — — — ~50 eBeam (poor) graphite, W Bromide anhydrous AlBr3 powder Aluminum eBeam evaporation from powder, but Al C 1400 2.36 — — — ~800 eBeam (fair) graphite, W Carbide 4 3 CVD is a better approach eBeam evaporation of Al-Cu alloys is Aluminum Al2%Cu 640 2.8 — — — — eBeam (fair) TiB -TiC, BN possible, but sputter deposition is a 2% Copper 2 better approach Aluminum 1257 410 490 700 AlF3 3.07 — eBeam (fair) graphite, Mo, W Films tend to be porous, but smooth Fluoride sublimes sublimes Aluminum — TiB -TiC, Reactive evaporation of Al in N or AlN 3.26 — — — ~1750 eBeam (fair) 2 2 Nitride sublimes graphite, BN ammonia partial pressure Aluminum Swept beam with low deposition rates Al O 2045 3.97 0.336 — — 1550 eBeam (Xlnt) W, graphite Oxide (Alumina) 2 3 (< 3 Å/sec) eBeam evaporation of Al-Si alloys is Aluminum Al2%Si 640 2.6 — — — 1010 eBeam (fair) TiB -TiC, BN possible, but sputter deposition is a 2% Silicon 2 better approach 279 345 425 As the deposition rate is increased from BN, graphite, Antimony Sb 630 6.68 — eBeam (fair) 3-5 Å/s the grain size decreases and Al O sublimes 2 3 film coverage improves Best results are achieved with Antimony Sb Te 619 6.5 — — — 600 eBeam (fair) graphite, BN, W powdered source material, relatively Telluride 2 3 high deposition rates can be achieved Antimony — — ~300 eBeam evaporation from powder or Sb2O3 656 5.2 or 5.76 — eBeam (good) BN, Al2O3 Trioxide sublimes granules Antimony Can be co-evaporated with Se to Sb Se 611 — — — — — eBeam (fair) graphite Triselenide 2 3 overcome variable stoichiometric effects Films without substrate heating are Antimony Sb S 550 4.64 — — — ~200 eBeam (good) Al O , Mo, Ta amorphous, while polycrystalline films Trisulphide 2 3 2 3 form on heated substrates 107 150 210 Sputter deposition is the preferred Al O , BeO, Arsenic As 814 5.73 — eBeam (poor) 2 3 method for deposition of elemental graphite sublimes arsenic Arsenic Deposition efficiency increases with As Se 360 4.75 — — — — eBeam (poor) Al O , quartz Selenide 2 3 2 3 deposition rate Arsenic Al O , quartz, Thin films tend to be richer in As As S 300 3.43 — — — ~400 eBeam (fair) 2 3 Trisulphide 2 3 Mo compared to the source material Arsenic CVD is the preferred deposition As Te 362 — — — — — eBeam (poor) Al O , quartz Tritelluride 2 3 2 3 technique for this material Reacts with ceramics. Ba evaporation Barium Ba 710 3.78 — 545 627 735 eBeam (fair) W, Ta, Mo pellets are often shipped with protective coatings which must be removed Swept beam and slow power ramp to Barium BaCl 962 3.86 — — — ~650 eBeam (poor) W, Mo precondition and outgas the source Chloride 2 material — — ~700 Better consistency in refractive index is Barium Fluoride BaF2 1280 4.83 — eBeam (fair) W, Mo sublimes achieved via CVD Swept beam and slow power ramp to Barium Oxide BaO 1923 5.72 or 5.32 — — — ~1300 eBeam (fair) Al2O3, quartz precondition and outgas the source material Barium Sputter deposition is the preferred BaS 2200 4.25 — — — 1100 eBeam (poor) W, Mo Sulphide deposition technique BaTiO3 will decompose as single Barium Titanate BaTiO3 Decomposes 6 — Decomposes eBeam (poor) W, Mo source. Co-evaporate with Ti to maintain Ba/Ti ratio www.vem-co.com ISO 9001:2008 Certified Temperature Melting Density °C @ Vapor Pressure (Torr) Evaporation Crucible Material Symbol Z-ratio Remarks Point °C (bulk, g/cm3) Method Liner 10-8 10-6 10-4 Very high deposition rates are possible. Beryllium Be 1278 1.85 — 710 878 1000 eBeam (Xlnt) graphite Avoid Be powder sources due to toxicity Beryllium CVD is the preferred deposition BeCl 440 1.9 — — — ~150 eBeam (poor) graphite Chloride 2 technique for this material Beryllium — — ~200 BeF2 800 1.99 — eBeam (fair) graphite Avoid powder sources due to toxicity Fluoride sublimes Thin films can also be produced via Beryllium Oxide BeO 2530 3.01 — — — 1900 eBeam (fair) graphite, Al2O3 reactive evaporation of Be with O2 Post deposition thermal annealing Bismuth Bi 271 9.8 — 330 410 520 eBeam (Xlnt) Al2O3, graphite significantly enhances film properties. However, vapors are toxic — — ~300 Sublimes at relatively low temperature, Bismuth BiF 727 8.75 — eBeam (poor) graphite so reasonable vapor pressure can be Fluoride 3 sublimes achieved eBeam evaporation from Bi2O3 source Bismuth Oxide Bi2O3 820 8.9 — — — ~1400 eBeam (poor) — is possible, but variations in thin film stoichiometry may occur Sputter deposition is preferred, but Bismuth Bi Se 710 7.66 — — — ~650 eBeam (fair) graphite, quartz co-evaporation using Bi and Se sources Selenide 2 3 is possible Sputter deposition is preferred, but Bismuth Bi Te 585 7.85 — — — ~600 eBeam (fair) graphite, quartz co-evaporation using Bi and Te sources Telluride 2 3 is possible Decomposes when evaporated. Sputter Bismuth deposition is preferred, but can be Bi2Ti2O7 — — — Decomposes eBeam (poor) graphite, quartz Titanate reactively co-evaporated in O2 partial pressure Bismuth Can be co-evaporated from Bi and S Bi S 685 7.39 — — — — eBeam (poor) graphite, W Trisulphide 2 3 sources 1278 1548 1797 Can react with graphite and tungsten Boron B 2100 2.36 0.389 eBeam (Xlnt) graphite, W crucible liners. Requires high power to sublimes evaporate Ion assisted eBeam deposition with Ar Boron Carbide B C 2350 2.5 — 2500 2580 2650 eBeam (good) graphite, W 4 can improve film adhesion — — ~1600 Ion assisted eBeam deposition with N2 Boron Nitride BN 2300 2.2 — eBeam (poor) graphite, W produces stoichiometric thin films, but sublimes sputter deposition is preferred eBeam evaporation from bulk source Boron Oxide B2O3 460 1.82 — — — ~1400 eBeam (good) W, Mo material produces stoichiometric thin films Boron B S 310 1.55 — — — 800 eBeam (poor) graphite — Trisulphide 2 3 Dedicated system is recommended, Cadmium Cd 321 8.64 — 64 120 180 eBeam (fair) Al2O3, quartz since Cd can contaminate other purity sensitive depositions Cadmium CdSb 456 6.92 — — — — — — — Antimonide Thin films can be produced by eBeam Cadmium evaporation from bulk source material, Cd