Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot PHYSICAL REVIEW LETTERS week ending PRL 97, 056801 (2006) 4 AUGUST 2006 Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot E. A. Laird,1 J. R. Petta,1 A. C. Johnson,1 C. M. Marcus,1 A. Yacoby,2 M. P. Hanson,3 and A. C. Gossard3 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel 3Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, USA (Received 3 December 2005; published 31 July 2006) We measure singlet-triplet dephasing in a two-electron double quantum dot in the presence of an exchange interaction which can be electrically tuned from much smaller to much larger than the hyperfine energy. Saturation of dephasing and damped oscillations of the spin correlator as a function of time are observed when the two interaction strengths are comparable. Both features of the data are compared with predictions from a quasistatic model of the hyperfine field. DOI: 10.1103/PhysRevLett.97.056801 PACS numbers: 73.21.La, 71.70.Gm, 71.70.Jp Implementing quantum information processing in solid- Enuc. When J Enuc, we find that PS decays on a time @ state circuitry is an enticing experimental goal, offering the scale T2 =Enuc 14 ns. In the opposite limit where possibility of tunable device parameters and straightfor- exchange dominates, J Enuc, we find that singlet corre- ward scaling. However, realization will require control lations are substantially preserved over hundreds of nano- over the strong environmental decoherence typical of seconds. In the intermediate regime, where J Enuc,we solid-state systems. An attractive candidate system uses observe oscillations in PS that depend on the ratio Enuc=J. electron spin as the holder of quantum information [1,2]. In Our results show that a finite exchange energy can be used III-V semiconductor quantum dots, where the highest de- to extend spin correlations for times well beyond T2 . gree of spin control has been achieved [3–9], the dominant These observations are in reasonable agreement with decoherence mechanism is hyperfine interaction with the recent theory, which predicts a singlet probability (assum- 0 lattice nuclei [10]. A recent experiment [9] studied this ing perfect readout) PS S that exhibits damped oscilla- decoherence in a qubit encoded in a pair of spins [11]. In tions as a function of time and a long-time saturation that this situation, the dynamics are governed by two compet- depends solely on the ratio Enuc=J [16]. To compare ex- ing effects: the hyperfine interaction, which tends to mix periment and theory quantitatively we introduce an empiri- the singlet and triplet basis states, and exchange, which cal visibility, V, to account for readout inefficiency, 0 tends to preserve them. PS S1 ÿ V1 ÿ PS S. The interplay of hyperfine and exchange effects has been The device used in the experiment, shown in Fig. 1(a),is studied recently via spin-blockaded transport in two fabricated on a GaAs=Al0:3Ga0:7As heterostructure with a double-dot systems [12,13]. Oscillations and bistability two-dimensional electron gas (density 2 1015 mÿ2, mo- [12] of the leakage current, as well as suppression of bility 20 m2=Vs) 100 nm below the surface. Ti=Au top mixing with stronger exchange [13] were observed. The gates define a few-electron double quantum dot. The in- topic also has a long history in physical chemistry: recom- terdot tunnel coupling tc and 0; 2- 1; 1 detuning are bination of a radical pair created in a triplet state proceeds also separately tunable. A charge-sensing quantum point 2 significantly faster for radicals containing isotopes whose contact with conductance gs 0:2e =h allows the occu- nuclei carry spin [14]. By lifting the singlet-triplet degen- pancy of each dot to be separately measured [17,18]. We eracy, the exchange interaction suppresses spin transitions; monitor gs using a lock-in amplifier with a 1 nA current its strength can be deduced from the magnetic field depen- bias at 335 Hz, with a 30 ms time constant. dence of the recombination rate [15]. However, exchange Measurements were made in a dilution refrigerator at is difficult to tune in situ in chemical systems. electron temperature Te 100 mK measured from the In this Letter, singlet correlations between two separated width of the 1; 1- 0; 2 transition [19]. Gates L and R electrons in a GaAs double-dot system are measured as a (see Fig. 1) were