Dephasing Enhanced Transport in Boundary-Driven Quasiperiodic Chains
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physical Review Journals Catalog 2021
2021 PHYSICAL REVIEW JOURNALS CATALOG PUBLISHED BY THE AMERICAN PHYSICAL SOCIETY Physical Review Journals 2021 1 © 2020 American Physical Society 2 Physical Review Journals 2021 Table of Contents Founded in 1899, the American Physical Society (APS) strives to advance and diffuse the knowledge of physics. In support of this objective, APS publishes primary research and review journals, five of which are open access. Physical Review Letters..............................................................................................................2 Physical Review X .......................................................................................................................3 PRX Quantum .............................................................................................................................4 Reviews of Modern Physics ......................................................................................................5 Physical Review A .......................................................................................................................6 Physical Review B ......................................................................................................................7 Physical Review C.......................................................................................................................8 Physical Review D ......................................................................................................................9 Physical Review E ................................................................................................................... -
Citation Statistics from 110 Years of Physical Review
Citation Statistics from 110 Years of Physical Review Publicly available data reveal long-term systematic features about citation statistics and how papers are referenced. The data also tell fascinating citation histories of individual articles. Sidney Redner he first article published in the Physical Review was Treceived in 1893; the journal’s first volume included 6 issues and 24 articles. In the 20th century, the Phys- ical Review branched into topical sections and spawned new journals (see figure 1). Today, all arti- cles in the Physical Review family of journals (PR) are available online and, as a useful byproduct, all cita- tions in PR articles are electronically available. The citation data provide a treasure trove of quantitative information. As individuals who write sci- entific papers, most of us are keenly interested in how often our own work is cited. As dispassionate observers, we Figure 1. The Physical Review can use the citation data to identify influential research, was the first member of a family new trends in research, unanticipated connections across of journals that now includes two series of Physical fields, and downturns in subfields that are exhausted. A Review, the topical journals Physical Review A–E, certain pleasure can also be gleaned from the data when Physical Review Letters (PRL), Reviews of Modern Physics, they reveal the idiosyncratic features in the citation his- and Physical Review Special Topics: Accelerators and tories of individual articles. Beams. The first issue of Physical Review bears a publica- The investigation of citation statistics has a long his- tion date a year later than the receipt of its first article. -
Dephasing Time of Gaas Electron-Spin Qubits Coupled to a Nuclear Bath Exceeding 200 Μs
LETTERS PUBLISHED ONLINE: 12 DECEMBER 2010 | DOI: 10.1038/NPHYS1856 Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 µs Hendrik Bluhm1(, Sandra Foletti1(, Izhar Neder1, Mark Rudner1, Diana Mahalu2, Vladimir Umansky2 and Amir Yacoby1* Qubits, the quantum mechanical bits required for quantum the Overhauser field to the electron-spin precession before and computing, must retain their quantum states for times after the spin reversal then approximately cancel out. For longer long enough to allow the information contained in them to evolution times, the effective field acting on the electron spin be processed. In many types of electron-spin qubits, the generally changes over the precession interval. This change leads primary source of information loss is decoherence due to to an eventual loss of coherence on a timescale determined by the the interaction with nuclear spins of the host lattice. For details of the nuclear spin dynamics. electrons in gate-defined GaAs quantum dots, spin-echo Previous Hahn-echo experiments on lateral GaAs quantum dots measurements have revealed coherence times of about 1 µs have demonstrated spin-dephasing times of around 1 µs at relatively at magnetic fields below 100 mT (refs 1,2). Here, we show low magnetic fields up to 100 mT for microwave-controlled2 single- that coherence in such devices can survive much longer, and electron spins and electrically controlled1 two-electron-spin qubits. provide a detailed understanding of the measured nuclear- For optically controlled self-assembled quantum dots, coherence spin-induced decoherence. At fields above a few hundred times of 3 µs at 6 T were found5. -