As 721 6.21 — — — — eBeam (poor) quartz Arsenide 3 2 but CVD is a preferred deposition method Cadmium CdBr 567 5.19 — — — ~300 — — — Bromide 2 Cadmium CdCl 570 4.05 — — — ~400 — — — Chloride 2 Cadmium CdF 1070 5.64 — — — ~500 — — — Fluoride 2 CdI films have been deposited by Cadmium 2 CdI 400 5.3 — — — ~250 — — thermal evaporation on glass substrates Iodide 2 using stoichiometric powders Can be produced by reactive Cadmium Oxide CdO 900 6.95 — — — ~530 eBeam (poor) Al2O3, quartz evaporation of Cd in partial pressure of O2 or reactive sputtering with O2 Cadmium — — 540 Al O , quartz, eBeam evaporation from bulk source CdSe 1264 5.81 — eBeam (good) 2 3 Selenide sublimes graphite material produces uniform films www.vem-co.com ISO 9001:2008 Certified Temperature Melting Density °C @ Vapor Pressure (Torr) Evaporation Crucible Material Symbol Z-ratio Remarks Point °C (bulk, g/cm3) Method Liner 10-8 10-6 10-4 Cadmium Reports in the literature of deposition CdSiO — — — — — ~600 — — Siliside 2 by CVD — — 550 Substrate heating improves film Cadmium Al O , quartz, CdS 1750 4.82 — eBeam (fair) 2 3 adhesion. Deposition rates of 15 Å/sec Sulphide graphite sublimes are possible High quality CdTe thin films on glass Cadmium Al O , quartz, CdTe 1098 6.2 — — — 450 eBeam (fair) 2 3 substrates at 100°C have been Telluride graphite fabricated with eBeam deposition 272 357 459 Low partial pressure of O2 in the Calcium Ca 842 1.56 — eBeam (poor) Al2O3, quartz vacuum chamber is required to avoid sublimes oxidizing the Ca Deposition rate of 20 Å/sec are easily Calcium CaF 1360 3.18 — — — ~1100 eBeam (Xlnt) quartz, Ta achieved with eBeam deposition. Fluoride 2 Substrate heating improves film quality Calcium Oxide CaO 2580 3.35 — — — ~1700 eBeam (poor) ZrO2, graphite Forms volatile oxides with W and Mo Post deposition thermal annealing Calcium Silicate CaO-SiO2 1540 2.9 — — — — eBeam (good) quartz at 500°C improves film quality and adhesion — Decomposition of CaS bulk source Calcium CaS 2.18 — — — 1100 eBeam (poor) ZrO , graphite material can be overcome by co- Sulphide 2 sublimes evaporation with S Calcium Sputter deposition is the preferred CaTiO 1975 4.1 — 1490 1600 1690 eBeam (poor) — Titanate 3 method Calcium Substrate heating improves the CaWO 1620 6.06 — — — — eBeam (good) W, ZrO Tungstate 4 2 crystallinity of the deposit — 1657 1867 2137 Better film adhesion results from eBeam Carbon C 1.8-2.3 0.22 eBeam (Xlnt) graphite, W evaporation compared to vacuum arc (diamond) sublimes sublimes deposition Al O , BeO, Ce deposits readily oxidize when Cerium Ce 795 8.23 — 970 1150 1380 eBeam (good) 2 3 graphite exposed to air 1890 2000 2310 Stoichiometric films are best achieved Ceric Oxide CeO2 2600 7.3 — eBeam (good) graphite, Ta using reactive evaporation with O2.
Recommended publications
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Adverse Health Effects of Heavy Metals in Children
    TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children.