connected via filtered coaxial lines to the function of a gate-voltage tunable exchange J and as a outputs of a Tektronix AWG520. We report measurements function of time S following the preparation of an initial for two settings of tunneling strength, controlled using singlet. This study gives insight into the interplay of local voltages on gate T and measured from the width of the hyperfine interactions and exchange in a highly control- 1; 1- 0; 2 transition: tc 23 eV (‘‘large tc’’) and tc < lable quantum system. We measure the probability PS S 9 eV (‘‘small tc’’) [19]. Except where stated, measure- that an initial singlet will be detected as a singlet after time ments were made in a perpendicular magnetic field of S for J ranging from much smaller than to much greater 200 mT, corresponding to a Zeeman energy EZ than the rms hyperfine interaction strength in each dot, 5 eV Enuc. 0031-9007=06=97(5)=056801(4) 056801-1 © 2006 The American Physical Society PHYSICAL REVIEW LETTERS week ending PRL 97, 056801 (2006) 4 AUGUST 2006 a)T b) T- E pulse cycle is spent at M, the relatively slow measurement T Z 0 of the sensor gs gives a time-averaged charge configuration T g + at the M point. This signal is calibrated to give a singlet L R s 2tc state probability PS S by comparing values within the c) 0 15 J pulse triangle with values within 1; 1 (which defines δg (10-3e2/h) S -455 PS 0) and within 0; 2 outside the pulse triangle (which (0,2)S S (1,2) S defines PS 1). P We first measure J , Enuc, and V at two values of tc, -458 (1,1) P' time (mV) P ,M τ allowing the saturation probability P 1 to be measured L S S S V (0,2) as a function of J. This saturation probability is found to -461 (0,1) M P depend on the ratio Enuc=J approximately as predicted by -335 -332 -329 0 ε theory [16]. We then measure the time evolution PS S, V (mV) R which shows damped oscillations, also in reasonable agreement with theory [16]. J is measured using the FIG. 1 (color). (a) Micrograph of a device with the same gate Rabi (or Larmor) sequence described in Ref. [9], in which design as the one measured (scale bar 500 nm). Voltages an adiabatic (compared with E ) ramp over 1 s to 1; 1 applied to gates L and R adjust the double-dot detuning, . nuc is used to prepare and measure the electron spin state in the Gate T sets the interdot tunnel coupling. The conductance gs of a nearby sensor quantum point contact monitors the average fj "#i; j #"ig basis. An exchange pulse produces coherent occupation of each dot. (b) Upper panel: Level diagram for the rotations with a period tR [shown in Fig. 2(a)] from which double dot near the 1; 1- 0; 2 transition ( 0) plotted versus we deduce the exchange coupling J h=tR [22]. Exchange (J) and Zeeman (EZ) energies are indicated. The Values of J for small and large tc are shown in symbol ᭹ denotes the S-T degeneracy. Labels m; n denote the Fig. 2(b), along with a fit to an empirical power-law form occupancies of the left and right dot, respectively. Lower panel: J / ÿ , giving 1:4 [23]. In Fig. 2(c), these values of The pulse scheme, consisting of prepare (P, P0), separate (S), J are compared with the results of an alternative method and measure (M) steps. Approximately 90% of the cycle is spent in which rapid dephasing at the S-T degeneracy produces in M. (c) gs close to the 1; 1- 0; 2 transition during application a dip in PS when the value of at the S point satisfies of pulses, showing the pulse triangle (marked) and the positions J E . J can then be measured from a knowledge of points P, P0, S, and M. A background plane has been Z subtracted. of the field, using EZ gBB, where B is the Bohr magneton, and taking the value g ÿ0:44, measured (using an in-plane field) in a different quantum dot device Figure 1(b) shows the relevant energy levels near the 1; 1- 0; 2 charge transition as a function of energy detun- ing between these charge states. With tc 0, the 1; 1 a) c) 0.8 1.0 P ( =200 ns) 200 small t S S singlet S and m 0 triplet T are degenerate; the m c s 0 s large t 1 triplets T are split off in energy from T by E . c 0 Z 0.6 (ns) R Finite tc leads to hybridization of the 0; 2 and 1; 1 t 100 singlets, inducing an exchange splitting J between S and 20 T . The 0; 2 triplet (not shown) is split off by the much 0 0 larger intradot exchange energy J 0;2 600 eV [20] and -2.0 -1.5 -1.0 -0.5 0.4 (mV) J( eV) is inaccessible.
