The Effect of Tolvaptan on BP in Polycystic Kidney Disease: a Post Hoc Analysis of the TEMPO 3:4 Trial

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Tolvaptan on BP in Polycystic Kidney Disease: a Post Hoc Analysis of the TEMPO 3:4 Trial CLINICAL RESEARCH www.jasn.org The Effect of Tolvaptan on BP in Polycystic Kidney Disease: A Post Hoc Analysis of the TEMPO 3:4 Trial Judith E. Heida ,1 Ron T. Gansevoort,1 Vicente E. Torres,2 Olivier Devuyst ,3,4 Ronald D. Perrone ,5 Jennifer Lee,6 Hui Li,6 John Ouyang,6 and Arlene B. Chapman7 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background The V2 receptor antagonist tolvaptan is prescribed to patients with autosomal dominant polycystic kidney disease to slow disease progression. Tolvaptan may alter BP via various acute and chronic effects. Methods To investigate the magnitude and time course of the effect of tolvaptan use on BP, we conducted a post hoc study of the TEMPO 3:4 trial, which included 1445 patients with autosomal dominant polycystic kid- ney disease randomized 2:1 to tolvaptan or placebo for 3 years. We evaluated systolic and diastolic BP, mean arterial pressure, hypertension status, and use and dosing of antihypertensive drugs over the course of the trial. Results At baseline, BP did not differ between study arms. After 3 weeks of tolvaptan use, mean body weight had decreased from 79.7 to 78.8 kg, and mean plasma sodium increased from 140.4 to 142.6 mmol/L (both P,0.001), suggesting a decrease in circulating volume. We observed none of these changes in the placebo arm. Nonetheless, BP remained similar in the study arms. After 3 years of treatment, however, mean systolic BP was significantly lower in participants receiving tolvaptan versus placebo (126 versus 129 mm Hg, respec- tively; P50.002), as was mean diastolic BP (81.2 versus 82.6 mm Hg, respectively; P50.01). These differences leveled off at follow-up 3 weeks after discontinuation of the study medication. Use of antihypertensive drugs remained similar in both study arms during the entire study. Conclusions Long-term treatment with tolvaptan gradually lowered BP compared with placebo, which may be attributed to a beneficial effect on disease progression, a continued natriuretic effect, or both. Clinical Trial registry name and registration number: TEMPO 3:4, NCT00428948 JASN 32: 1801–1812, 2021. doi: https://doi.org/10.1681/ASN.2020101512 Vasopressin and antidiuretic hormone are names V2 receptor, although indispensable for water that refer to the pleiotropic effects of this peptide. homeostasis, can also be damaging in a variety of Although the former name is most often used, the kidney disorders, including autosomal dominant latter may be more appropriate because decreasing polycystic kidney disease (ADPKD).7 The V2 urinary output is the principal function of vaso- receptor regulates water permeability of the tubular pressin. Effects of vasopressin are facilitated by cell membrane via an intracellular second three types of receptors, the V1a, V1b, and V2 1 receptors, present on various cell types. The V2 Received October 27, 2020. Accepted March 01, 2021. receptor, responsible for the antidiuretic effect, is Published online ahead of print. Publication date available at activated by a minimal change in vasopressin sig- www.jasn.org. nal.2,3 In contrast, activation of the V1a receptor, 4–6 Correspondence: Dr. Ron T. Gansevoort, Department of responsible for vasoconstriction, requires con- Nephrology, University Medical Center Groningen, Hanzeplein siderably higher vasopressin levels.3 1, PO Box 30.001, 9700 RB Groningen, The Netherlands. Not all of the effects of vasopressin are benefi- Email: [email protected] cial. It has been recognized that activation of the Copyright ß 2021 by the American Society of Nephrology JASN 32: 1801–1812, 2021 ISSN : 1046-6673/3207-1801 1801 CLINICAL RESEARCH www.jasn.org messenger, cAMP.8 In patients with ADPKD, growth of kid- Significance Statement ney cysts is stimulated by an increase in intracellular cAMP, leading to loss of kidney function and ultimately, resulting Patients with autosomal dominant polycystic kidney disease are in ESKD.9 Patients with ADPKD are therefore treated with treated with tolvaptan, a V2 receptor antagonist, to slow progres- tolvaptan, a selective V2 receptor antagonist, which has been sion toward ESKD. In theory, tolvaptan could have both BP-increasing and BP-decreasing effects. To investigate the mag- shown to slow the rate of disease progression in patients at nitude and time course of the effect of tolvaptan use on BP, the 10,11 risk of rapid kidney function decline. By preventing bind- authors conducted a post hoc analysis of data from the TEMPO ing of vasopressin to the V2 receptor, tolvaptan induces neph- 3:4 trial, which randomized 1445 patients with autosomal domi- rogenic diabetes insipidus, which causes a compensatory rise nant polycystic kidney disease to tolvaptan or placebo. Their anal- in plasma vasopressin.12 It is important to note that tolvaptan ysis shows that directly after start of tolvaptan therapy, BP does not change, but in the long