    [Show full text]
  • Draft Screening Assessment Thallium and Its Compounds Environment
    Draft Screening Assessment Thallium and its compounds Environment and Climate Change Canada Health Canada September 2020 Synopsis Pursuant to section 68 and 74 of the Canadian Environmental Protection Act, 1999 (CEPA), the Minister of the Environment and the Minister of Health have conducted a screening assessment of thallium and its compounds. The scope of this assessment is on the thallium moiety. This assessment considers all thallium-containing substances, that may release thallium as well as thallium in its elemental form, and thallium released in the environment in dissolved, solid or particulate forms. This includes three thallium- containing substances on the Domestic Substances List (DSL) identified as priorities for assessment as they met categorization criteria under subsection 73(1) of CEPA or were considered a priority on the basis of other ecological concerns, and two thallium- containing substances that were identified for further consideration following prioritization of the Revised In Commerce List (R-ICL). The Chemical Abstracts Service Registry Numbers (CAS RN1), their DSL or R-ICL names and their common names are listed in the table below. Thallium-containing substances identified as priorities for assessment CAS RN DSL or R-ICL name Common name 7440-28-0 a Thallium Thallium 563-68-8 Acetic acid, thallium(1++) salt Thallium(I) acetate 7791-12-0 Thallium chloride Thallium chloride 10031-59-1 b Sulfuric acid, thallium(1+) salt (1:?) Thallium(I) sulfate 55172-29-7 b Thallium chloride (201TlCl) 201TlCl a This substance was not identified under subsection 73(1) of CEPA but was included in this assessment as it is highly reactive when exposed to moisture in air and releases thallium ions under environmental conditions.
    [Show full text]
  • Water Quality Criteria for Thallium
    Office of Water Envir"onmental Protection R$gulations Stam:iards Agency Criteria and Stan(jards UIVISlon Washington DC 20460 A.mblent Water Quality Criteria for Thallium m & & rt' AMBIENT WATER QUALITY CRITERIA FOR THALLIUM Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C: Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island i DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Offi ce, U. S. Envi ronmenta1 Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Techn al Information Service, (NTIS), Springfield, Virginia 22161. ii FOREWORD Section 304 (a) (1) of the Clean Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on hea 1th and we 1fare wh ich may be expected from the presence of pollutants in any body of water, including..ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a)(1) of the C1 ean Water Act were developed and a notice of thei r availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628).
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET Revision Date 07-Jan-2021 Revision Number 2 SECTION 1: IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1. Product identifier Product Description: Thallium (III) oxide Cat No. : A17601 Synonyms Thallic oxide CAS-No 1314-32-5 Molecular Formula O3 Tl2 Reach Registration Number - 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended Use Laboratory chemicals. Uses advised against No Information available 1.3. Details of the supplier of the safety data sheet Company Thermo Fisher (Kandel) GmbH . Erlenbachweg 2 76870 Kandel Germany Tel: +49 (0) 721 84007 280 Fax: +49 (0) 721 84007 300 E-mail address [email protected] www.alfa.com Product safety Tel + +049 (0) 7275 988687-0 1.4. Emergency telephone number Carechem 24: +44 (0) 1235 239 670 (Multi-language emergency number) Poison Information Center Mainz www.giftinfo.uni-mainz.de Telephone: +49(0)6131/19240 Exclusively for customers in Austria: Poison Information Center (VIZ) Emergency call 0-24 clock: +43 1 406 43 43 Office hours: Monday to Friday, 8am to 4pm, tel: +43 1 406 68 98 SECTION 2: HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture CLP Classification - Regulation (EC) No 1272/2008 Physical hazards Based on available data, the classification criteria are not met ______________________________________________________________________________________________ ALFAAA17601 Page 1 / 10 SAFETY DATA SHEET Thallium (III) oxide Revision Date 07-Jan-2021 ______________________________________________________________________________________________ Health hazards Acute oral toxicity Category 2 (H300) Acute Inhalation Toxicity - Dusts and Mists Category 2 (H330) Specific target organ toxicity - (repeated exposure) Category 2 (H373) Environmental hazards Chronic aquatic toxicity Category 2 (H411) Full text of Hazard Statements: see section 16 2.2.