Recommended publications
  • Dephasing Time of Gaas Electron-Spin Qubits Coupled to a Nuclear Bath Exceeding 200 Μs
    LETTERS PUBLISHED ONLINE: 12 DECEMBER 2010 | DOI: 10.1038/NPHYS1856 Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 µs Hendrik Bluhm1(, Sandra Foletti1(, Izhar Neder1, Mark Rudner1, Diana Mahalu2, Vladimir Umansky2 and Amir Yacoby1* Qubits, the quantum mechanical bits required for quantum the Overhauser field to the electron-spin precession before and computing, must retain their quantum states for times after the spin reversal then approximately cancel out. For longer long enough to allow the information contained in them to evolution times, the effective field acting on the electron spin be processed. In many types of electron-spin qubits, the generally changes over the precession interval. This change leads primary source of information loss is decoherence due to to an eventual loss of coherence on a timescale determined by the the interaction with nuclear spins of the host lattice. For details of the nuclear spin dynamics. electrons in gate-defined GaAs quantum dots, spin-echo Previous Hahn-echo experiments on lateral GaAs quantum dots measurements have revealed coherence times of about 1 µs have demonstrated spin-dephasing times of around 1 µs at relatively at magnetic fields below 100 mT (refs 1,2). Here, we show low magnetic fields up to 100 mT for microwave-controlled2 single- that coherence in such devices can survive much longer, and electron spins and electrically controlled1 two-electron-spin qubits. provide a detailed understanding of the measured nuclear- For optically controlled self-assembled quantum dots, coherence spin-induced decoherence. At fields above a few hundred times of 3 µs at 6 T were found5.
    [Show full text]
  • Decoherence and Dephasing in a Quantum Measurement Process
    PHYSICAL REVIEW A VOLUME 54, NUMBER 2 AUGUST 1996 Decoherence and dephasing in a quantum measurement process Naoyuki Kono, 1 Ken Machida, 1 Mikio Namiki, 1 and Saverio Pascazio 2 1Department of Physics, Waseda University, Tokyo 169, Japan 2Dipartimento di Fisica, Universita` di Bari, and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy ~Received 19 April 1995; revised manuscript received 22 January 1996! We numerically simulate the quantum measurement process by modeling the measuring apparatus as a one-dimensional Dirac comb that interacts with an incoming object particle. The global effect of the apparatus can be well schematized in terms of the total transmission probability and the decoherence parameter, which quantitatively characterizes the loss of quantum-mechanical coherence and the wave-function collapse by measurement. These two quantities alone enable one to judge whether the apparatus works well or not as a detection system. We derive simple theoretical formulas that are in excellent agreement with the numerical results, and can be very useful in order to make a ‘‘design theory’’ of a measuring system ~detector!. We also discuss some important characteristics of the wave-function collapse. @S1050-2947~96!07507-5# PACS number~s!: 03.65.Bz I. INTRODUCTION giving a quantitative estimate of the dephasing occurring in a quantum measurement process. A similar philosophy has Quantum mechanics is the most fundamental physical been followed by several authors at different times. Among theory developed during the last seventy years. Nevertheless, others, quantitative measures for decoherence were also pro- physicists still debate the quantum measurement problem posed by Caldeira and Leggett @6# and Paz, Habib, and Zurek @1,2#, which has caused them to ponder over some very fun- @7#.
    [Show full text]
  • NMR for Condensed Matter Physics
    Concise History of NMR 1926 ‐ Pauli’s prediction of nuclear spin Gorter 1932 ‐ Detection of nuclear magnetic moment by Stern using Stern molecular beam (1943 Nobel Prize) 1936 ‐ First theoretical prediction of NMR by Gorter; attempt to detect the first NMR failed (LiF & K[Al(SO4)2]12H2O) 20K. 1938 ‐ Prof. Rabi, First detection of nuclear spin (1944 Nobel) 2015 Maglab Summer School 1942 ‐ Prof. Gorter, first published use of “NMR” ( 1967, Fritz Rabi Bloch London Prize) Nuclear Magnetic Resonance 1945 ‐ First NMR, Bloch H2O , Purcell paraffin (shared 1952 Nobel Prize) in Condensed Matter 1949 ‐ W. Knight, discovery of Knight Shift 1950 ‐ Prof. Hahn, discovery of spin echo. Purcell 1961 ‐ First commercial NMR spectrometer Varian A‐60 Arneil P. Reyes Ernst 1964 ‐ FT NMR by Ernst and Anderson (1992 Nobel Prize) NHMFL 1972 ‐ Lauterbur MRI Experiment (2003 Nobel Prize) 1980 ‐ Wuthrich 3D structure of proteins (2002 Nobel Prize) 1995 ‐ NMR at 25T (NHMFL) Lauterbur 2000 ‐ NMR at NHMFL 45T Hybrid (2 GHz NMR) Wuthrichd 2005 ‐ Pulsed field NMR >60T Concise History of NMR ‐ Old vs. New Modern Developments of NMR Magnets Technical improvements parallel developments in electronics cryogenics, superconducting magnets, digital computers. Advances in NMR Magnets 70 100T Superconducting 60 Resistive Hybrid 50 Pulse 40 Nb3Sn 30 NbTi 20 MgB2, HighTc nanotubes 10 0 1950 1960 1970 1980 1990 2000 2010 2020 2030 NMR in medical and industrial applications ¬ MRI, functional MRI ¬ non‐destructive testing ¬ dynamic information ‐ motion of molecules ¬ petroleum ‐ earth's field NMR , pore size distribution in rocks Condensed Matter ChemBio ¬ liquid chromatography, flow probes ¬ process control – petrochemical, mining, polymer production.