Writing Physics Papers
Physics 2151W Lab Manual | Page 45 WID Handbook for Intermediate Laboratory - Physics 2151W Writing Physics Papers Dr. Igor Strakovsky Department of Physics, GWU Publish or Perish - Presentation of Scientific Results Intermediate Laboratory – Physics 2151W is focused on significantly improving the students' writing skills with respect to producing scientific papers, to do peer reviews, and presentations at the Physics Department Mini-Workshop. Third Edition, 2013 Physics 2151W Lab Manual | Page 46 OUTLINE Why are we Writing Papers? What Physics Journals are there? Structure of a Physics Article. Style of Technical Papers. Hints for Effective Writing. Submit and Fight. Why are We Writing Papers? To communicate our original, interesting, and useful research. To let others know what we are working on (and that we are working at all.) To organize our thoughts. To formulate our research in a comprehensible way. To secure further funding. To further our careers. To make our publication lists look more impressive. To make our Citation Index very impressive. To have fun? Because we believe someone is going to read it!!! Physics 2151W Lab Manual | Page 47 What Physics Journals are there? Hard Science Journals Physical Review Series: Physical Review A Physical Review E http://pra.aps.org/ http://pre.aps.org/ Atomic, Molecular, and Optical physics. Stat, Non-Linear, & Soft Material Phys. Physical Review B Physical Review Letters http://prb.aps.org/ http://prl.aps.org/ Condensed matter and Materials physics. Moving physics forward. Physical Review C Review of Modern Physics http://prc.aps.org/ http://rmp.aps.org/ Nuclear physics. Reviews in all areas. Physical Review D http://prd.aps.org/ Particles, Fields, Gravitation, and Cosmology. -
Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot
PHYSICAL REVIEW LETTERS week ending PRL 97, 056801 (2006) 4 AUGUST 2006 Effect of Exchange Interaction on Spin Dephasing in a Double Quantum Dot E. A. Laird,1 J. R. Petta,1 A. C. Johnson,1 C. M. Marcus,1 A. Yacoby,2 M. P. Hanson,3 and A. C. Gossard3 1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel 3Materials Department, University of California at Santa Barbara, Santa Barbara, California 93106, USA (Received 3 December 2005; published 31 July 2006) We measure singlet-triplet dephasing in a two-electron double quantum dot in the presence of an exchange interaction which can be electrically tuned from much smaller to much larger than the hyperfine energy. Saturation of dephasing and damped oscillations of the spin correlator as a function of time are observed when the two interaction strengths are comparable. Both features of the data are compared with predictions from a quasistatic model of the hyperfine field. DOI: 10.1103/PhysRevLett.97.056801 PACS numbers: 73.21.La, 71.70.Gm, 71.70.Jp Implementing quantum information processing in solid- Enuc. When J Enuc, we find that PS decays on a time @ state circuitry is an enticing experimental goal, offering the scale T2 =Enuc 14 ns. In the opposite limit where possibility of tunable device parameters and straightfor- exchange dominates, J Enuc, we find that singlet corre- ward scaling. However, realization will require control lations are substantially preserved over hundreds of nano- over the strong environmental decoherence typical of seconds. -
Decoherence and Dephasing in a Quantum Measurement Process
PHYSICAL REVIEW A VOLUME 54, NUMBER 2 AUGUST 1996 Decoherence and dephasing in a quantum measurement process Naoyuki Kono, 1 Ken Machida, 1 Mikio Namiki, 1 and Saverio Pascazio 2 1Department of Physics, Waseda University, Tokyo 169, Japan 2Dipartimento di Fisica, Universita` di Bari, and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy ~Received 19 April 1995; revised manuscript received 22 January 1996! We numerically simulate the quantum measurement process by modeling the measuring apparatus as a one-dimensional Dirac comb that interacts with an incoming object particle. The global effect of the apparatus can be well schematized in terms of the total transmission probability and the decoherence parameter, which quantitatively characterizes the loss of quantum-mechanical coherence and the wave-function collapse by measurement. These two quantities alone enable one to judge whether the apparatus works well or not as a detection system. We derive simple theoretical formulas that are in excellent agreement with the numerical results, and can be very useful in order to make a ‘‘design theory’’ of a measuring system ~detector!. We also discuss some important characteristics of the wave-function collapse. @S1050-2947~96!07507-5# PACS number~s!: 03.65.Bz I. INTRODUCTION giving a quantitative estimate of the dephasing occurring in a quantum measurement process. A similar philosophy has Quantum mechanics is the most fundamental physical been followed by several authors at different times. Among theory developed during the last seventy years. Nevertheless, others, quantitative measures for decoherence were also pro- physicists still debate the quantum measurement problem posed by Caldeira and Leggett @6# and Paz, Habib, and Zurek @1,2#, which has caused them to ponder over some very fun- @7#. -