    [Show full text]
  • EPA's Hazardous Waste Listing
    Hazardous Waste Listings A User-Friendly Reference Document September 2012 Table of Contents Introduction ..................................................................................................................................... 3 Overview of the Hazardous Waste Identification Process .............................................................. 5 Lists of Hazardous Wastes .............................................................................................................. 5 Summary Chart ............................................................................................................................... 8 General Hazardous Waste Listing Resources ................................................................................. 9 § 261.11 Criteria for listing hazardous waste. .............................................................................. 11 Subpart D-List of Hazardous Wastes ............................................................................................ 12 § 261.31 Hazardous wastes from non-specific sources. ............................................................... 13 Spent solvent wastes (F001 – F005) ......................................................................................... 13 Wastes from electroplating and other metal finishing operations (F006 - F012, and F019) ... 18 Dioxin bearing wastes (F020 - F023, and F026 – F028) .......................................................... 22 Wastes from production of certain chlorinated aliphatic hydrocarbons (F024
    [Show full text]
  • United States Patent (19) 11 4,298,533 Moriya Et Al
    United States Patent (19) 11 4,298,533 Moriya et al. 45 Nov. 3, 1981 54). PRODUCTION OF MALEICANHYDRIDE 56) References Cited U.S. PATENT DOCUMENTS (75 Inventors: Koji Moriya; Itsuo Furuoya, both of 3,856,824 12/1974 Raffelson et al. .............. 260/346.75 Osaka, Japan 3,899,516 8/1975 Dickason........... ... 260/346.75 73) Assignee: Takeda Chemical Industries, Ltd., 4,220,595 9/1980 Dickason et al. .............. 260/346.75 Osaka, Japan FOREIGN PATENT DOCUMENTS 2255394 8/1973 Fed. Rep. of 21 Appl. No.: 915,301 Germany ........................ 260/346.75 1368168 9/1974 United Kingdom . 22 Filed: Jun. 13, 1978 Primary Examiner-Henry R. Jiles Assistant Examiner-Bernard Dentz Related U.S. Application Data Attorney, Agent, or Firm-Wenderoth, Lind & Pomack 62) Division of Ser. No. 560,802, Mar. 21, 1975, Pat. No. 57 ABSTRACT 4,108,874. Maleic anhydride is obtained in a high yield as well as in a high purity by oxidation of a hydrocarbon of not less 30 Foreign Application Priority Data than four carbon atoms in gaseous phase in the presence Apr. 9, 1974 JP Japan .................................. 49-40566 of a catalyst comprising (a) vanadium oxide, (b) phos May 22, 1974 JP Japan .................................. 49-58117 phorus oxide, (c) thallium oxide and/or alkaline earth metal oxide, and if necessary, further containing (d) iron 51) Int. Cl. ............................................ CO7D 307/60 oxide. 52 U.S. Cl. ................................................ 260/346.75 58) Field of Search .................................... 260/346.75 5 Claims, No Drawings 4,298,533 1. 2 known perse for the manufacture of solid catalysts, one PRODUCTION OF MALEIC ANHYDRIDE of which, for example, may be as follows.
    [Show full text]
  • 8. EFFECTS on HUMANS 8.1 Healthy Subjects
    8. EFFECTS ON HUMANS 8.1 Healthy subjects 8.1.1 Introduction Many direct experiments investigating the effects of carbon monoxide on humans have been conducted during the last century. Although many reports describe inadvertent exposures to various levels of carbon monoxide, there are a considerable number of precise and delineated studies utilizing human subjects. Most of these have been conducted by exposing young adult males to concentrations of carbon monoxide equivalent to those frequently or occasionally detected during ambient monitoring. Research on human subjects, however, can be limited by methodological problems that make the data difficult to interpret. These problems include (1) failure to mea- sure blood carboxyhaemoglobin levels; (2) failure to distinguish between the physiological effects from a carbon monoxide dose of high concentration (i.e., bolus effect) and the slow, insidious incre- ment in carboxyhaemoglobin levels over time from lower inhaled carbon monoxide concentrations; (3) failure to distinguish between normal blood flow and blood flow increased in response to hypoxia (compensatory responses); and (4) the use of small numbers of experi- mental subjects. Other factors involve failure to provide (1) control measures (e.g., double-blind conditions) for experimenter bias and experimenter effects; (2) control periods so that task-learning effects do not mask negative results; (3) homogeneity in the subject pool, particularly in groups labelled “smokers”; (4) control of possible bore- dom and fatigue effects; and (5) adequate statistical treatment of the data. 8.1.2 Acute pulmonary effects of carbon monoxide 8.1.2.1 Effects on lung morphology Results from human autopsies have indicated that severe pul- monary congestion and oedema were produced in the lungs of indi- viduals who died from acute smoke inhalation resulting from fires (Fein et al., 1980; Burns et al., 1986).