term, BP gradually becomes lower has a high selectivity for the V2 receptor and does not block the in patients with tolvaptan compared with placebo. This observa- 13 effect of vasopressin on the V1a receptor. Consequently, tion might be attributed to the beneficial effect of tolvaptan on given the higher levels of vasopressin induced by treatment, disease progression, a sustained natriuretic effect, or both. the V1a receptor is activated more than usual. This could have undesired off-target effects, of which a change in BP summary, 1445 patients were enrolled for 2:1 randomization could be one. to either treatment with tolvaptan or placebo between 2007 Tolvaptan could theoretically have several effects on BP. In and 2009. Inclusion criteria were age between 18 and 50 years, the short term, via increased V1a receptor activation, one total kidney volume (TKV) measured by magnetic resonance could expect an increase in vascular resistance and thus, an imaging .750 ml, and Cockcroft–Gault-calculated creatinine 14,15 increase in BP. However, as mentioned above, V1a recep- clearance of 60 ml/min or greater. Exclusion criteria included tor activation has a variety of effects. It also increases sodium but were not limited to concomitant diseases that were likely 16 excretion, thereby potentially decreasing BP. In addition, to confound study end points, such as poorly controlled diabe- preventing vasopressin binding to the V2 receptor could result tes mellitus. Participants allocated to the treatment arm were – in a reduction of BP because of loss of V2 receptor mediated started on a dosage regimen of 45 mg in the morning and 15 ENaC channel activation and therefore, sodium reabsorption, mg in the late afternoon, which was increased to 60/30 mg loss of renin angiotensin aldosterone system (RAAS) activa- after 1 week and thereafter, to 90/30 mg in the third week if tol- – tion due to a decrease of V2 receptor dependent renin pro- erated. Participants remained on the highest tolerated dose for 17,18 duction, and loss of circulating volume due to aquaresis. 36 months. Primary outcome was the annual rate of change in Finally, in the long term, tolvaptan ameliorates the rate of TKV, and secondary outcomes included annual rate of change disease progression, possibly also reducing the develop- in eGFR. Tolvaptan efficacy was studied on top of standard ment of secondary symptoms of kidney disease, such as clinical care, which included optimal BP control. Study rec- hypertension. ommendations defined in 2007, at the start of the trial, consid- The original publication of the TEMPO 3:4 trial disclosed 10 ered optimal control to start antihypertensive treatment at a only limited information on the effect of tolvaptan on BP. systolic BP of 130 mm Hg or a diastolic BP of 85 mm Hg. Change in BP was expressed as worsening hypertension, Adjustments in antihypertensive therapy could be made dur- defined as a change in BP category, or as worsening of hyper- ing the entire study period in case BP exceeded the limits on tension requiring an increase in hypertensive treatment. No two consecutive visits. RAAS inhibitors were recommended effect was found. However, the use of a categorical variable as first-line antihypertensive drug. The choice for second- as outcome measure may have resulted in a loss of power to line therapy was left to the discretion of the treating physician. find differences between the two study groups. Therefore, Long-term use of diuretics was discouraged for safety reasons. this study investigates the magnitude and time course of the This study was approved by all local ethics committees of effect of tolvaptan on BP expressed as a continuous variable, the participating sites and was conducted according to the not only taking into account measured values but also, use International Conference of Harmonization Good Clinical of BP-lowering medication. Practice Guidelines. Written informed consent was obtained from all participants. METHODS Data Collection Study Population and Design Data were collected at baseline, during treatment at week 3, at This study is a post hoc analysis of the TEMPO 3:4 trial, a pro- month 3, and thereafter, after every 4 months for 36 months. A spective, multicenter, double-blinded, randomized, con- follow-up visit was scheduled between 1 and 3 weeks after the trolled trial to assess the efficacy of tolvaptan in patients last dose of study medication. At every visit, a physical exam- with early-stage ADPKD (ClinicalTrials.gov identifier ination was performed, including BP measurement. Systolic NCT00428948). A detailed study protocol of this randomized, BP and diastolic BP were measured at the brachial artery after controlled trial has been published previously.10,19 In 5 minutes of rest in seated position, either manually or with a 1802 JASN JASN 32: 1801–1812, 2021 www.jasn.org CLINICAL RESEARCH validated oscillometric device. BP was measured twice, and if by baseline disease severity–related characteristics (sex, these values varied by .5 mm Hg, they were repeated two median age, Mayo htTKV class, median eGFR, and median more times.