NMR for Condensed Matter Physics
Concise History of NMR 1926 ‐ Pauli’s prediction of nuclear spin Gorter 1932 ‐ Detection of nuclear magnetic moment by Stern using Stern molecular beam (1943 Nobel Prize) 1936 ‐ First theoretical prediction of NMR by Gorter; attempt to detect the first NMR failed (LiF & K[Al(SO4)2]12H2O) 20K. 1938 ‐ Prof. Rabi, First detection of nuclear spin (1944 Nobel) 2015 Maglab Summer School 1942 ‐ Prof. Gorter, first published use of “NMR” ( 1967, Fritz Rabi Bloch London Prize) Nuclear Magnetic Resonance 1945 ‐ First NMR, Bloch H2O , Purcell paraffin (shared 1952 Nobel Prize) in Condensed Matter 1949 ‐ W. Knight, discovery of Knight Shift 1950 ‐ Prof. Hahn, discovery of spin echo. Purcell 1961 ‐ First commercial NMR spectrometer Varian A‐60 Arneil P. Reyes Ernst 1964 ‐ FT NMR by Ernst and Anderson (1992 Nobel Prize) NHMFL 1972 ‐ Lauterbur MRI Experiment (2003 Nobel Prize) 1980 ‐ Wuthrich 3D structure of proteins (2002 Nobel Prize) 1995 ‐ NMR at 25T (NHMFL) Lauterbur 2000 ‐ NMR at NHMFL 45T Hybrid (2 GHz NMR) Wuthrichd 2005 ‐ Pulsed field NMR >60T Concise History of NMR ‐ Old vs. New Modern Developments of NMR Magnets Technical improvements parallel developments in electronics cryogenics, superconducting magnets, digital computers. Advances in NMR Magnets 70 100T Superconducting 60 Resistive Hybrid 50 Pulse 40 Nb3Sn 30 NbTi 20 MgB2, HighTc nanotubes 10 0 1950 1960 1970 1980 1990 2000 2010 2020 2030 NMR in medical and industrial applications ¬ MRI, functional MRI ¬ non‐destructive testing ¬ dynamic information ‐ motion of molecules ¬ petroleum ‐ earth's field NMR , pore size distribution in rocks Condensed Matter ChemBio ¬ liquid chromatography, flow probes ¬ process control – petrochemical, mining, polymer production. -
Arxiv:1511.04819V2 [Physics.Atom-Ph] 23 Feb 2016 fluctuations Emanating from the Metallic Surfaces [7–9]
Implications of surface noise for the motional coherence of trapped ions I. Talukdar1, D. J. Gorman1, N. Daniilidis1, P. Schindler1, S. Ebadi1;3, H. Kaufmann1;4, T. Zhang1;5, H. H¨affner1;2∗ 1Department of Physics, University of California, Berkeley, 94720, Berkeley, CA 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 3University of Toronto, Canada 4University of Mainz, Germany and 5Peking University, China (Dated: February 24, 2016) Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a new constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50 µm above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both, the observed heating as well as the measured dephasing, satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces. PACS numbers: 37.10.Ty, 73.50.Td, 05.40.Ca, 03.65.Yz Understanding decoherence constitutes an integral ning probe microscopy [17], gravitational wave experi- part in the development of any quantum technology. All ments [18], superconducting electronics [2], detection of present implementations of a quantum bit have to con- Casimir forces [19], and studies of non-contact friction tend with the deleterious effects of decoherence [1{5]. -
Style and Notation Guide
Physical Review Style and Notation Guide Instructions for correct notation and style in preparation of REVTEX compuscripts and conventional manuscripts Published by The American Physical Society First Edition July 1983 Revised February 1993 Compiled and edited by Minor Revision June 2005 Anne Waldron, Peggy Judd, and Valerie Miller Minor Revision June 2011 Copyright 1993, by The American Physical Society Permission is granted to quote from this journal with the customary acknowledgment of the source. To reprint a figure, table or other excerpt requires, in addition, the consent of one of the original authors and notification of APS. No copying fee is required when copies of articles are made for educational or research purposes by individuals or libraries (including those at government and industrial institutions). Republication or reproduction for sale of articles or abstracts in this journal is permitted only under license from APS; in addition, APS may require that permission also be obtained from one of the authors. Address inquiries to the APS Administrative Editor (Editorial Office, 1 Research Rd., Box 1000, Ridge, NY 11961). Physical Review Style and Notation Guide Anne Waldron, Peggy Judd, and Valerie Miller (Received: ) Contents I. INTRODUCTION 2 II. STYLE INSTRUCTIONS FOR PARTS OF A MANUSCRIPT 2 A. Title ..................................................... 2 B. Author(s) name(s) . 2 C. Author(s) affiliation(s) . 2 D. Receipt date . 2 E. Abstract . 2 F. Physics and Astronomy Classification Scheme (PACS) indexing codes . 2 G. Main body of the paper|sequential organization . 2 1. Types of headings and section-head numbers . 3 2. Reference, figure, and table numbering . 3 3. -