    [Show full text]
  • Thallium Use, Toxicity, and Detoxification Therapy: an Overview
    applied sciences Review Thallium Use, Toxicity, and Detoxification Therapy: An Overview Giuseppe Genchi 1 , Alessia Carocci 2,* , Graziantonio Lauria 1, Maria Stefania Sinicropi 1,† and Alessia Catalano 2,† 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, Arcavacata di Rende, 87036 Cosenza, Italy; [email protected] (G.G.); [email protected] (G.L.); [email protected] (M.S.S.) 2 Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy; [email protected] * Correspondence: [email protected] † These authors equally contributed to this work. Abstract: Thallium (Tl) is released into the environment, where is present at very low levels, from both natural and anthropogenic sources. Tl is considered as one of the most toxic heavy metals; it is a non-essential metal, present in low concentrations in humans. Tl toxicity causes dermatological and gastrointestinal diseases and disorders of the nervous system, and may even result in death. Many isotopes of Tl exist, with different uses. One of the isotopes of this metal (201Tl) is used in cardiovascular scintigraphy and for the diagnosis of malignant tumors such as breast or lung cancer and osteosarcoma bone cancer. Many Tl compounds are tasteless, colorless, and odorless. Due to these characteristics and their high toxicity, they have been used as poisons in suicides and murders for criminal purposes, as well as instances of accidental poisoning. Impaired glutathione Citation: Genchi, G.; Carocci, A.; metabolism, oxidative stress, and disruption of potassium-regulated homeostasis may play a role Lauria, G.; Sinicropi, M.S.; in the mechanism of Tl toxicity.
    [Show full text]
  • APPENDIX B, the List of Hazardous and Extremely Hazardous
    NWSM-50-5116 JULY 4, 2018 APPENDIX B List of Hazardous and Extremely Hazardous Substances and Their Reportable Quantities NWSM-50-5116 JULY 4, 2018 Hazardous 40 CFR RCRA 40 CFR 355 40 CFR 355 NAME Air CASRN 302.4 HazWaste EHS RQ EHS TPQ Pollutant? HazSub RQ CODE Acenaphthene 83-32-9 100 Acenaphthylene 208-96-8 5,000 Acetaldehyde Y 75-07-0 1,000 U001 Acetaldehyde, chloro- 107-20-0 1,000 P023 Acetaldehyde, trichloro- 75-87-6 5,000 U034 Acetamide Y 60-35-5 100 Acetamide, N-(aminothioxomethyl)- 591-08-2 100 P002 Acetamide, N-(4-ethoxyphenyl)- 62-44-2 100 U187 Acetamide, N-9H-fluoren-2-yl 53-96-3 1 U005 Acetamide, 2-fluoro 640-19-7 100 P057 Acetic acid 64-19-7 5,000 Acetic acid, (2,4-dichlorophenoxy)-salts&esters 94-75-7 100 U240 Acetic acid, ethyl ester 141-78-6 5,000 U1112 Acetic acid, fluoro-,sodium salt 62-74-8 10 P058 Acetic acid, lead(2+) salt 301-04-2 10 U144 Acetic acid, thallium salt 563-68-8 100 U214 Acetic acid,(2,4,5-trichlorophenoxy)- 93-76-5 1,000 F027 Acetic anhydride 108-24-7 5,000 Acetone 67-64-1 5,000 U002 Acetone cyanohydrin 75-86-5 10 10 1,000 P069 1,000/ Acetone thiosemicarbazide 1752-30-3 1,000 10,000 Acetonitrile Y 75-05-8 5,000 U003 Acetophenone Y 98-86-2 5,000 U004 2-Acetylaminofluorene Y 53-96-3 1 U005 Acetyl bromide 506-96-7 5,000 Acetyl chloride 75-36-5 5,000 U006 1-Acetyl-2-thiourea 591-08-2 1,000 P002 Acrolein Y 107-02-8 1 1 500 P003 Y 1,000/ Acrylamide 79-06-1 5,000 5,000 U007 10,000 Acrylic acid Y 79-10-7 5,000 U008 Acrylonitrile Y 107-13-1 100 100 10,000 U009 Appendix B B-1 NWSM-50-5116 JULY 4, 2018 Hazardous