Recommended publications
  • Pediatric Pharmacotherapy
    Pediatric Pharmacotherapy A Monthly Review for Health Care Professionals of the Children's Medical Center Volume 1, Number 10, October 1995 DIURETICS IN CHILDREN • Overview • Loop Diuretics • Thiazide Diuretics • Metolazone • Potassium Sparing Diuretics • Diuretic Dosages • Efficacy of Diuretics in Chronic Pulmonary Disease • Summary • References Pharmacology Literature Reviews • Ibuprofen Overdosage • Predicting Creatinine Clearance Formulary Update Diuretics are used for a wide variety of conditions in infancy and childhood, including the management of pulmonary diseases such as respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD)(1 -5). Both RDS and BPD are often associated with underlying pulmonary edema and clinical improvement has been documented with diuretic use.6 Diuretics also play a major role in the management of congestive heart failure (CHF), which is frequently the result of congenital heart disease (7). Other indications, include hypertension due to the presence of cardiac or renal dysfunction. Hypertension in children is often resistant to therapy, requiring the use of multidrug regimens for optimal blood pressure control (8). Control of fluid and electrolyte status in the pediatric population remains a therapeutic challenge due to the profound effects of age and development on renal function. Although diuretics have been used extensively in infants and children, few controlled studies have been conducted to define the pharmacokinetics and pharmacodynamics of diuretics in this population. Nonetheless, diuretic therapy has become an important part of the management of critically ill infants and children. This issue will review the mechanisms of action, monitoring parameters, and indications for use of diuretics in the pediatric population (1-5). Loop Diuretics Loop diuretics are the most potent of the available diuretics (4).
    [Show full text]
  • Summary of Product Characteristics
    Sandoz Business use only Page 1 of 9 1.3.1 spc-label-pl - common-spc – 11,006 20191218 (DE/H/1772/001-002-003 – 155347 - validation) TORASEMIDE 100 MG, 200 MG, 50 MG, TABLET 721-6534.01, 721-6535.01, 721-6536.01 SUMMARY OF PRODUCT CHARACTERISTICS 1. NAME OF THE MEDICINAL PRODUCT [Nationally completed name] 50 mg tablets [Nationally completed name] 100 mg tablets [Nationally completed name] 200 mg tablets 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each tablet contains 50 mg of torasemide. Each tablet contains 100 mg of torasemide. Each tablet contains 200 mg of torasemide. For excipients, see section 6.1 3. PHARMACEUTICAL FORM Tablet. 50 mg tablets: White to off-white round tablet. 100 mg tablets: White to off-white round tablet with break notch. The tablet can be divided into equal doses. 200 mg tablets: White to off-white round tablet with cross break notch on both sides. The tablet can be divided into four equal doses. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications The administration of [Nationally completed name] 50 mg/- 100 mg/- 200 mg tablets is exclusively indicated in patients with highly reduced renal function (creatinine clearance less than 20 ml/min and/or serum creatinine concentration greater than 6 mg/dl). For maintenance of residual diuresis in case of severe renal insufficiency – even on dialysis if there is a considerable residual diuresis (more than 200 ml/24 hours) – if oedemas, effusions and/or hypertension exist. Note: [Nationally completed name] 50 mg/- 100 mg/- 200 mg tablets tablets are to be used only in case of highly impaired and not in normal renal function.