    [Show full text]
  • Arxiv:1511.04819V2 [Physics.Atom-Ph] 23 Feb 2016 fluctuations Emanating from the Metallic Surfaces [7–9]
    Implications of surface noise for the motional coherence of trapped ions I. Talukdar1, D. J. Gorman1, N. Daniilidis1, P. Schindler1, S. Ebadi1;3, H. Kaufmann1;4, T. Zhang1;5, H. H¨affner1;2∗ 1Department of Physics, University of California, Berkeley, 94720, Berkeley, CA 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3University of Toronto, Canada 4University of Mainz, Germany and 5Peking University, China (Dated: February 24, 2016) Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a new constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50 µm above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both, the observed heating as well as the measured dephasing, satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces. PACS numbers: 37.10.Ty, 73.50.Td, 05.40.Ca, 03.65.Yz Understanding decoherence constitutes an integral ning probe microscopy [17], gravitational wave experi- part in the development of any quantum technology. All ments [18], superconducting electronics [2], detection of present implementations of a quantum bit have to con- Casimir forces [19], and studies of non-contact friction tend with the deleterious effects of decoherence [1{5].
    [Show full text]
  • Electron Dephasing in Metal and Semiconductor Mesoscopic Structures
    INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 14 (2002) R501–R596 PII: S0953-8984(02)16903-7 TOPICAL REVIEW Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures J J Lin1,3 and J P Bird2,3 1 Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan 2 Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA E-mail: [email protected] and [email protected] Received 13 February 2002 Published 26 April 2002 Online at stacks.iop.org/JPhysCM/14/R501 Abstract In this review, we discuss the results of recent experimental studies of the low-temperature electron dephasing time (τφ) in metal and semiconductor mesoscopic structures. A major focus of this review is on the use of weak localization, and other quantum-interference-related phenomena, to determine the value of τφ in systems of different dimensionality and with different levels of disorder. Significant attention is devoted to a discussion of three-dimensional metal films, in which dephasing is found to predominantly arise from the influence of electron–phonon (e–ph) scattering. Both the temperature and electron mean free path dependences of τφ that result from this scattering mechanism are found to be sensitive to the microscopic quality and degree of disorder in the sample. The results of these studies are compared with the predictions of recent theories for the e–ph interaction. We conclude that, in spite of progress in the theory for this scattering mechanism, our understanding of the e–ph interaction remains incomplete.
    [Show full text]
  • PART 1 Identical Particles, Fermions and Bosons. Pauli Exclusion
    O. P. Sushkov School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia (Dated: March 1, 2016) PART 1 Identical particles, fermions and bosons. Pauli exclusion principle. Slater determinant. Variational method. He atom. Multielectron atoms, effective potential. Exchange interaction. 2 Identical particles and quantum statistics. Consider two identical particles. 2 electrons 2 protons 2 12C nuclei 2 protons .... The wave function of the pair reads ψ = ψ(~r1, ~s1,~t1...; ~r2, ~s2,~t2...) where r1,s1, t1, ... are variables of the 1st particle. r2,s2, t2, ... are variables of the 2nd particle. r - spatial coordinate s - spin t - isospin . - other internal quantum numbers, if any. Omit isospin and other internal quantum numbers for now. The particles are identical hence the quantum state is not changed under the permutation : ψ (r2,s2; r1,s1) = Rψ(r1,s1; r2,s2) , where R is a coefficient. Double permutation returns the wave function back, R2 = 1, hence R = 1. ± The spin-statistics theorem claims: * Particles with integer spin have R =1, they are called bosons (Bose - Einstein statistics). * Particles with half-integer spins have R = 1, they are called fermions (Fermi − - Dirac statistics). 3 The spin-statistics theorem can be proven in relativistic quantum mechanics. Technically the theorem is based on the fact that due to the structure of the Lorentz transformation the wave equation for a particle with spin 1/2 is of the first order in time derivative (see discussion of the Dirac equation later in the course). At the same time the wave equation for a particle with integer spin is of the second order in time derivative.