    [Show full text]
  • Particularly Hazardous Chemicals Which Include Carcinogens, Mutagens, Reproductive Hazards and Acutely Toxic Chemicals
    Particularly Hazardous Chemical List OSHA requires that written standard operating procedures be available for all research using particularly hazardous chemicals which include carcinogens, mutagens, reproductive hazards and acutely toxic chemicals. SOP should include procedures for; establishing a designated area, safe storage, use and handling, waste collection and disposal, and decontamination. Note: This list of carcinogens, reproductive toxins, biotoxins and acutely toxic substances is not exhaustive Chemical Source 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl- IARC-1/NTP CCNU; Semustine) [13909-09-6] 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC-2A/NTP (Lomustine) 1-(o-Chlorophenyl)thiourea AcutelyHazardousWaste 1,1-Dimethylhydrazine [57-14-7] IARC-2B/NTP 1,2,3-Propanetriol, trinitrate AcutelyHazardousWaste 1,2,3-Trichloropropane IARC-2A/NTP 1,2-Benzenediol, 4-[l-hydroxy-2-(methylamino)- ethyl]- AcutelyHazardousWaste 1,2-Dibromo-3-chloropropane (DBCP) IARC-2B/NTP/OSHA 1,2-Dibromoethane (Ethylene Dibromide) NTP 1,2-Dichloroethane (Ethylene Dichloride) IARC-2B/NTP 1,2-Diethylhydrazine [1615-80-1] IARC-2B 1,2-Dimethylhydrazine [540-73-8] IARC-2A 1,2-Epoxybutane [106-88-7] IARC-2B 1,2-Propylenimine AcutelyHazardousWaste 1,3-Butadiene IARC-2A/NTP/OSHA 1,3-Dichloropropene (Technical Grade) IARC-2B/NTP 1,3-Propane Sultone IARC-2B/NTP 1,4,5,8-Dimethanonaphthalene, 1,2,3,4,10,10- hexachloro- 1,4,4a,5,8,8a hexahydro-, AcutelyHazardousWaste (1alpha,4alpha,4abeta,5alpha,8alpha,8abeta)- 1,4,5,8-Dimethanonaphthalene,
    [Show full text]
  • Thallium(0.5-X) Lead(0.5-X) Europium(2X
    University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 1996 An investigation on the processing and characterization of (thallium(0.5-x) lead(0.5-x) europium(2x)) strontium(2-y) barium(y) calcium(2) copper(3) oxygen(z) high-temperature superconductor to determine the optimum barium concentration and study the effects of doping europium in thallium and lead sites Zifan Ju University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1996 Zifan Ju Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Semiconductor and Optical Materials Commons Recommended Citation Ju, Zifan, "An investigation on the processing and characterization of (thallium(0.5-x) lead(0.5-x) europium(2x)) strontium(2-y) barium(y) calcium(2) copper(3) oxygen(z) high-temperature superconductor to determine the optimum barium concentration and study the effects of doping europium in thallium and lead sites" (1996). Dissertations and Theses @ UNI. 906. https://scholarworks.uni.edu/etd/906 This Open Access Dissertation is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]