    [Show full text]
  • Drugs and Life-Threatening Ventricular Arrhythmia Risk: Results from the DARE Study Cohort
    Open Access Research BMJ Open: first published as 10.1136/bmjopen-2017-016627 on 16 October 2017. Downloaded from Drugs and life-threatening ventricular arrhythmia risk: results from the DARE study cohort Abigail L Coughtrie,1,2 Elijah R Behr,3,4 Deborah Layton,1,2 Vanessa Marshall,1 A John Camm,3,4,5 Saad A W Shakir1,2 To cite: Coughtrie AL, Behr ER, ABSTRACT Strengths and limitations of this study Layton D, et al. Drugs and Objectives To establish a unique sample of proarrhythmia life-threatening ventricular cases, determine the characteristics of cases and estimate ► The Drug-induced Arrhythmia Risk Evaluation study arrhythmia risk: results from the the contribution of individual drugs to the incidence of DARE study cohort. BMJ Open has allowed the development of a cohort of cases of proarrhythmia within these cases. 2017;7:e016627. doi:10.1136/ proarrhythmia. Setting Suspected proarrhythmia cases were referred bmjopen-2017-016627 ► These cases have provided crucial safety by cardiologists across England between 2003 and 2011. information, as well as underlying clinical and ► Prepublication history for Information on demography, symptoms, prior medical and genetic data. this paper is available online. drug histories and data from hospital notes were collected. ► Only patients who did not die as a result of the To view these files please visit Participants Two expert cardiologists reviewed data the journal online (http:// dx. doi. proarrhythmia could be included. for 293 referred cases: 130 were included. Inclusion org/ 10. 1136/ bmjopen- 2017- ► Referral of cases by cardiologists alone may have criteria were new onset or exacerbation of pre-existing 016627).
    [Show full text]
  • Guidelines for the Management of Hyponatraemia in Hospitalised Patients
    Guidelines for the management of hyponatraemia in hospitalised patients Authors: V Mishra Aims: To provide guidelines for appropriate investigations and treatment of hyponatraemia in hospitalised patients. Normal range Mild Moderate hyponatraemia Severe hyponatraemia hyponatraemia 135-146 mmol/L 130-135 mmol/L 120-129 mmol/L <120 mmol/L Evaluation of hyponatraemia STEP 1: Rule out artefactual causes Is the patient on IV fluids? If so, could the sample have been taken “downstream” from the infusion site? Could the sample have been taken from the same line? STEP 2: Clinical history Check fluid balance to exclude fluid overload Is the patient diabetic? Hyperglycemia may cause dilutional hyponatraemia and increased urinary loss of sodium Correct serum sodium for hyperglycemia (rise in plasma glucose >5.5mmol/L) by using equation given in (Appendix 1) Consider medications (Table 1). In some cases, stopping the medication or changing to an alternative that does not cause hyponatraemia may be sufficient. Monitor sodium concentrations to assess the effects of this management. It may take several days for the sodium to normalise after withdrawing medications Review clinical history for relevant conditions (such as congestive cardiac failure, kidney disease, liver failure, lung pathology) Loss of weight /appetite: investigate for malignancy 1 Table 1: Drugs known to cause hyponatraemia Drug group Examples known to causecause hyponatraemia (other compounds may exist) TThiazidehiazide diuretics Bendroflumethiazide, Metolazone, Indapamide,
    [Show full text]
  • Diuretics in Clinical Practice. Part I: Mechanisms of Action, Pharmacological Effects and 1
    Review Diuretics in clinical practice. Part I: mechanisms of action, pharmacological effects and 1. Introduction clinical indications of diuretic 2. Principles of diuretic action and classification of diuretic compounds compounds † 3. Carbonic anhydrase inhibitors Pantelis A Sarafidis , Panagiotis I Georgianos & Anastasios N Lasaridis Aristotle University of Thessaloniki, AHEPA Hospital, Section of Nephrology and Hypertension, 4. Osmotic diuretics 1st Department of Medicine, Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece 5. Loop diuretics 6. Thiazides and thiazide-related Importance of the field: Diuretics are among the most important drugs of our diuretics therapeutic armamentarium and have been broadly used for > 50 years, 7. Potassium-retaining diuretics providing important help towards the treatment of several diseases. Although all diuretics act primarily by impairing sodium reabsorption in the renal 8. Conclusion tubules, they differ in their mechanism and site of action and, therefore, in 9. Expert opinion their specific pharmacological properties and clinical indications. Loop diure- tics are mainly used for oedematous disorders (i.e., cardiac failure, nephrotic syndrome) and for blood pressure and volume control in renal disease; thiazides and related agents are among the most prescribed drugs for hypertension treatment; aldosterone-blockers are traditionally used for primary or secondary aldosteronism; and other diuretic classes have more specific indications. Areas covered in this review: This article discusses the mechanisms of action, pharmacological effects and clinical indications of the various diuretic classes For personal use only. used in everyday clinical practice, with emphasis on recent knowledge sug- gesting beneficial effects of certain diuretics on clinical conditions distinct from the traditional indications of these drugs (i.e., heart protection for aldosterone blockers).