    [Show full text]
  • Optical Characterization of Ferromagnetic and Multiferroic Thin- Film Heterostructures
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2015 Optical characterization of ferromagnetic and multiferroic thin- film heterostructures Xin Ma College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Artificial Intelligence and Robotics Commons Recommended Citation Ma, Xin, "Optical characterization of ferromagnetic and multiferroic thin-film heterostructures" (2015). Dissertations, Theses, and Masters Projects. Paper 1539623372. https://dx.doi.org/doi:10.21220/s2-66yg-6612 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Optical Characterization of Ferromagnetic and Multiferroic Thin-Film Heterostructures Xin Ma Lingbi, Suzhou, Anhui, P. R. China Bachelor of Science, the University of Science and Technology of China, 2009 A Dissertation presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Doctor of Philosophy Department of Applied Science The College of William and Mary January, 2015 APPROVAL PAGE This Dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy 10 I ' I o- Xin Ma Approved by the Committee, November, 2014 Committee Cnair Professor Gunter Luepke, Applied Science The College of William and Mary Professor Michael Kelley, Applied Science The College of William and Mary Professor Mark Hinders, Applied Science The College of William and Mary Professor Mumtaz Qazilbash, Physics The College of William and Mary ABSTRACT This thesis presents optical characterization of the static and dynamic magnetic interactions in ferromagnetic and multiferroic heterostructures with time-resolved and interface-specific optical techniques.
    [Show full text]
  • Superconducting Qubits: Dephasing and Quantum Chemistry
    UNIVERSITY of CALIFORNIA Santa Barbara Superconducting Qubits: Dephasing and Quantum Chemistry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Peter James Joyce O'Malley Committee in charge: Professor John Martinis, Chair Professor David Weld Professor Chetan Nayak June 2016 The dissertation of Peter James Joyce O'Malley is approved: Professor David Weld Professor Chetan Nayak Professor John Martinis, Chair June 2016 Copyright c 2016 by Peter James Joyce O'Malley v vi Any work that aims to further human knowledge is inherently dedicated to future generations. There is one particular member of the next generation to which I dedicate this particular work. vii viii Acknowledgements It is a truth universally acknowledged that a dissertation is not the work of a single person. Without John Martinis, of course, this work would not exist in any form. I will be eter- nally indebted to him for ideas, guidance, resources, and|perhaps most importantly| assembling a truly great group of people to surround myself with. To these people I must extend my gratitude, insufficient though it may be; thank you for helping me as I ventured away from superconducting qubits and welcoming me back as I returned. While the nature of a university research group is to always be in flux, this group is lucky enough to have the possibility to continue to work together to build something great, and perhaps an order of magnitude luckier that we should wish to remain so. It has been an honor. Also indispensable on this journey have been all the members of the physics depart- ment who have provided the support I needed (and PCS, I apologize for repeatedly ending up, somehow, on your naughty list).
    [Show full text]
  • Arxiv:2008.08609V1 [Gr-Qc] 19 Aug 2020 Spheres Will Entangle Only If the Gravitational field Ex- Tational field (Sec
    Loss of coherence of matter-wave interferometer from fluctuating graviton bath Marko Toroš,1 Anupam Mazumdar,2, 3, ∗ and Sougato Bose1, y 1University College London, Gower Street, WC1E 6BT London, United Kingdom. 2University of Groningen PO Box 72, 9700 Groningen, The Netherlands. 3Van Swinderen Institute, University of Groningen, 9747 AG Groningen, The Netherlands. In this paper we consider non-relativistic matter-wave interferometer coupled with a quantum graviton bath – and discuss the loss of coherence in the matter sector due to the matter-graviton vertex. First of all, such a process does not lead to any entanglement, but nonetheless the on-shell scattering diagram can lead to loss of coherence as we will show.p Importantly, we will show that graviton emission is the only one-vertex Feynman-diagram ∼ G which is consistent with the con- servation of energy and momentum at the dominant order ∼ O(c−2). We will find that the resulting dephasing is extremely mild and hardly places any constraints on matter-wave interferometers in the mesoscopic regime. In particular, the show that the corresponding loss of coherence in the recently proposed experiment which would test quantum aspects of graviton – via entanglement of two matter-wave interferometers – is completely negligible. I. INTRODUCTION scattering diagram which also yields the gravitational ∼ 1=r potential. The virtual graviton is a non-classical The interface between quantum mechanics and grav- entity, it does not satisfy the classical equations of mo- ity poses significant mathematical challenges and severe tion, while the two vertices satisfy the conservation of 2 conceptual problems [1]. The first discussions about the energy-momentum tensor .