Electron Dephasing in Metal and Semiconductor Mesoscopic Structures
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 14 (2002) R501–R596 PII: S0953-8984(02)16903-7 TOPICAL REVIEW Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures J J Lin1,3 and J P Bird2,3 1 Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan 2 Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA E-mail: [email protected] and [email protected] Received 13 February 2002 Published 26 April 2002 Online at stacks.iop.org/JPhysCM/14/R501 Abstract In this review, we discuss the results of recent experimental studies of the low-temperature electron dephasing time (τφ) in metal and semiconductor mesoscopic structures. A major focus of this review is on the use of weak localization, and other quantum-interference-related phenomena, to determine the value of τφ in systems of different dimensionality and with different levels of disorder. Significant attention is devoted to a discussion of three-dimensional metal films, in which dephasing is found to predominantly arise from the influence of electron–phonon (e–ph) scattering. Both the temperature and electron mean free path dependences of τφ that result from this scattering mechanism are found to be sensitive to the microscopic quality and degree of disorder in the sample. The results of these studies are compared with the predictions of recent theories for the e–ph interaction. We conclude that, in spite of progress in the theory for this scattering mechanism, our understanding of the e–ph interaction remains incomplete. -
Optical Characterization of Ferromagnetic and Multiferroic Thin- Film Heterostructures
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2015 Optical characterization of ferromagnetic and multiferroic thin- film heterostructures Xin Ma College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Artificial Intelligence and Robotics Commons Recommended Citation Ma, Xin, "Optical characterization of ferromagnetic and multiferroic thin-film heterostructures" (2015). Dissertations, Theses, and Masters Projects. Paper 1539623372. https://dx.doi.org/doi:10.21220/s2-66yg-6612 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Optical Characterization of Ferromagnetic and Multiferroic Thin-Film Heterostructures Xin Ma Lingbi, Suzhou, Anhui, P. R. China Bachelor of Science, the University of Science and Technology of China, 2009 A Dissertation presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Doctor of Philosophy Department of Applied Science The College of William and Mary January, 2015 APPROVAL PAGE This Dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy 10 I ' I o- Xin Ma Approved by the Committee, November, 2014 Committee Cnair Professor Gunter Luepke, Applied Science The College of William and Mary Professor Michael Kelley, Applied Science The College of William and Mary Professor Mark Hinders, Applied Science The College of William and Mary Professor Mumtaz Qazilbash, Physics The College of William and Mary ABSTRACT This thesis presents optical characterization of the static and dynamic magnetic interactions in ferromagnetic and multiferroic heterostructures with time-resolved and interface-specific optical techniques. -
Superconducting Qubits: Dephasing and Quantum Chemistry
UNIVERSITY of CALIFORNIA Santa Barbara Superconducting Qubits: Dephasing and Quantum Chemistry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics by Peter James Joyce O'Malley Committee in charge: Professor John Martinis, Chair Professor David Weld Professor Chetan Nayak June 2016 The dissertation of Peter James Joyce O'Malley is approved: Professor David Weld Professor Chetan Nayak Professor John Martinis, Chair June 2016 Copyright c 2016 by Peter James Joyce O'Malley v vi Any work that aims to further human knowledge is inherently dedicated to future generations. There is one particular member of the next generation to which I dedicate this particular work. vii viii Acknowledgements It is a truth universally acknowledged that a dissertation is not the work of a single person. Without John Martinis, of course, this work would not exist in any form. I will be eter- nally indebted to him for ideas, guidance, resources, and|perhaps most importantly| assembling a truly great group of people to surround myself with. To these people I must extend my gratitude, insufficient though it may be; thank you for helping me as I ventured away from superconducting qubits and welcoming me back as I returned. While the nature of a university research group is to always be in flux, this group is lucky enough to have the possibility to continue to work together to build something great, and perhaps an order of magnitude luckier that we should wish to remain so. It has been an honor. Also indispensable on this journey have been all the members of the physics depart- ment who have provided the support I needed (and PCS, I apologize for repeatedly ending up, somehow, on your naughty list).