    [Show full text]
  • DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
    DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically.
    [Show full text]
  • Spironolactone Therapy in Infants with Congestive Heart Failure Secondary to Congenital Heart Disease
    Arch Dis Child: first published as 10.1136/adc.56.12.934 on 1 December 1981. Downloaded from Archives of Disease in Childhood, 1981, 56, 934-938 Spironolactone therapy in infants with congestive heart failure secondary to congenital heart disease SUSAN M HOBBINS, RODNEY S FOWLER, RICHARD D ROWE, AND ANDREW G KOREY Division of Cardiology, Department ofPaediatrics, Hospital for Sick Children, Toronto, and Department ofPaediatrics, University of Toronto, Canada SUMMARY The efficacy of treatment with spironolactone for congestive heart failure secondary to congenital heart disease was studied in 21 infants under 1 year of age. All received digoxin and chlorothiazide. In addition, group A (n = 10) was given supplements of potassium and group B (n = 11) received spironolactone. Daily clinical observations of vital signs, weight, hepatomegaly, and vomiting were recorded. Paired t test analysis showed significant reduction in liver size and weight (P< 01) and respiratory rate (P< 0 05) in group B, and less significant decreases in group A. The incidence of vomiting was slightly lower in group B. We conclude that the addition of spiro- nolactone hastens and enhances the response to standard treatment with digoxin and chlorothiazide in infants with congestive heart failure. Spironolactone, a pharmacological antagonist of the We excluded or withdrew from the study any adrenal mineralocorticoid,l has been used for some infant in whom any of the following was present copyright. years in the treatment of congestive heart failure or developed. (1) Renal disease or dysfunction, as (CHF). By competitively binding to specific nuclear shown by blood urea nitrogen >8-925 mmol/l macromolecules in the distal convoluted renal (25 mg/100ml) or hepatic disease or dysfunction.
    [Show full text]
  • Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research
    Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Garabedian, Laura Faden. 2013. Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156786 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research A dissertation presented by Laura Faden Garabedian to The Committee on Higher Degrees in Health Policy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Health Policy Harvard University Cambridge, Massachusetts March 2013 © 2013 – Laura Faden Garabedian All rights reserved. Professor Stephen Soumerai Laura Faden Garabedian Quasi-Experimental Health Policy Research: Evaluation of Universal Health Insurance and Methods for Comparative Effectiveness Research Abstract This dissertation consists of two empirical papers and one methods paper. The first two papers use quasi-experimental methods to evaluate the impact of universal health insurance reform in Massachusetts (MA) and Thailand and the third paper evaluates the validity of a quasi- experimental method used in comparative effectiveness research (CER). My first paper uses interrupted time series with data from IMS Health to evaluate the impact of Thailand’s universal health insurance and physician payment reform on utilization of medicines for three non-communicable diseases: cancer, cardiovascular disease and diabetes.
    [Show full text]
  • Actual Place of Diuretics in Hypertension Treatment
    Mini Review J Cardiol & Cardiovasc Ther Volume 3 Issue 4 - March 2017 Copyright © All rights are reserved by Farouk Abcha DOI: 10.19080/JOCCT.2017.03.555616 Actual Place of Diuretics in Hypertension Treatment Farouk Abcha, Marouane Boukhris*, Zied Ibn Elhadj, Lobna Laroussi, Faouzi Addad, Afef Ben Halima and Salem Kachboura Cardiology Department of Abderrahmen Mami Hospital, University of Tunis El Manar, Tunisia Submission: February 03, 2017; Published: March 07, 2017 *Corresponding author: Marouane Boukhris, Cardiology Department of Abderrahmen Mami Hospital, Ariana, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia, Tel: ; Email: Abstract Diuretics represent a large and heterogeneous class of drugs, differing from each other by structure, site and mechanism of action. Diuretics are widely used, and have several indications in different cardiovascular disorders, particularly in hypertension and heart failure. Despite the large number of available anti-hypertensive drugs, diuretics remained a cornerstone of hypertension treatment. In the current editorial, we assessed the actual place of different diuretics in the hypertension guidelines focusing on the concept of tailored approach in prescribing them for hypertensive patients. Keywords: Diuretics; Hypertension; Hydrochlorothiazide; Indapamide; Guidelines Introduction Diuretics represent a large and heterogeneous class of drugs, differing from each other by structure, site and mechanism of action. Diuretics are widely used, and have several indications in different cardiovascular disorders, particularly in hypertension and heart failure. Despite the large number of available anti-hypertensive drugs, diuretics remained a cornerstone of hypertension treatment [1]. Indeed, they are the second most commonly prescribed class of antihypertensive medication. For instance, 12% of US adults were prescribed a diuretic, and the relative increase in prescriptions from 1999 through 2012 was 1.4 [2].
