INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 14 (2002) R501–R596 PII: S0953-8984(02)16903-7 TOPICAL REVIEW Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures J J Lin1,3 and J P Bird2,3 1 Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan 2 Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, USA E-mail:
[email protected] and
[email protected] Received 13 February 2002 Published 26 April 2002 Online at stacks.iop.org/JPhysCM/14/R501 Abstract In this review, we discuss the results of recent experimental studies of the low-temperature electron dephasing time (τφ) in metal and semiconductor mesoscopic structures. A major focus of this review is on the use of weak localization, and other quantum-interference-related phenomena, to determine the value of τφ in systems of different dimensionality and with different levels of disorder. Significant attention is devoted to a discussion of three-dimensional metal films, in which dephasing is found to predominantly arise from the influence of electron–phonon (e–ph) scattering. Both the temperature and electron mean free path dependences of τφ that result from this scattering mechanism are found to be sensitive to the microscopic quality and degree of disorder in the sample. The results of these studies are compared with the predictions of recent theories for the e–ph interaction. We conclude that, in spite of progress in the theory for this scattering mechanism, our understanding of the e–ph interaction remains incomplete.