    [Show full text]
  • Comment on Photon Exchange Interactions
    Comment on Photon Exchange Interactions J.D. Franson Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 Abstract: We previously suggested that photon exchange interactions could be used to produce nonlinear effects at the two-photon level, and similar effects have been experimentally observed by Resch et al. (quant-ph/0306198). Here we note that photon exchange interactions are not useful for quantum information processing because they require the presence of substantial photon loss. This dependence on loss is somewhat analogous to the postselection required in the linear optics approach to quantum computing suggested by Knill, Laflamme, and Milburn [Nature 409, 46 (2001)]. 2 Some time ago, we suggested that photon exchange interactions could be used to produce nonlinear phase shifts at the two-photon level [1, 2]. Resch et al. have recently demonstrated somewhat similar effects in a beam-splitter experiment [3]. Because there has been some renewed discussion of this topic, we felt that it would be appropriate to briefly summarize the situation regarding photon exchange interactions. In particular, we note that photon exchange interactions are not useful for quantum information processing because the nonlinear phase shifts that they produce are dependent on the presence of significant photon loss in the form of absorption or scattering. This dependence on photon loss is somewhat analogous to the postselection process inherent in the linear optics approach to quantum computing suggested by Knill, Laflamme, and Milburn (KLM) [4]. Our interest in the use of photon exchange interactions was motivated in part by the fact that there can be a large coupling between a pair of incident photons and the collective modes of a medium containing a large number N of atoms.
    [Show full text]
  • Equivalence Principle for Quantum Systems: Dephasing and Phase
    Equivalence Principle for Quantum Systems: Dephasing and Phase Shift of Free-Falling Particles C. Anastopoulos1 and B. L. Hu2 1Department of Physics, University of Patras, 26500 Patras, Greece. 2Maryland Center for Fundamental Physics and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742-4111 U.S.A. E-mail: [email protected],[email protected] Abstract. We ask the question how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics – trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems: Version A: The probability distribution of position for a free- falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: Any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis.
    [Show full text]
  • Heisenberg and Ferromagnetism
    GENERAL I ARTICLE Heisenberg and Ferromagnetism S Chatterjee Heisenberg's contributions to the understanding of ferromagnetism are reviewed. The special fea­ tures of ferrolnagnetism, vis-a-vis dia and para magnetism, are introduced and the necessity of a Weiss molecular field is explained. It is shown how Heisenberg identified the quantum mechan­ ical exchange interaction, which first appeared in the context of chemical bonding, to be the es­ sential agency, contributing to the co-operative ordering process in ferromagnetism. Sabyasachi Chatterjee obtained his PhD in Though lTIagnetism was known to the Chinese way back condensed matter physics in 2500 BC, and to the Greeks since 600 BC, it was only from the Indian Institute in the 19th century that systematic quantitative stud­ of Science, Bangalore. He ies on magnetism were undertaken, notably by Faraday, now works at the Indian Institute of Astrophysics. Guoy and Pierre Curie. Magnetic materials were then His current interests are classified as dia, para and ferromagnetics. Theoretical in the areas of galactic understanding of these phenomena required inputs from physics and optics. He is two sources, (1) electromagnetism and (2) atomic the­ also active in the teaching ory. Electromagnetism, that unified electricity and mag­ and popularising of science. netiSlTI, showed that moving charges produce magnetic fields and moving magnets produce emfs in conductors. The fact that electrons (discovered in 1897) reside in atoms directed attention to the question whether mag­ netic properties of materials had a relation with the mo­ tiOll of electrons in atoms. The theory of diamagnetism was successfully explained to be due to the Lorentz force F = e[E + (l/c)v x H], 011 an orbiting electron when a magnetic field H is ap­ plied.
    [Show full text]