    [Show full text]
  • Approach to Managing Patients with Sulfa Allergy Use of Antibiotic and Nonantibiotic Sulfonamides
    CME Approach to managing patients with sulfa allergy Use of antibiotic and nonantibiotic sulfonamides David Ponka, MD, CCFP(EM) ABSTRACT OBJECTIVE To present an approach to use of sulfonamide-based (sulfa) medications for patients with sulfa allergy and to explore whether sulfa medications are contraindicated for patients who require them but are allergic to them. SOURCES OF INFORMATION A search of current pharmacology textbooks and of MEDLINE from 1966 to the present using the MeSH key words “sulfonamide” and “drug sensitivity” revealed review articles, case reports, one observational study (level II evidence), and reports of consensus opinion (level III evidence). MAIN MESSAGE Cross-reactivity between sulfa antibiotics and nonantibiotics is rare, but on occasion it can affect the pharmacologic and clinical management of patients with sulfa allergy. CONCLUSION How a physician approaches using sulfa medications for patients with sulfa allergy depends on the certainty and severity of the initial allergy, on whether alternatives are available, and on whether the contemplated agent belongs to the same category of sulfa medications (ie, antibiotic or nonantibiotic) as the initial offending agent. RÉSUMÉ OBJECTIF Proposer une façon d’utiliser les médicaments à base de sulfamides (sulfas) chez les patients allergiques aux sulfas et vérifier si ces médicaments sont contre-indiqués pour ces patients. SOURCES DE L’INFORMATION Une consultation des récents ouvrages de pharmacologie et de MEDLINE entre 1966 et aujourd’hui à l’aide des mots clés MeSH «sulfonamide» et «drug sensitivity» a permis de repérer plusieurs articles de revue et études de cas, une étude d’observation et des rapports d’opinion consensuelles (preuves de niveau III).
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Heart Failure — Managing Newly Diagnosed and Decompensated
    Clinical Guideline Heart failure: Managing newly diagnosed and decompensated patients admitted to hospital 1. Confirmation of Diagnosis Person with signs and symptoms suggesting heart failure Detailed history and clinical examination Consider aetiology for new diagnosis of heart Suspected diagnosis Confirmed failure or underlying cause for exacerbation of of heart failure diagnosis of heart chronic heart failure and exclude treatable Diagnosis has not failure causes. been confirmed by Diagnosis confirmed Arrange other investigations: echocardiogram by previous . CXR echocardiogram . ECG . FBC . U&Es and Creatinine . LFTs . TFTs . RBG . Cholesterol If current echocardiogram not Diagnosis confirmed by clinically relevant, echocardiogram, if possible Heart failure excluded so request repeat performed as an in-patient review diagnosis echo, if possible and adhering to Advancing performed as an in- Quality heart failure (AQHF) patient indicators Heart failure with preserved ejection Heart failure due to significant left ventricular fraction / diastolic dysfunction (EF systolic dysfunction (EF < 40%) >55%) • Update primary diagnosis on PCIS / -Update primary diagnosis on PCIS Cerner and document in casenotes /Cerner and document in casenotes. Proceed to Management of Confirmed Heart Failure Heart failure — managing newly diagnosed and decompensated patients in acute care — clinical guidelines, v1 Principal author: Dr P Saravanan Approved by Medicines Clinical Guideline Team: July 2013 Review by: July 2016 Page 1 of 27 2. Inpatient management Heart failure with preserved Heart failure due to left ventricular ejection fraction systolic dysfunction (EF < 40%) • Referral to heart failure specialist team. • Arrange admission to appropriate ward/unit Refer to Heart Failure Fluid balance: Drug management: Specialist Nurse for 1. Fluid restriction 1-2 litres in 24 1.
    [Show full text]